三角高程测量
- 格式:docx
- 大小:49.68 KB
- 文档页数:5
§5.9 三角高程测量三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。
这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。
三角点的高程主要是作为各种比例尺测图的高程控制的一部分。
一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。
5.9.1 三角高程测量的基本公式1.基本公式关于三角高程测量的基本原理和计算高差的基本公式,在测量学中已有过讨论,但公式的推导是以水平面作为依据的。
在控制测量中,由于距离较长,所以必须以椭球面为依据来推导三角高程测量的基本公式。
如图5-35所示。
设0s 为B A 、两点间的实测水平距离。
仪器置于A 点,仪器高度为1i 。
B 为照准点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率半径。
AF PE 、分别为过P 点和A 点的水准面。
PC 是PE 在P 点的切线,PN 为光程曲线。
当位于P 点的望远镜指向与PN 相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。
这就是说,仪器置于A 点测得M P 、间的垂直角为2,1a 。
由图5-35可明显地看出,B A 、 两地面点间的高差为NB MN EF CE MC BF h --++==2,1 (5-54)式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。
由2021s R CE =2021s R MN '= 式中R '为光程曲线PN 在N 点的曲率半径。
设,K R R='则 20202.21S RK S R R R MN ='=K 称为大气垂直折光系数。
图5-35由于B A 、两点之间的水平距离0s 与曲率半径R 之比值很小(当km s 100=时,0s 所对的圆心角仅5'多一点),故可认为PC 近似垂直于OM ,即认为 90≈PCM ,这样PCM ∆可视为直角三角形。
§4-6 三角高程测量一、三角高程测量原理及公式在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。
传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。
方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆),并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为:故(4-11)式中为A、B两点间的水平距离。
图4-12 三角高程测量原理当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正数简称为两差改正:设c为地球曲率改正,R为地球半径,则c的近似计算公式为:设g为大气折光改正,则g的近似计算公式为:因此两差改正为:,恒为正值。
采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。
采用光电测距仪测定两点的斜距S,则B点的高程计算公式为:(4-12)为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。
实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。
理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。
当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。
二、光电三角高程测量方法光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。
表4-6 光电三角高程测量技术要求往返各注:表4-6中为光电测距边长度。
对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。
J08-KC-08-A三角高程测量1 三角高程测量基本公式仪器高 1i觇标高 2v 参考椭球面 A ′B ′ 水准面 PE ,AF切线PC (水准面PE 的) 切线PM (也就是视线)光程曲线PN (切线PM 的光程曲线) 垂直角12α,实测的,但真正的垂直角应为0α,012αα-称为折光角图1 三角高程测量示意图高差计算公式为:NB MN EF CE MC BF h --++==12 (1)220120120221v s RK i s R tg s --++=α 2120120v i Cs tg s -++=α式中:C ——球气差系数,C =(1-K )/2R0s ——为实测的水平距离221s R ——地球弯曲差22s R K ——大气垂直折光差,K 为折光系数,一般在0.1~0.16之间,可用实验方法测定。
2 三角高程导线测量基本要求(1) 三、四等及等外高程导线测量,每公里高差中数的偶然中误差∆M 和全中误差wM 应符合表1的规定。
表 1 mm(2) 高程导线天顶距测量,一测回观测值中误差Z M 应符合以下规定。
三等 "3.1≤Z M 四等 "5.1≤Z M(3) 各等级高程导线的路线长度应符合表2的规定。
表 2 km(4) 高程导线的环线、附合路线闭合差和检查已测测段高差之差,不得超过表3的规定。
表 3 mm(5) 高程导线的视线长度和视线倾角应符合表4的规定。
J08-KC-08-A4 m表表5 m表 6 (°)3 三角高程导线测量流程3.1 路线设计与埋石(1)高程导线的路线设计应根据任务书的要求,收集测区及附近的地形图、交通图、水准点、气象等方面的资料,设计最佳方案,编写技术设计。
(2)测站和置觇点宜选择在高出周围地面的地形特征点上,尽量提高视线的高度。
视线高度和地面障碍物的距离不小于1.5m。
(3)视线和置觇点应尽量避免通过有强烈背景光和强磁场的地方,以及有吸热、散热变化大的区域,视线离较宽的水面和高压输电线的距离应大于2m。
三角高程测量是一种常用的测量方法,用于测量地面上两点之间的高差。
而往返高差限差则是指在进行三角高程测量时,允许的高差误差范围。
本文将从三角高程测量的原理、往返高差限差的定义和实际应用等方面进行介绍。
一、三角高程测量的原理三角高程测量是利用三角形的相似性原理进行的。
在测量过程中,首先选取一个已知高程的基准点A,然后选择需要测量高差的目标点B和一个中间点C。
通过测量AB、BC的水平距离和AC、BC的垂直距离,可以计算出AB与AC之间的高差。
二、往返高差限差的定义往返高差限差是指在进行三角高程测量时,测量结果与真实高差之间的允许误差范围。
通常情况下,往返高差限差是由测量精度、仪器误差、人为操作等因素综合考虑而确定的。
三、往返高差限差的实际应用往返高差限差在实际测量中起到了重要的作用,它能够有效地控制测量误差,保证测量结果的准确性。
以下是一些实际应用的举例:1. 建筑工程中的高程测量在建筑工程中,三角高程测量常用于确定建筑物的基准高度和各个部位的高差。
通过合理设置往返高差限差,可以确保建筑物各个部位的高度符合设计要求。
2. 水利工程中的高程测量在水利工程中,三角高程测量常用于确定河流、水库等水体的高程。
通过合理设置往返高差限差,可以保证水利工程的设计和施工的准确性,确保水利设施的正常运行。
3. 地质勘探中的高程测量在地质勘探中,三角高程测量常用于确定地质剖面的高差。
通过合理设置往返高差限差,可以控制测量误差,保证地质勘探数据的准确性,为地质研究提供可靠的依据。
四、往返高差限差的确定方法确定往返高差限差的方法主要包括以下几个方面:1. 根据测量精度要求确定根据具体的测量任务和要求,结合测量仪器的精度,确定往返高差限差的范围。
通常情况下,往返高差限差应小于等于测量精度的一半。
2. 根据测量仪器的精度确定根据使用的测量仪器的精度,结合测量任务的要求,确定往返高差限差的范围。
通常情况下,往返高差限差应小于等于测量仪器的精度。
测绘技术三角高程测量详解测绘技术在现代社会中扮演着重要的角色,其中三角高程测量作为测绘技术的重要组成部分,对于地理信息的获取和实际应用具有重要意义。
本文将对三角高程测量进行详细解析,介绍其原理、方法和应用。
一、三角高程测量的原理三角高程测量是一种基于三角形的测量方法,通过测量三角形的边长与角度来计算目标点的高程。
其基本原理是利用三角形的几何关系,根据已知边长和角度的关系求解目标点的高程。
三角高程测量的原理有两种方法,即几何三角高程测量和均差三角高程测量。
几何三角高程测量是利用定点观测和差角观测进行高程测量,其原理是通过比较观测点与已知高程点之间的角度差异,从而计算出目标点的高程。
均差三角高程测量是通过测量三角形边长和角度的变化量,利用高程差与边长、角度的关系求解目标点的高程。
二、三角高程测量的方法三角高程测量有多种方法,常用的包括:倾斜距离法、距离比例法、角度比例法、高程变换法等。
下面将对其中两种方法进行详细介绍。
1. 倾斜距离法倾斜距离法是一种适用于平地和坡地的高程测量方法,其原理是通过测量目标点与已知点之间的倾斜距离和水平距离的比值来计算目标点的高程。
该方法需要在目标点和已知点之间设置一个水平距离基线,并使用倾斜仪测量两点之间的倾斜角和倾斜距离,再根据比例关系计算出高程。
倾斜距离法的优点是测量方便快捷,适用范围广,但需要考虑目标点与已知点之间的可视性和坡度等因素对测量结果的影响。
2. 距离比例法距离比例法是一种适用于山地和复杂地形的高程测量方法,其原理是测量目标点与已知点之间的距离,并根据距离比例关系计算出目标点的高程。
该方法需要测量目标点与已知点之间的水平距离和垂直距离,并计算距离比例,再通过已知点的高程推算出目标点的高程。
距离比例法的优点是适用范围广,不受地形复杂性的限制,但需要考虑测量误差和仪器精度对结果的影响。
三、三角高程测量的应用三角高程测量在地理信息系统、地质勘探、城市规划等领域具有广泛的应用。
三角高程测量在平坦地区,当精度要求较高时,可用水准测量的方法测定控制点的高程。
在山区,采用水准测量难度较大。
因此往往采用三角高程的方法来测定控制点的高程。
这种方法虽然精度低于水准测量,但不受地面高差的限制,且效率高,所以应用甚广。
一、三角高程测量的原理三角高程测量是根据两点间的水平距离及竖角,应用三角公式计算两点的高差。
已知A 点高程H A ,欲求B 点高程H B ,将仪器架设于A 点,用中丝瞄准B 点的目标,丈量仪器高i 、觇标高v ,观测竖直角α和平距S ,则可求得高差:v i tg S h AB -+⋅=α,可得B 点高程: v i tg S H h H H A AB A B -+⋅+=+=α规程规定,从已知点到未知点的观测为直觇,从未知点到已知点的观测为反觇。
二、三角高程路线:三角高程路线有附和路线和闭合环两种形式。
起闭于不同的已知高程点的三角高程路线称为附和路线,而起闭于同一已知高程点的三角高程路线称为闭合路线。
(一)三角高程路线的高差计算1、高差计算:外业成果检查、整理,不合格的应重测;画草图,计算相邻点间的高差、距离,当往返测高差互差符合规范要求后取其平均值。
2、三角高程路线成果整理1)计算高差闭合差∑--=∆)(a b h H H h f2)计算每公里高差改正数∑∆-=公里公里S f h /δ3)计算每测段高差改正数公里δδ⋅=i i S4)计算各待定点高程(二)独立高程点的计算地形控制点高程的测定应尽可能包括在三角高程路线或水准路线之内,这样既有校核又与周围地形控制点协调一致。
但有时某些交会点纳入三角高程路线有困难时亦可独立计算其高程。
2.4 三角高程测量的方法2.4.1 传统的三角高程测量方法传统三角高程测量所用的仪器一般为经纬仪或平板仪等;但必须具备能测出竖角的竖盘。
为了能观测较远的目标,还应具备望远镜。
图2-4传统三角高程测量示意图如图2-4所示,欲在地面上A 、B 两点间测定高差AB h ,在A 点设置仪器,在B 点竖立标尺。
量取仪器高i 和目标高v ,测出倾斜视线IM 与水平视线间所夹的竖角α,若A 、B 两点间的水平距离已知为S ,则由图2-4可得两点间高差AB h 为i a S v h AB +=+tan (2-25)v i a S h AB -+=tan (2-26)若A 点的高程已知为H ,则B 点的高程为v i a S H h H H A AB A B -++=+=tan (2-27)凡仪器在已知高程点,观测该点与未知高程点之间的高差称为直觇;反之,仪器设在未知高程点,该点与已知高程点之间的高差称为反觇。
其误差公式为:222242222tan sec K S a i v m a m S a m m m ρ=⋅+⋅⋅++ (2-28) 传统的方法中完全没有考虑地球曲率及大气折光的影响,其误差传播公式也就完全忽略掉了这一点。
2.4.2 支返站法—— 往返观测法求正向观测改正后的高差:在已知点A 处安置仪器,在未知点B 处设置觇标;分别测出距离、天顶距、仪器高、觇标高后得到正向高差:()2cos 21sin AB AB A B A AB AB AB AB AB S R K v i S f h h αα⋅⋅-+-+⋅=+=' (2-29)求反向观测改正后的高差:将仪器搬迁安置于未知点B 上,在已知点A 处设置觇标,重复上一步的工作,同样可得反向高差:()2cos 21sin BA B A B BA BA BA BA BA S RK v i S f h h αα⋅⋅-+-+⋅=+='(2-30)正反向观测所得的高差之差达到限差要求时,则取正、反向高差的平均值作为A 、B 两点间的高差,它可有效削减球气差的影响,即:2''BA AB ABh h h -=作为A 、B 两点间的高差,其符号与正向高差AB h '同号。
三、三角高程测量在一点设站向另一点观测竖直角和其间的距离,就可以求得这两点的高差,这种方法称为三角高程测量。
如果距离是由电磁波测距测得,就称为电磁波测距三角高程测量。
与水准测量相比较,它的精度较低,但灵活,简便,受地形条件限制小。
1、三角高程测量原理(1)单向观测高差计算公式如上图所示,欲测A、B两点间的高差h,将仪器置于A点,量取仪器横轴至A点的铅垂高度即仪器高i 。
B点竖立目标(如用全站仪观测则安置反射棱镜),量取目标照准点(棱镜中心)至B点的铅垂高度即目标高L。
A、B两点间的高差h即为:h = h’ + c + i - r - L由于A、B两点间的距离与地球半径的比值极小,故可认为∠PNM = 90°于是在ΔPNM中:h’ = S sin a式中:a —目标照准点(棱镜中心)的竖直角;S —A、B之间的斜距;i —仪器高;L —目标高;c —地球曲率影响;r —大气折光影响,即c == ar == aR —地球半径R’—光程曲线PQ的曲率半径设K = ,称为大气折光系数,则有单向观测计算高差的基本公式:h = Ssina + ()S²cos²a + i – L (斜距形式)由于 D = Scosa则h = Dtana + ()D² + i – L (平距形式) (2)对向观测高差计算公式对向观测即是把仪器置于A点观测B点测取高差,再将仪器置于B 点观测A点测取高差,然后取两高差的平均值作为观测结果。
其公式如下:h AB (平均) = ( S AB sina AB – S BA sina BA ) + ( i A + L A ) - ( i B + L B )(斜距形式)h AB (平均) = ( D AB tana AB – D BA tana BA ) + ( i A + L A ) - ( i B + L B ) (斜距形式)2、三角高程测量要求及方法在三角高程测量中,单向观测仅在一点上设站,在另一点上安置目标,测定两点间的高差,这种方法难以克服地球曲率和大气折光等因素影响,也没有检核条件,所以一般只在地形测量及低精度测量中应用。
三角高程测量的方法
三角高程测量是一种常用的测量方法,通常用于测量地表的高
程差异。
在三角高程测量中,有几种常用的方法:
1. 三角测量法,这是最常见的方法之一,利用三角形的相似性
原理,通过测量三角形的边长和角度来计算高程。
测量过程中需要
测量三角形的三条边和一个角度,然后利用三角函数计算出高程差。
2. 三角高程测量法,这是一种基于三角形相似原理的高程测量
方法。
在实际测量中,首先需要选择一个已知高程的点作为基准点,然后利用测距仪和测角仪测量目标点到基准点的水平距离和仰角,
再利用三角函数计算目标点的高程。
3. GPS测量法,全球定位系统(GPS)可以用于测量地表的高
程差异。
通过在不同位置接收卫星信号,可以计算出不同点的高程差。
这种方法通常精度较高,适用于大范围的高程测量。
4. 激光测距法,利用激光测距仪测量目标点到测量仪的距离,
再结合测量仪的仰角,可以计算出目标点的高程。
这种方法测量速
度快,精度高,适用于复杂地形的高程测量。
总的来说,三角高程测量方法有多种,每种方法都有其适用的场景和精度要求。
在实际应用中,需要根据具体情况选择合适的方法进行高程测量。
三角高程测量-CAL-FENGHAI.-(YICAI)-Company One11§ 三角高程测量三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。
这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。
三角点的高程主要是作为各种比例尺测图的高程控制的一部分。
一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。
三角高程测量的基本公式1.基本公式关于三角高程测量的基本原理和计算高差的基本公式,在测量学中已有过讨论,但公式的推导是以水平面作为依据的。
在控制测量中,由于距离较长,所以必须以椭球面为依据来推导三角高程测量的基本公式。
如图5-35所示。
设0s 为B A 、两点间的实测水平距离。
仪器置于A 点,仪器高度为1i 。
B 为照准点,砚标高度为2v ,R 为参考椭球面上B A ''的曲率半径。
AF PE 、分别为过P 点和A 点的水准面。
PC 是PE 在P 点的切线,PN 为光程曲线。
当位于P 点的望远镜指向与PN 相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。
这就是说,仪器置于A 点测得M P 、间的垂直角为2,1a 。
由图5-35可明显地看出,B A 、 两地面点间的高差为NB MN EF CE MC BF h --++==2,1 (5-54)式中,EF 为仪器高NB i ;1为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。
由2021s R CE =2021s R MN '=式中R '为光程曲线PN 在N 点的曲率半径。
设,K R R='则 20202.21S RK S R R R MN ='=K 称为大气垂直折光系数。
图5-352由于B A 、两点之间的水平距离0s 与曲率半径R 之比值很小(当km s 100=时,0s 所对的圆心角仅5'多一点),故可认为PC 近似垂直于OM ,即认为 90≈PCM ,这样PCM ∆可视为直角三角形。
三角高程测量(trigonometric leveling),通过观测两点间的水平距离和天顶距(或高度角)求定两点间高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
三角高程测量的基本原理如图,A、B为地面上两点,自A点观测B点的竖直角为α1.2,S0为两点间水平距离,i1为A点仪器高,i2为B点觇标高,则A、B两点间高差为h1.2=S0tga1.2+i1-i2上式是假设地球表面为一平面,观测视线为直线条件推导出来的。
在大地测量中,因边长较长,必须顾及地球弯曲差和大气垂直折光的影响。
为了提高三角高程测量的精度,通常采取对向观测竖直角,推求两点间高差,以减弱大气垂直折光的影响。
影响一百多年以前,三角高程测量是测定高差的主要方法。
自水准测量方法出现以后,它已经退居次要地位。
但因其作业简单,在山区和丘陵地区仍得到广泛应用。
天顶距观测受到地面大气折光的严重影响。
若大气密度是均匀分布的,由光源L发出的光将以同心球波前的形式向各方向传播,其速度与大气密度相适应。
实际上大气密度一般随着高程的增加而减小,所以光波向上传播的速度比水平方向上的大。
这样,波前不再是同心球,而是图1所示的形式。
这时由测站S观测光源L,将望远镜垂直于波前,所看到的光源视方向将如箭头所示;图中的虚线表示视线的路径,它处处垂直于波前。
这种现象称为地面大气折光,光源的视方向与真方向SL之间的角γ称为折光角。
在三角高程测量中,折光角取决于测站与观测目标之间大气的物理条件,特别是大气密度向上的递减率。
在实际施测中,不可能充分地掌握大气的物理条件来计算折光角,一般只能估计它的概值,或者采取适当措施削弱它对最后结果的影响。
计算方法由三角高程测量结果计算两点间的高差时,是以椭球面为依据,这样求得的高差是椭球面高差。
如图2,A、B两点对于椭球面的高程分别为 H1和H2。
首先略去垂线偏差不计,设由A点向B点观测的天顶距为Z1(或高度角α 1 =90°-Z1),该两点在椭球面上的投影A0和B0相距的弧长为S0,A0B0弧的曲率半径为R0,则A和B的高差是:式中项是地球曲率的影响;项是大气折光的影响;k是折光系数,通常采用平均值k=0.10~0.16。
§4-6 三角高程测量
一、三角高程测量原理及公式
在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。
传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。
方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆),
并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为:
故(4-11)
式中为A、B两点间的水平距离。
图4-12 三角高程测量原理
当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正
数简称为两差改正:
设c为地球曲率改正,R为地球半径,则c的近似计算公式为:
设g为大气折光改正,则g的近似计算公式为:
因此两差改正为:,恒为正值。
采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。
采用光电测距仪测定两点的斜距S,则B点的高程计算公式为:
(4-12)
为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB 和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。
实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。
理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。
当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。
二、光电三角高程测量方法
光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。
表4-6 光电三角高程测量技术要求
往返各
注:表4-6中为光电测距边长度。
对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。
这种方法测量上称为独立交会光电高程测量。
光电三角高程测量也可采用路线测量方式,其布设形式同水准测量路线完全一样。
1.垂直角观测
垂直角观测应选择有利的观测时间进行,在日出后和日落前两小时内不宜观测。
晴天观测时应给仪器打伞遮阳。
垂直角观测方法有中丝法和三丝法。
其中丝观测法记录和计算见表4-7。
表4-7 中丝法垂直角观测表
点名泰山等级四等
天气晴观测吴明
成像清晰稳定仪器Laica 702 全站仪记录李平
仪器至标石面高1.553m 1.554 平均值1.554m 日期2006.3.1
注:规范要求四等光电三角高程计算时垂直角应取至0.1〞。
2.四等光电三角高程测量
采用全站仪进行四等光电三角高程路线测量作业过程如下:
(1)在测站上架设适当测距精度和测角精度的全站仪,在待测点上架设反光镜觇牌,四等光电三角高程需要用量杆在观测前后两次精确量取仪器高和棱镜高,取值精确到1mm,两次量取较差不大于2mm时取平均值。
(2)往、返测距和测角,垂直角观测采用J2级仪器,中丝法3个测回。
测回间垂直角互差和指标差均不得大于7〞。
(3)依照式(4-12)计算相邻点间的往、返高差,其高差的互差(应考虑球气差的影响)不得大于±40(mm)(D为测距边边长,以公里为单位)。
附和路线或环形闭合差不得大于±20(mm)。
若往返高差的绝对值之差满足精度要求,就取平均数作为两点间的高差,符号以往测高差为准。
(4)依照水准路线测量平差方法进行平差计算,最后求得各待定点的高程。
高程应取至
1mm。
三、三角高程测量内业计算
对于图根级控制测量,三角高程测量的精度一般规定为每段往返测所得的高差(经两差改正后)不应大于0.1D(m)(D为边长,以km为单位),即容=±0.1D(m)。
由对向观测所求得的高差平均值来计算路线闭合差应不大于m。
图4-13为某一图根控制网示意图,三角高程测量观测结果列于图上,下画线数据表示往测。
高差的计算和闭合差调整见表4-8和表4-9。
图4-13 三角高程测量观测成果图
表4-8 三角高程测量高差计算表
垂直角
仪器高(m)
两差改正(m)
垂直角
仪器高(m)
两差改正(m)
表4-9 三角高程测量路线计算表
改正数(m)。