概率论与数理统计教程(茆诗松)第7章
- 格式:ppt
- 大小:980.00 KB
- 文档页数:52
2004年7月第1版2008年4月第10次印刷第一章随机事件与概率1.1 随机事件及其运算1.1.1 随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验.1.1.2 样本空间随机现象的一切可能基本结果组成的集合称为样本空间,记为,其中表示基本结果,又称为样本点.样本点是今后抽样的最基本单元.1.1.3 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件.1.1.4 随机变量用来表示随机现象结果的变量称为随机变量.1.1.7 事件域定义1.1.1 设为一样本空间,为的某些子集所组成的集合类.如果满足:(1);(2)若,则对立事件;(3)若,则可列并.则称为一个事件域,又称为代数.在概率论中,又称为可测空间.1.2 概率的定义及其确定方法1.2.1 概率的公理化定义定义1.2.1设为一样本空间,为的某些子集所组成的一个事件域.若对任一事件,定义在上的一个实值函数满足:(1)非负性公理若,则;(2)正则性公理;(3)可列可加性公理若互不相容,有则称为事件的概率,称三元素为概率空间.第二章随机变量及其分布2.1 随机变量及其分布2.1.1 随机变量的概念定义2.1.1 定义在样本空间上的实值函数称为随机变量.2.1.2 随机变量的分布函数定义2.1.2 设是一个随机变量,对任意实数,称为随机变量的分布函数.且称服从,记为.2.1.4 连续随机变量的概率密度函数定义2.1.4 设随机变量的分布函数为,如果存在实数轴上的一个非负可积函数,使得对任意实数有则称为连续随机变量,称为的概率密度函数,简称为密度函数.密度函数的基本性质(1)非负性;(2)正则性.第三章多维随机变量及其分布3.1 多维随机变量及其联合分布3.1.1 多维随机变量定义3.1.1 如果定义在同一个样本空间上的个随机变量,则称为维(或元)随机变量或随机向量.3.1.2 联合分布函数定义3.1.2 对任意的个实数,则个事件同时发生的概率称为维随机变量的联合分布函数.3.4 多维随机变量的特征数3.4.5 随机向量的数学期望与协方差阵定义3.4.3 记维随机向量为,若其每个分量的数学期望都存在,则称为维随机向量的数学期望向量,简称为的数学期望,而称为该随机向量的方差—协方差阵,简称协方差阵,记为.例3.4.12(元正态分布) 设维随机变量的协方差阵为,数学期望向量为.又记,则由密度函数定义的分布称为元正态分布,记为.第四章大数定律与中心极限定理4.1 特征函数4.1.1 特征函数的定义定义4.1.1 设是一个随机变量,称为的特征函数.设是随机变量的密度函数,则4.2 大数定律4.2.1伯努利大数定律定理 4.2.1(伯努利大数定律) 设为重伯努利试验中事件发生的次数,为每次试验中出现的概率,则对任意的,有4.2.2 常用的几个大数定律4.3 随机变量序列的两种收敛性4.3.1 依概率收敛定义4.3.1(依概率收敛) 设为一随机变量序列,为一随机变量,如果对任意的,有则称依概率收敛于,记作.4.4 中心极限定理4.4.2 独立同分布下的中心极限定理定理 4.4.1(林德贝格—勒维中心极限定理) 设是独立同分布的随机变量序列,且.记则对任意实数有第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析。
茆诗松《概率论与数理统计教程》课后习题本书是详解研究生入学考试指定考研参考书目为茆诗松《概率论与数理统计教程》的配套题库,每章包括以下四部分:第一部分为考研真题及详解。
本部分按教材章节从历年考研真题中挑选具有代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
第二部分为课后习题及详解。
本部分对茆诗松编写的《概率论与数理统计教程》(第2版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。
课后习题答案经过多次修改,质量上乘,特别适合应试作答和临考冲刺。
第三部分为章节题库及详解。
本部分严格按照茆诗松编写的《概率论与数理统计教程》(第2版)教材内容进行编写,每一章都精心挑选经典常见考题,并予以详细解答。
熟练掌握本书考题的解答,有助于学员理解和掌握有关概念、原理,并提高解题能力。
第四部分为模拟试题及详解。
参照茆诗松编写的《概率论与数理统计教程》(第2版)教材,根据历年考研真题的命题规律及热门考点精心编写了两套考前模拟试题,并提供详尽的解答。
通过模拟试题的练习,学员既可以用来检测学习该考试科目的效果,又可以用来评估对自己的应试能力。
本书提供电子书及打印版,方便对照复习。
目录第一部分考研真题第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第二部分课后习题第1章随机事件与概率第2章随机变量及其分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第三部分章节题库第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第四部分模拟试题茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(一)茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(二)。
第7章假设检验一、选择题1.在假设检验中,如果待检验的原假设为H0,那么犯第二类错误是指()。
A.H0成立,接受H0B.H0不成立,接受H0C.H0成立,拒绝H0D.H0不成立,拒绝H0【答案】B【解析】直接应用“犯第二类错误”=“取伪”=“H0不成立,接受H0的定义,B项正确。
2.关于总体X的统计假设H0属于简单假设的是()。
A.X服从正态分布,H0:EX=0B.X服从指数分布,H0:EX≥1C.X服从二项分布,H0:DX=5D.X服从泊松分布,H0:DX=3【答案】D【解析】A、B、C三项的假设都不能完全确定总体的分布,所以是复合假设,而D项的假设可以完全确定总体分布,因而是简单假设。
3.设X 1,X 2, …,X 16为正态总体X ~N (μ,4)的简单随机样本,设H 0:μ=0,H 1:μ≠0的拒绝域为{|X _|≥1/2},则犯第一类错误的概率为( )。
A .2Ф(1)-1B .2-2Ф(1)C .2-2Ф(1/2) D .2Ф(1/2)-1 【答案】B【解析】由题设可知,X —~N (μ,1/4)()0,1N ,当u =0时,2X —~N (0,1)。
犯第一类错误的概率为P{|X —|≥1/2|μ=0}=P{|2X —|≥1}=1-P{|2X —|<1}=1-P{-1<2X —<1}=1-Ф(1)+Ф(-1)=2-2Ф(1),故选B 。
二、填空题1.设X 1,X 2,…,X n 是来自正态总体N (μ,σ2)的简单随机样本,其中参数σ2未知,1ni i X X ==∑,2211()ni i Q X μ==-∑,2221()nii Q X X ==-∑,对假设H 0:σ2=σ02,在μ已知时用χ2检验统计量为______;在μ未知时使用χ2检验统计量为______。
【答案】22122200Q Q σσ;【解析】这是一个关于正态总体方差σ2的假设检验问题。
在μ已知时选用χ2检验统计量为()()222221122100ni ni i i X X Q n μμχχσσσ==-⎛⎫-===⎪⎝⎭∑∑~在μ未知时选用χ2检验统计量为()()22222122210001ni ni i i X X X X Q n χχσσσ==-⎛⎫-===- ⎪⎝⎭∑∑~2.假设X 1,X 2,…,X 36是取自正态总体 N (μ,0.04)的简单随机样本,其中μ为未知参数。
.第七章假设检验7.1设总体J〜N(4Q2),其中参数4, /为未知,试指出下面统计假设中哪些是简洁假设,哪些是复合假设:(1) W o: // = 0, σ = 1 ;(2) W o√∕ = O, σ>l5(3) ∕70:// <3, σ = 1 ;(4) % :0< 〃 <3 ;(5)W o :// = 0.解:(1)是简洁假设,其余位复合假设7.2设配么,…,25取自正态总体息(19),其中参数〃未知,无是子样均值,如对检验问题“0 :〃 = 〃o, M :4工从)取检验的拒绝域:c = {(x1,x2,∙∙∙,x25)r∣x-χ∕0∖≥c},试打算常数c ,使检验的显著性水平为0. 05_ Q解:由于J〜N(〃,9),故J~N(",二)在打。
成立的条件下,一/3 5cP o(∖ξ-^∖≥c) = P(∖ξ-μJ^∖≥-)=2 1-Φ(y) =0.05Φ(-) = 0.975,-= 1.96,所以c=L176°3 37. 3 设子样。
,乙,…,25取自正态总体,cr:已知,对假设检验%邛=μ0, H2> /J。
,取临界域c = {(X[,w,…,4):片>9)},(1)求此检验犯第一类错误概率为α时,犯其次类错误的概率夕,并争论它们之间的关系;(2)设〃o=0∙05, σ~=0. 004, a =0.05, n=9,求"=0.65 时不犯其次类错误的概率。
解:(1)在儿成立的条件下,F~N(∕o,军),此时a = P^ξ≥c^ = P0< σo σo )所以,包二为册=4_,,由此式解出c°=窄4f+为% ∖∣n在H∣成立的条件下,W ~ N",啊 ,此时nS = %<c°) = AI。
气L =①(^^~品)二①匹%=①(2δξ^历σoA∣-σ+A)-A-------------- y∕n)。
习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。
第七章假设检验本章重点1、假设检验的基本原理;2、假设检验的形式与种类;3、第一类错误与第二类错误;4、区间估计与假设检验的方法。
本章难点1、假设检验的基本原理;2、第一类错误与第二类错误。
参考文献:(1)格涅坚科《概率论教程》丁寿田译北京:高等教育出版社,1956年(2)威廉·菲勒《概率论及其应用(上册)》吴迪鹤、林向清译北京:科学出版社1964年(3)李贤平《概率论基础(第2版)》北京:高等教育出版社,1997年(4)茆诗松《概率论与数理统计(第2版)》北京:中国统计出版社,2000年(5)陈希孺《概率论与数理统计》北京:科学出版社,2002年(6)李贤平《概率论与数理统计》上海:复旦大学出版社,2003年(7)杨振明《概率论》北京:科学出版社,1999年(8)茆诗松《贝叶斯统计》北京:中国统计出版社,1999年(9)茆诗松、王静龙《数理统计》上海:华东师范大学出版社,1990年7.1 现实中的统计案例一:时下不少大学生在一边学习的同时也不断寻找一些机会打些零工以赚点钱弥补学习和生活之需,这已经是学生们之间人所共知的事情。
这没有丝毫的让人好奇之处,让人好奇的是这些打工的学生究竟一个月平均能赚多少钱?假设有人说:这个数据是500元,你觉得信不信它呢?当然,你首先需要收集证据,没有证据是肯定说明不了任何问题的。
又假设有人通过组织调查取得过如下数据(调查到一共30人,单位:元):350 500 900 100 100 200 240 300 100 320450 260 650 380 290 400 800 400 250 400290 870 540 320 140 160 300 400 500 340这时你该做何结论?就算是你得到以上数据的平均数等于423元,你是否就可以作出“是”或“不是”的回答?7.2 基本思想所谓“统计假设”指的是关于随机变量分布(或随机事件概率)的各种论断。
第7章假设检验一、假设检验的基本思想与概念1.设x1,…,x n是来自N(μ,1)的样本,考虑如下假设检验问题若检验由拒绝域为确定.(1)当n=20时求检验犯两类错误的概率;(2)如果要使得检验犯第二类错误的概率,n最小应取多少?(3)证明:当时,解:(1)由定义知,犯第一类错误的概率为这是因为在H 0成立下,,而犯第二类错误的概率为这是因为在H 1成立下.(2)若使犯第二类错误的概率满足即,或,查表得:,由此给出n ≥33.93,因而凡最小应取34,才能使检验犯第二类错误的概率β≤0.01.(3)在样本量为n时,检验犯第一类错误的概率为当n→∞时.检验犯第二类错误的概率为当n→∞时,,即β→0.注:从这个例子可以看出,要使得α与β都趋于0,必须n→+∞才可实现,这一结论在一般场合仍成立,即要使得α与β同时很小,必须样本量n很大.由于样本量n很大在实际中常常是不可行的,故一般情况下人们不应要求α与β同时很小.2.设x1,…,x10是来自0-1总体b(1,p)的样本,考虑如下检验问题取拒绝域为,求该检验犯两类错误的概率.解:,则,于是犯两类错误的概率分别为3.设x1,…,x16是来自正态总体N(μ,4)的样本,考虑检验问题拒绝域取为,试求c使得检验的显著性水平为0.05,并求该检验在μ=6.5处犯第二类错误的概率.解:在H0为真的条件下,,因而由得也就是,所以当c=0.98时,检验的显著性水平为0.05.该检验在μ=6.5处犯第二类错误的概率为4.设总体为均匀分布U(0,θ),x1,…,x n是样本,考虑检验问题拒绝域取为,求检验犯第一类错误的最大值α.若要使得该最大值α不超过0.05,n至少应取多大?解:均匀分布U(0,θ)的最大次序统计量x(n)的密度函数为因而检验犯第一类错误的概率为它是θ的严格单调递减函数,故其最大值在θ=3处达到,即若要使得,则要求,这给出n≥16.43,即n至少为17.5.在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误?若检验结果是拒绝原假设,则又有可能犯哪一类错误?解:若检验结果是接受原假设,可能有两种情况:其一是原假设为真,此时检验是正确的,未犯错误,其二是原假设不真,此时检验结果就错了,这种错误是接受了不真的原假设,为第二类错误,故此时检验可能犯第二类错误.若检验结果是拒绝原假设,也可能有两种情况:若原假设本身不真,检验是正确的;若原假设事实上是真的,则检验就犯了第一类错误,由此,在此种场合,检验可能会犯第一类错误.6.设x1,…,x20是来自0-1总体b(1,p)的样本,考虑如下检验问题取拒绝域为(1)求p=0,0.1,0.2,…,0.9,1时的势并由此画出势函数的图;(2)求在p=0.05时,犯第二类错误的概率.解:(1)势函数的计算公式为:则p=0,0.1,0.2,…,0.9,1时的势计算如下表:表7-1可用软件计算,如matlab语句为1-binocdf(6,20,p)+binocdf(1,20,p).势函数图如图7-1,它在P=0.2处达到最小.图7-1(2)p=0.05时,犯第二类错误的概率为可采用如下matlab语句binocdf(6,20,0.05)-binocdf(1,20,0.05)计算给出1-g(0.05),计算结果为0.2641.7.设一个单一观测的样本x取自密度函数为平p(x)的总体,对p(x)考虑统计假设:若其拒绝域的形式为,试确定一个c,使得犯第一,二类错误的概率满足α+2β=min,并求其最小值.解:由,可得因此,当时.,并且此时的最小值为.8.设x1,x2,…,x30为取自泊松分布p(λ)的随机样本.(1)试给出单边假设检验问题的水平α=0.05的检验.(2)求此检验的势函数g(λ)在A=0.05,0.2,0.3,…,0.9时的值,并画出g(λ)的图像.解:(1)选为检验统计量,其值愈大愈倾向于拒绝H0,所以,该检验问题的拒绝域形式为注意到在λ=0.1时,从而第一类错误概率为时,0.0839,当c=6时,,因此,该检验问题的拒绝域为.(2)势函数的计算公式为:则λ=0.05,0.2,…,0.9时的势计算如下表:表7-2势函数图如图7-2:图7-2补充习题及解答9.设正态总体的方差σ2为已知值,均值μ只能取μ0或μ1(μ1<μ0)两值之一,为总体的容量n的样本均值.考虑如下柃验问题若检验拒绝域取为,则检验犯第二类错误的概率为(1)试验证:,从而在α,β给定时,有(2)若n固定,当α减小时β怎样变化?当β减小时α怎样变化?(3)当,并且要求时,样本容量n至少应为多少?。
第七章 假设检验习题7.11. 设X 1 , …, X n 是来自N (µ , 1) 的样本,考虑如下假设检验问题H 0:µ = 2 vs H 1:µ = 3,若检验由拒绝域为}6.2{≥=x W 确定. (1)当n = 20时求检验犯两类错误的概率;(2)如果要使得检验犯第二类错误的概率β ≤ 0.01,n 最小应取多少? (3)证明:当n → ∞ 时,α → 0,β → 0. 解:(1)犯第一类错误的概率为0037.0)68.2(168.220126.21}2|6.2{}|{0=Φ−=⎭⎬⎫⎩⎨⎧=−≥−==≥=∈=n X P X P H W X P µµα,犯第二类错误的概率为0367.0)79.1(79.120136.21}3|6.2{}|{1=−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=∉=n X P X P H W X P µµβ;(2)因01.0)4.0(4.0136.21}3|6.2{≤−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=n n n n X P X P µµβ,则99.0)4.0(≥Φn ,33.24.0≥n ,n ≥ 33.93,故n 至少为34;(3))(0)6.0(16.0126.21}2|6.2{∞→→Φ−=⎭⎬⎫⎩⎨⎧=−≥−==≥=n n n n n X P X P µµα,)(0)4.0(4.0136.21}3|6.2{∞→→−Φ=⎭⎬⎫⎩⎨⎧−=−<−==<=n n n n n X P X P µµβ. 2. 设X 1 , …, X 10是来自0-1总体b (1, p ) 的样本,考虑如下检验问题H 0:p = 0.2 vs H 1:p = 0.4,取拒绝域为}5.0{≥=x W ,求该检验犯两类错误的概率. 解:因X ~ b(1, p ),有),10(~10101p b X X i i =∑=,则0328.08.02.0}2.0|510{}2.0|5.0{}|{10510100=⋅⋅==≥==≥=∈=∑=−k k k kC p X P p X P H W X P α,6331.06.04.0}4.0|510{}4.0|5.0{}|{410101=⋅⋅==<==<=∉=∑=−k k k kC p X P p X P H W X P β.3. 设X 1 , …, X 16是来自正态总体N (µ , 4) 的样本,考虑检验问题H 0:µ = 6 vs H 1:µ ≠ 6,拒绝域取为}|6{|c x W ≥−=,试求c 使得检验的显著性水平为0.05,并求该检验在µ = 6.5处犯第二类错误的概率.解:因05.0)]2(1[22162162}6||6{|}|{0=Φ−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=≥−==≥−=∈=c c c X P c X P H W X P µµα,则Φ (2c ) = 0.975,2c = 1.96,故c = 0.98;故}5.6|48.05.648.1{}5.6|98.0|6{|}|{1=<−<−==<−=∉=µµβX P X P H W X P83.0)96.2()96.0(96.01625.696.2=−Φ−Φ=⎭⎬⎫⎩⎨⎧<−<−=X P .4. 设总体为均匀分布U (0, θ ),X 1 , …, X n 是样本,考虑检验问题H 0:θ ≥ 3 vs H 1:θ < 3,拒绝域取为}5.2{)(≤=n x W ,求检验犯第一类错误的最大值α ,若要使得该最大值α 不超过0.05,n 至少应取多大?解:因均匀分布最大顺序统计量X (n ) 的密度函数为θθ<<−Ι=x nn n nx x p 01)(,则nn n n nn n n x dx nx X P H W X P ⎟⎠⎞⎜⎝⎛=====≤=∈=∫−6535.233}3|5.2{}|{5.205.201)(0θα, 要使得α ≤ 0.05,即05.065≤⎟⎠⎞⎜⎝⎛n,43.16)6/5ln(05.0ln =≥n ,故n 至少为17.5. 在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误?若检验结果是拒绝原假设,则又有可能犯哪一类错误?答:若检验结果是接受原假设,当原假设为真时,是正确的决策,未犯错误;当原假设不真时,则犯了第二类错误.若检验结果是拒绝原假设,当原假设为真时,则犯了第一类错误;当原假设不真时,是正确的决策,未犯错误.6. 设X 1 , …, X 20是来自0-1总体b (1, p ) 的样本,考虑如下检验问题H 0:p = 0.2 vs H 1:p ≠ 0.2,取拒绝域为⎭⎬⎫⎩⎨⎧≤≥=∑∑==17201201i i i i x x W 或,(1)求p = 0, 0.1, 0.2, …, 0.9, 1的势并由此画出势函数的图;(2)求在p = 0.05时犯第二类错误的概率.解:(1)因X ~ b(1, p ),有),20(~201p b X i i ∑=,势函数∑∑=−=−⎟⎟⎠⎞⎜⎜⎝⎛−=⎭⎬⎫⎩⎨⎧∈=6220201)1(201)(k kk i i p p k p WX P p g , 故110201)0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,3941.09.01.0201)1.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k kk k g , 1559.08.02.0201)2.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,3996.07.03.0201)3.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g ,7505.06.04.0201)4.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g ,9424.05.05.0201)5.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g , 9935.04.06.0201)6.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k k k g ,9997.03.07.0201)7.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g , 999998.02.08.0201)8.0(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g11.09.0201)9.0(6220≈××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k k kk g , 101201)1(6220=××⎟⎟⎠⎞⎜⎜⎝⎛−=∑=−k kk k g ; (2)在p = 0.05时犯第二类错误的概率2641.095.005.02005.0|6220201=××⎟⎟⎠⎞⎜⎜⎝⎛=⎭⎬⎫⎩⎨⎧=∉=∑∑=−=k kk i i k p W X P β. 7. 设一个单一观测的样本取自密度函数为p (x )的总体,对p (x )考虑统计假设: H 0:p 0(x ) = I 0 < x < 1 vs H 1:p 1(x ) = 2x I 0 < x < 1.若其拒绝域的形式为W = {x : x ≥ c },试确定一个c ,使得犯第一类,第二类错误的概率满足α + 2β 为最小,并求其最小值.解:当0 < c < 1时,α = P {X ∈ W | H 0} = P {X ≥ c | X ~ p 0(x )} = 1 − c ,且20112)}(~|{}H |{c xdx x p X c X P W X P c==<=∉=∫β,则2224128721161287212⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛+−+=+−=+c c c c c βα,故当41=c 时,α + 2β 为最小,其最小值为87. 8. 设X 1, X 2, …, X 30为取自柏松分布P (λ)的随机样本.(1)试给出单侧假设检验问题H 0:λ ≤ 0.1 vs H 1:λ > 0.1的显著水平α = 0.05的检验; (2)求此检验的势函数β (λ)在λ = 0.05, 0.2, 0.3, …, 0.9时的值,并据此画出β (λ)的图像.解:(1)因)30(~3021λP X X X X n +++=L ,假设H 0:λ ≤ 0.1 vs H 1:λ > 0.1, 统计量)30(~λP X n ,当H 0成立时,设)3(~P X n ,其p 分位数)3(p P 满足∑∑=−−=−≤<)3(031)3(03e !3e !3p p P k k P k k k p k 显著水平α = 0.05,可得P 1−α (3) = P 0.95 (3) = 6,右侧拒绝域}7{≥=x n W ;(2)因∑=−−=≥=∈=630e!)30(1}|7{}|{)(k k k X n P W X n P λλλλλβ, g故0001.0e !5.11)05.0(605.1=−=∑=−k k k β,3937.0e !61)2.0(606=−=∑=−k k k β,7932.0e !91)3.0(609=−=∑=−k k k β,9542.0e !121)4.0(6012=−=∑=−k k k β,9924.0e !151)5.0(6015=−=∑=−k k k β,9990.0e !181)6.0(6018=−=∑=−k k k β,9999.0e !211)7.0(6021=−=∑=−k kk β, 1e !241)8.0(6024≈−=∑=−k k k β,1e !271)9.0(6027≈−=∑=−k k k β.习题7.2说明:本节习题均采用拒绝域的形式完成,在可以计算检验的p 值时要求计算出p 值. 1. 有一批枪弹,出厂时,其初速率v ~ N (950, 1000)(单位:m /s ).经过较长时间储存,取9发进行测试,得样本值(单位:m /s )如下:914 920 910 934 953 945 912 924 940.据经验,枪弹经储存后其初速率仍服从正态分布,且标准差保持不变,问是否可认为这批枪弹的初速率有显著降低(α = 0.05)?解:设枪弹经储存后其初速率X ~ N (µ , 1000),假设H 0:µ = 950 vs H 1:µ < 950,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因928=x ,µ = 950,σ = 10,n = 9, 则W u ∈−=−=6.6910950928,并且检验的p 值p = P {U ≤ −6.6} = 2.0558 × 10−11 < α = 0.05,故拒绝H 0,接受H 1,即可以认为这批枪弹的初速率有显著降低. 2. 已知某炼铁厂铁水含碳量服从正态分布N (4.55, 0.1082 ).现在测定了9炉铁水,其平均含碳量为4.484,如果铁水含碳量的方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α = 0.05)? 解:设现在生产的铁水含碳量X ~ N (µ , 0.1082 ),假设H 0:µ = 4.55 vs H 1:µ ≠ 4.55,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因484.4=x ,µ = 4.55,σ = 0.108,n = 9, 则W u ∉−=−=8333.19108.055.4484.4,并且检验的p 值p = 2P {U ≤ −1.8333} = 0.0668 > α = 0.05,β (故接受H 0,拒绝H 1,即可以认为现在生产的铁水平均含碳量仍为4.55. 3. 由经验知某零件质量X ~ N (15, 0.05 2 ) (单位:g ),技术革新后,抽出6个零件,测得质量为14.7 15.1 14.8 15.0 15.2 14.6.已知方差不变,问平均质量是否仍为15 g (取α = 0.05)?解:设技术革新后零件质量X ~ N (µ , 0.05 2 ),假设H 0:µ = 15 vs H 1:µ ≠ 15,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因9.14=x ,µ = 15,σ = 0.05,n = 6, 则W u ∈−=−=8990.4605.0159.14,并且检验的p 值p = 2P {U ≤ −4.8990} = 9.6326 × 10−7 < α = 0.05,故拒绝H 0,接受H 1,即不能认为平均质量仍为15 g . 4. 化肥厂用自动包装机包装化肥,每包的质量服从正态分布,其平均质量为100 kg ,标准差为1.2 kg .某日开工后,为了确定这天包装机工作是否正常,随机抽取9袋化肥,称得质量如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5.设方差稳定不变,问这一天包装机的工作是否正常(取α = 0.05)? 解:设这天包装机包装的化肥每包的质量X ~ N (µ , 1.22 ),假设H 0:µ = 100 vs H 1:µ ≠ 100,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96}, 因9778.99=x ,µ = 100,σ = 1.2,n = 9, 则W u ∉−=−=0556.092.11009778.99,并且检验的p 值p = 2P {U ≤ −0.0556} = 0.9557 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这一天包装机的工作正常. 5. 设需要对某正态总体的均值进行假设检验H 0:µ = 15, H 1:µ < 15.已知σ 2 = 2.5,取α = 0.05,若要求当H 1中的µ ≤ 13时犯第二类错误的概率不超过0.05,求所需的样本容量.解:设该总体X ~ N (µ , 2.5 ),假设H 0:µ = 15 vs H 1:µ < 15,已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因µ = 15,σ 2 = 2.5,有nx u 5.215−=,当µ ≤ 13时犯第二类错误的概率为⎭⎬⎫⎩⎨⎧≤−+−>−=⎭⎬⎫⎩⎨⎧≤−>−=13|5.21565.15.213|65.15.215µµµµβn n X P n X P 05.0)2649.165.1(15.2131565.15.2≤+−Φ−=⎭⎬⎫⎩⎨⎧−+−>−≤n n nX P µ,则95.0)2649.165.1(≥+−Φn ,即65.12649.165.1≥+−n ,6089.2≥n ,n ≥ 6.8064, 故样本容量n 至少为7.6. 从一批钢管抽取10根,测得其内径(单位:mm )为:100.36 100.31 99.99 100.11 100.64 100.85 99.42 99.91 99.35 100.10.设这批钢管内直径服从正态分布N (µ , σ 2),试分别在下列条件下检验假设(α = 0.05).H 0:µ = 100 vs H 1:µ > 100.(1)已知σ = 0.5; (2)σ 未知.解:设这批钢管内直径X ~ N (µ , σ 2),假设H 0:µ = 100 vs H 1:µ > 100,(1)已知σ 2,选取统计量)1,0(~N nX U σµ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645}, 因104.100=x ,µ = 100,σ = 0.5,n = 10, 则W u ∉=−=6578.0105.0100104.100,并且检验的p 值p = P {U ≥ 0.6578} = 0.2553 > α = 0.05,故接受H 0,拒绝H 1,即不能认为µ > 100. (2)未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (9) = 1.8331,右侧拒绝域W = {t ≥ 1.8331}, 因104.100=x ,µ = 100,s = 0.4760,n = 10, 则W t ∉=−=6910.0104760.0100104.100,并且检验的p 值p = P {T ≥ 0.6910} = 0.2535 > α = 0.05,故接受H 0,拒绝H 1,即不能认为µ > 100.7. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?解:设这次考试考生的成绩X ~ N (µ , σ 2 ),假设H 0:µ = 70 vs H 1:µ ≠ 70,未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α /2 (n − 1) = t 0.975 (35) = 2.0301,双侧拒绝域W = {| t | ≥ 2.0301}, 因5.66=x ,µ = 70,s = 15,n = 36, 则W t ∉−=−=4.13615705.66,并且检验的p 值p = 2P {T ≤ −1.4} = 0.1703 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这次考试全体考生的平均成绩为70分. 8. 一个小学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8 h 电视.”她认为她所在学校的学生看电视的时间明显小于该数字.为此她在该校随机调查了100个学生,得知平均每周看电视的时间5.6=x h ,样本标准差为s = 2 h .问是否可以认为这位校长的看法是对的(取α = 0.05)? 解:设学生看电视的时间X ~ N (µ , σ 2 ),假设H 0:µ = 8 vs H 1:µ < 8,未知σ 2,选取统计量)1(~−−=n t nS X T µ,n = 100,大样本,有)1,0(~N n S X T &µ−=,显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (99) ≈ u 0.95 = 1.645,左侧拒绝域W ≈ {t ≤ −1.645},因5.6=x ,µ = 8,s = 2,n = 100, 则W t ∈−=−=5.7100285.6,并且检验的p 值p = P {T ≤ −7.5} = 3.1909 × 10−14 < α = 0.05,故拒绝H 0,接受H 1,即可以认为这位校长的看法是对的.9. 设在木材中抽出100根,测其小头直径,得到样本平均数2.11=x cm ,样本标准差为s = 2.6 cm ,问该批木材小头的平均直径能否认为不低于12 cm (取α = 0.05)? 解:设该批木材小头的直径X ~ N (µ , σ 2 ),假设H 0:µ = 12 vs H 1:µ < 12,未知σ 2,选取统计量)1(~−−=n t n S X T µ,n = 100,大样本,有)1,0(~N nS X T &µ−=, 显著性水平α = 0.05,t 1 − α (n − 1) = t 0.95 (99) ≈ u 0.95 = 1.645,左侧拒绝域W ≈ {t ≤ −1.645},因2.11=x ,µ = 12,s = 2.6,n = 100, 则W t ∈−=−=0769.31006.2122.11,并且检验的p 值p = P {T ≤ −3.0769} = 0.0010 < α = 0.05,故拒绝H 0,接受H 1,即不能认为这批木材小头的平均直径不低于12 cm .10.考察一鱼塘中鱼的含汞量,随机地取10条鱼测得各条鱼的含汞量(单位:mg )为:0.8 1.6 0.9 0.8 1.2 0.4 0.7 1.0 1.2 1.1.设鱼的含汞量服从正态分布N (µ , σ 2),试检验假设H 0:µ = 1.2 vs H 1:µ > 1.2(取α = 0.10). 解:设鱼的含汞量X ~ N (µ , σ 2 ),假设H 0:µ = 1.2 vs H 1:µ > 1.2,未知σ 2,选取统计量)1(~−−=n t nSX T µ,显著性水平α = 0.1,t 1 − α (n − 1) = t 0.9 (9) = 1.3830,右侧拒绝域W = {t ≥ 1.3830}, 因97.0=x ,µ = 1.2,s = 0.3302,n = 10, 则W t ∉−=−=2030.2103302.02.197.0,并且检验的p 值p = P {T ≥ −2.2030} = 0.9725 > α = 0.10,故接受H 0,拒绝H 1,即不能认为µ > 1.2 . 11.如果一个矩形的宽度w 与长度l 的比618.0)15(21≈−=l w ,这样的矩形称为黄金矩形.下面列出某工艺品工厂随机取的20个矩形宽度与长度的比值.0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.553 0.570 0.844 0.576 0.933 0.630.设这一工厂生产的矩形的宽度与长度的比值总体服从正态分布,其均值为µ ,试检验假设(取α = 0.05)H 0:µ = 0.618 vs H 1:µ ≠ 0.618.解:设这一工厂生产的矩形的宽度与长度的比值X ~ N (µ , σ 2 ),假设H 0:µ = 0.618 vs H 1:µ ≠ 0.618,未知σ 2,选取统计量)1(~−−=n t nS X T µ, 显著性水平α = 0.05,t 1 − α /2 (n − 1) = t 0.975 (19) = 2.0930,双侧拒绝域W = {| t | ≥ 2.0930},因6620.0=x ,µ = 0.618,s = 0.0918,n = 20, 则W t ∈=−=1422.2200918.0618.06620.0,并且检验的p 值p = 2P {T ≥ 2.1422} = 0.0453 < α = 0.05,故拒绝H 0,接受H 1,即不能认为µ = 0.618.12.下面给出两种型号的计算器充电以后所能使用的时间(h )的观测值型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9;型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6.设两样本独立且数据所属的两总体的密度函数至多差一个平移量.试问能否认为型号A 的计算器平均使用时间明显比型号B 来得长(取α = 0.01)?解:设两种型号的计算器充电以后所能使用的时间分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 > µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.01,t 1 − α (n 1 + n 2 − 2) = t 0.99 (21) = 2.5176,右侧拒绝域W = {t ≥ 2.5176}, 因5.5=x ,3667.4=y ,s x = 0.5235,s y = 0.4677,n 1 = 11,n 2 = 12,4951.0214677.0115235.0102)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=4844.51211114951.03667.45.5,并且检验的p 值p = P {T ≥ 5.4844} = 9.6391 × 10 −6 < α = 0.01,故拒绝H 0,接受H 1,即可以认为型号A 的计算器平均使用时间明显比型号B 来得长.13.从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:1337.0,230.0211==s x ;西支:1736.0,269.0222==s x .若东、西两支矿脉的含锌量都服从正态分布且方差相同,问东、西两支矿脉含锌量的平均值是否可以看作一样(取α = 0.05)?解:设东、西两支矿脉的含锌量分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~11212121−++−=n n t n n S X X T w,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (15) = 2.1314,双侧拒绝域W = {| t | ≥ 2.1314},因1736.0,269.0,1337.0,230.0222211====s x s x ,n 1 = 9,n 2 = 8,3903.0151736.071337.082)1()1(21222211=×+×=−+−+−=n n s n s n s w ,则W t ∉−=+×−=2056.081913903.0269.0230.0,并且检验的p 值p = 2P {T ≤ −0.2056} = 0.8399 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为东、西两支矿脉含锌量的平均值是一样的.14.在针织品漂白工艺过程中,要考察温度对针织品断裂强力(主要质量指标)的影响.为了比较70°C与80°C 的影响有无差别,在这两个温度下,分别重复做了8次试验,得数据如下(单位:N ):70°C 时的强力:20.5 18.8 19.8 20.9 21.5 19.5 21.0 21.2, 80°C 时的强力:17.7 20.3 20.0 18.8 19.0 20.1 20.0 19.1.根据经验,温度对针织品断裂强力的波动没有影响.问在70°C 时的平均断裂强力与80°C 时的平均断裂强力间是否有显著差别?(假设断裂强力服从正态分布,α = 0.05)解:设在70°C 和80°C 时的断裂强力分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S Y X T w,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (14) = 2.1448,双侧拒绝域W = {| t | ≥ 2.1448}, 因4.20=x ,375.19=y ,s x = 0.9411,s y = 0.8876,n 1 = 8,n 2 = 8,9148.0148876.079411.072)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=2410.281819148.0375.194.20,并且检验的p 值p = 2P {T ≥ 2.2410} = 0.0418 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为70°C 时的平均断裂强力与80°C 时的平均断裂强力间有显著差别. 15.一药厂生产一种新的止痛片,厂方希望验证服用新药片后至开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出需检验假设H 0:µ 1 = 2µ 2 vs H 1:µ 1 > 2µ 2.此处µ 1 , µ 2分别是服用原有止痛片和服用新止痛片后至开始起作用的时间间隔的总体的均值.设两总体均为正态分布且方差分别为已知值2221,σσ,现分别在两总体中取一样本X 1 , …, X n 和Y 1 , …, Y m ,设两个样本独立.试给出上述假设检验问题的检验统计量及拒绝域.解:设服用原有止痛片和新止痛片后至开始起作用的时间间隔分别为),(~211σµN X ,),(~222σµN Y ,因X 1 , …, X n 和Y 1 , …, Y m 分别X 和Y 为来自的样本,且两个样本独立,则),(~211n N X σµ,,(~222mN Y σµ,且X 与Y 独立,有4,2(~2222121m n N Y X σσµµ+−−, 标准化,得)1,0(~4)2()2(222121N mnY X σσµµ+−−−,假设H 0:µ 1 = 2µ 2 vs H 1:µ 1 > 2µ 2,已知2221,σσ,选取统计量)1,0(~422221N mnYX U σσ+−=,显著性水平α ,右侧拒绝域W = {u ≥ u 1 − α}.16.对冷却到−0.72°C 的样品用A 、B 两种测量方法测量其融化到0°C 时的潜热,数据如下:方法A :79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.0080.02,方法B :80.02 79.94 79.98 79.97 80.03 79.95 79.97 79.97.假设它们服从正态分布,方差相等,试检验:两种测量方法的平均性能是否相等?(取α = 0.05).解:设用A 、B 两种测量方法测量的潜热分别为),(~211σµN X ,),(~222σµN Y ,且2221σσ=,假设H 0:µ1 = µ2 vs H 1:µ1 ≠ µ2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.05,t 1−α /2 (n 1 + n 2 − 2) = t 0.975 (19) = 2.0930,双侧拒绝域W = {| t | ≥ 2.0930}, 因0208.80=x ,9787.79=y ,s x = 0.0240,s y = 0.0.314,n 1 = 8,n 2 = 8,0269.0190314.070240.0122)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∈=+×−=4722.3811310269.09787.790208.80,并且检验的p 值p = 2P {T ≥ 3.4722} = 0.0026 < α = 0.05,故拒绝H 0,接受H 1,可以认为两种测量方法的平均性能不相等.17.为了比较测定活水中氯气含量的两种方法,特在各种场合收集到8个污水样本,每个水样均用这两种方法测定氯气含量(单位:mg /l ),具体数据如下:水样号 方法一(x ) 方法二(y ) 差(d = x − y ) 1 0.36 0.39 −0.03 2 1.35 0.84 0.51 3 2.56 1.76 0.80 4 3.92 3.35 0.57 5 5.35 4.69 0.66 6 8.33 7.70 0.63 7 10.70 10.52 0.18 8 10.91 10.92 −0.01设总体为正态分布,试比较两种测定方法是否有显著差异.请写出检验的p 值和结论(取α = 0.05).解:设用这两种测定方法测定的氯气含量之差为),(~2d d N Y X D σµ−=,成对数据检验,假设H 0:µ d = 0 vs H 1:µ d ≠ 0,未知2d σ,选取统计量)1(~−=n t nS D T d,显著水平α = 0.05,t 1−α /2 (n − 1) = t 0.975 (7) = 2.3646,双侧拒绝域W = {| t | ≥ 2.3646}, 因4138.0=d ,s d = 0.3210,n = 8, 则W t ∈==6461.383210.04138.0,并且检验的p 值p = 2P {T ≥ 3.6461} = 0.0082 < α = 0.05,故拒绝H 0,接受H 1,可以认为两种测定方法有显著差异.18.一工厂的;两个化验室每天同时从工厂的冷却水取样,测量水中的含气量(10−6)一次,下面是7天的记录:室甲:1.15 1.86 0.75 1.82 1.14 1.65 1.90, 室乙:1.00 1.90 0.90 1.80 1.20 1.70 1.95.设每对数据的差d i = x i − y i (i = 1, 2, …, 7)来自正态总体,问两化验室测定结果之间有无显著差异?(α = 0.01)解:设两个化验室测定的含气量数据之差为),(~2d d N Y X D σµ−=,成对数据检验,假设H 0:µ d = 0 vs H 1:µ d ≠ 0,未知2d σ,选取统计量)1(~−=n t nS D T d,显著水平α = 0.01,t 1−α /2 (n − 1) = t 0.995 (6) = 3.7074,双侧拒绝域W = {| t | ≥ 3.7074}, 因0257.0−=d ,s d = 0.0922,n = 7, 则W t ∉−=−=7375.070922.00257.0,并且检验的p 值p = 2P {T ≤ −0.7375} = 0.4886 > α = 0.05,故接受H 0,拒绝H 1,可以认为两化验室测定结果之间没有显著差异.19.为比较正常成年男女所含红血球的差异,对某地区156名成年男性进行测量,其红血球的样本均值为465.13(104/mm 3),样本方差为54.802;对该地区74名成年女性进行测量,其红血球的样本均值为422.16,样本方差为49.202.试检验:该地区正常成年男女所含红血球的平均值是否有差异?(取α = 0.05)解:设该地区正常成年男女所含红血球分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:µ1 = µ2 vs H 1:µ1 ≠ µ2,未知2221,σσ,大样本场合,选取统计量)1,0(~2212N n S n SY X U yx&+−=,显著水平α = 0.05,u 1−α /2 = u 0.975 = 1.96,双侧拒绝域W = {| t | ≥ 1.96},因222220.49,16.422,80.54,13.465====y x s y s x ,n 1 = 156,n 2 = 74,则W u ∈=+−=9611.57420.4915680.5416.42213.46522,并且检验的p 值p = 2P {U ≥ 5.9611} = 2.5055 × 10−9 < α = 0.05,故拒绝H 0,接受H 1,可以认为该地区正常成年男女所含红血球的平均值有差异.20.为比较不同季节出生的女婴体重的方差,从去年12月和6月出生的女婴中分别随机地抽取6名及10名,测其体重如下(单位:g ):12月:3520 2960 2560 2960 3260 3960,6月:3220 3220 3760 3000 2920 3740 3060 3080 2940 3060.假定新生女婴体重服从正态分布,问新生女婴体重的方差是否是冬季的比夏季的小(取α = 0.05)?解:设12月和6月出生的女婴体重分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ<,选取统计量)1,1(~2122−−=n n F S S F yx,显著水平α = 0.05,21.077.41)5,9(1)9,5()1,1(95.005.021====−−F F n n F α,左侧拒绝域W = { f ≤ 0.21},因225960.491=x s ,225217.306=y s ,则W f ∉==5721.25217.3065960.49122,并且检验的p 值p = P {F ≤ 2.5721} = 0.8967 > α = 0.05,故接受H 0,拒绝H 1,新生女婴体重的方差冬季的不比夏季的小.21.已知维尼纶纤度在正常条件下服从正态分布,且标准差为0.048.从某天产品中抽取5根纤维,测得其纤度为1.32 1.55 1.36 1.40 1.44问这一天纤度的总体标准差是否正常(取α = 0.05)?解:设这一天维尼纶纤度X ~ N (µ , σ 2),假设H 0:σ 2 = 0.0482 vs H 1:σ 2 ≠ 0.0482,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,4844.0)4()1(2025.022/==−χχαn ,1433.11)4()1(2975.022/1==−−χχαn ,双侧拒绝域W = {χ 2 ≤ 0.4844或χ 2 ≥ 11.1433}, 因σ 2 = 0.0482,s 2 = 0.08822,n = 5,则W ∈=×=5069.13048.00882.04222χ,并且检验的p 值p = 2P {χ 2 ≥ 13.5069} = 0.0181 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为这一天纤度的总体方差不正常.22.某电工器材厂生产一种保险丝.测量其熔化时间,依通常情况方差为400,今从某天产品中抽取容量为25的样本,测量其熔化时间并计算得24.62=x ,s 2 = 404.77,问这天保险丝熔化时间分散度与通常有无显著差异(取α = 0.05,假定熔化时间服从正态分布)? 解:设这天保险丝熔化时间分散度X ~ N (µ , σ 2),假设H 0:σ 2 = 400 vs H 1:σ 2 ≠ 400,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,4012.12)24()1(2025.022/==−χχαn ,3641.39)24()1(2975.022/1==−−χχαn ,双侧拒绝域W = {χ 2 ≤ 12.4012或χ 2 ≥ 39.3641}, 因σ 2 = 400,s 2 = 404.77,n = 25,则W ∉=×=2862.2440077.404242χ,并且检验的p 值p = 2P {χ 2 ≥ 24.2862} = 0.8907 > α = 0.05,故接受H 0,拒绝H 1,即可以认为这天保险丝熔化时间分散度与通常没有显著差异. 23.某种导线的质量标准要求其电阻的标准差不得超过0.005(Ω).今在一批导线中随机抽取样品9根,测得样本标准差s = 0.007(Ω),设总体为正态分布.问在显著水平α = 0.05下,能否认为这批导线的标准差显著地偏大?解:设这批导线的电阻X ~ N (µ , σ 2),假设H 0:σ 2 = 0.005 2 vs H 1:σ 2 > 0.005 2,选取统计量)1(~)1(2222−−=n S n χσχ,显著性水平α = 0.05,5073.15)8()1(295.021==−−χχαn ,右侧拒绝域W = {χ 2 ≥ 15.5073},因σ 2 = 0.005 2,s 2 = 0.007 2,n = 9,则W ∈=×=68.15005.0007.08222χ,并且检验的p 值p = P {χ 2 ≥ 15.68} = 0.0472 < α = 0.05, 故拒绝H 0,接受H 1,即可以认为这批导线的标准差显著地偏大.24.两台车床生产同一种滚珠,滚珠直径服从正态分布.从中分别抽取8个和9个产品,测得其直径为甲车床:15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8;乙车床:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.8.比较两台车床生产的滚珠直径的方差是否有明显差异(取α = 0.05).解:设两台车床生产的滚珠直径分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ≠,选取统计量)1,1(~2122−−=n n F S S F yx,显著性水平α = 0.05,2041.09.41)7,8(1)8,7()1,1(975.0025.0212/====−−F F n n F α,F 1 − α /2 (n 1 − 1, n 2 − 1) = F 0.975 (7, 8) = 4.53,双侧拒绝域W = {F ≤ 0.2041或F ≥ 4.53},因223091.0=x s ,221616.0=y s ,则W F ∉==6591.31616.03091.022,并且检验的p 值p = 2P {F ≥ 3.6591} = 0.0892 > α = 0.05,故接受H 0,拒绝H 1,即可以认为两台车床生产的滚珠直径的方差没有明显差异. 25.有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量为m = 14和n = 12的样本,测得部件质量的样本方差分别为46.1521=s ,66.922=s ,设两样本相互独立,试在显著性水平α = 0.05下检验假设H 0:2221σσ= vs H 1:2221σσ>.解:设两台机器生产金属部件质量分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:2221σσ= vs H 1:2221σσ>,选取统计量)1,1(~2221−−=n m F S S F ,显著性水平α = 0.05,F 1 − α (m − 1, n − 1) = F 0.95 (13, 11) = 2.7614,右侧拒绝域W = {F ≥ 2.7614},因46.1521=s ,66.922=s ,则W F ∉==6004.166.946.15,并且检验的p 值p = P {F ≥ 1.6004} = 0.2206 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为2221σσ=.26.测得两批电子器件的样品的电阻(单位:Ω)为A 批(x ) 0.140 0.138 0.143 0.142 0.144 0.137;B 批(y ) 0.135 0.140 0.142 0.136 0.138 0.140.设这两批器材的电阻值分别服从),(211σµN ,),(222σµN ,且两样本独立.(1)试检验两个总体的方差是否相等(取α = 0.05)? (2)试检验两个总体的均值是否相等(取α = 0.05)?解:设两批电子器件样品的电阻分别为),(~211σµN X ,),(~222σµN Y ,(1)假设H 0:2221σσ= vs H 1:2221σσ≠,选取统计量)1,1(~2122−−=n n F S S F yx,显著性水平α = 0.05,1399.015.71)5,5(1)5,5()1,1(975.0025.0212/====−−F F n n F α,F 1 − α /2 (n 1 − 1, n 2 − 1) = F 0.975 (5, 5) = 7.15,双侧拒绝域W = {F ≤ 0.1399或F ≥ 7.15},因22002805.0=x s ,22002665.0=y s ,则W F ∉==1080.1002665.0002805.022,并且检验的p 值p = 2P {F ≥ 1.1080} = 0.9131 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为两个总体的方差相等; (2)假设H 0:µ 1 = µ 2 vs H 1:µ 1 ≠ µ 2,未知2221,σσ,但2221σσ=,选取统计量)2(~112121−++−=n n t n n S YX T w ,显著性水平α = 0.05,t 1 − α /2 (n 1 + n 2 − 2) = t 0.975 (10) = 2.2281,双侧拒绝域W = {| t | ≥ 2.2281}, 因1407.0=x ,1385.0=y ,s x = 0.002805,s y = 0.002665,n 1 = 6,n 2 = 6,002736.010002665.05002805.052)1()1(22212221=×+×=−+−+−=n n s n s n s yx w ,则W t ∉=+×−=3718.16161002736.01385.01407.0,并且检验的p 值p = 2P {T ≥ 1.3718} = 0.2001 > α = 0.05, 故接受H 0,拒绝H 1,即可以认为两个总体的均值相等.27.某厂使用两种不同的原料生产同一类型产品,随机选取使用原料A 生产的样品22件,测得平均质量为2.36(kg ),样本标准差为0.57(kg ).取使用原料B 生产的样品24件,测得平均质量为2.55(kg ),样本标准差为0.48(kg ).设产品质量服从正态分布,两个样本独立.问能否认为使用原料B 生产的产品质量较使用原料A 显著大(取α = 0.05)?解:设两种原料生产的产品质量分别为),(~211σµN X ,),(~222σµN Y ,假设H 0:µ 1 = µ 2 vs H 1:µ 1 < µ 2 ,未知2221,σσ,大样本,选取统计量)1,0(~2212N n S n SY X U yx&+−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W ≈ {u ≤ −1.645}, 因36.2=x ,55.2=y ,s x = 0.57,s y = 0.48,n 1 = 22,n 2 = 24, 有W u ∉−=+−=2171.12448.02257.055.236.222,并且检验的p 值p = P {U ≤ −1.2171} = 0.1118 > α = 0.05,故接受H 0,拒绝H 1,即可以认为使用原料B 生产的产品质量较使用原料A 不是显著大.习题7.31. 从一批服从指数分布的产品中抽取10个进行寿命测试,观测值如下(单位:h ): 1643 1629 426 132 1522 432 1759 1074 528 283根据这批数据能否认为其平均寿命不低于1100 h (取α = 0.05)? 解:设这批产品的寿命X ~ Exp (1/θ ),假设H 0:θ = 1100 vs H 1:θ < 1100,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,8508.10)20()2(205.02==χχαn ,左侧拒绝域W = {χ 2 ≤ 10.8508},因8.942=x ,n = 10,θ = 1100,则W ∉=××=1418.1711008.9421022χ,并且检验的p 值p = P {χ 2 ≤ 17.1418} = 0.3563 > α = 0.05,故接受H 0,拒绝H 1,即可以认为其平均寿命不低于1100 h .2. 某厂一种元件平均使用寿命为1200 h ,偏低,现厂里进行技术革新,革新后任选8个元件进行寿命试验,测得寿命数据如下:2686 2001 2082 792 1660 4105 1416 2089假定元件寿命服从指数分布,取α = 0.05,问革新后元件的平均寿命是否有明显提高? 解:设革新后元件的寿命X ~ Exp (1/θ ),假设H 0:θ = 1200 vs H 1:θ > 1200,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,2962.26)16()2(295.021==−χχαn ,右侧拒绝域W = {χ 2 ≥ 26.2962},因875.2103=x ,n = 8,θ = 1200,则W ∈=××=0517.281200875.2103822χ,并且检验的p 值p = P {χ 2 ≥ 28.0517} = 0.0312 < α = 0.05,故拒绝H 0,接受H 1,即可以认为革新后元件的平均寿命有明显提高.3. 有人称某地成年人中大学毕业生比例不低于30%,为检验之,随机调查该地15名成年人,发现有3名大学毕业生,取α = 0.05,问该人看法是否成立?并给出检验的p 值.解:设该地n 名成年人中大学毕业生人数为∑==ni i X X n 1,有),(~p n b X n ,假设H 0:p = 0.3 vs H 1:p < 0.3, 选取统计量),(~p n b X n ,显著性水平α = 0.05,n = 15,p = 0.3, 有1268.07.03.005.00353.07.03.021515101515=⋅⋅<<=⋅⋅∑∑=−=−k k k kk kkkC C ,左侧拒绝域}1{≤=x n W ,因W x n ∉=3,并且检验的p 值2969.07.03.0}3{31515=⋅⋅=≤=∑=−k k k kC X n P p ,故接受H 0,拒绝H 1,即可以认为该人看法成立.4. 某大学随机调查120名男同学,发现有50人非常喜欢看武侠小说,而随机调查的85名女同学中有23人喜欢,用大样本检验方法在α = 0.05下确认:男女同学在喜爱武侠小说方面有无显著差异?并给出检验的p 值. 解:设n 1名男同学中有∑==111n i i X X n 人喜欢看武侠小说,n 2名女同学中有∑==212n j j Y Y n 人喜欢看武侠小说,有),(~111p n B X n ,),(~222p n B Y n ,大样本,有⎟⎟⎠⎞⎜⎜⎝⎛−1111)1(,~n p p p N X &,⎟⎟⎠⎞⎜⎜⎝⎛−2222)1(,~n p p p N Y &, 则⎟⎟⎠⎞⎜⎜⎝⎛−+−−−22211121)1()1(,~n p p n p p p p N Y X &,即)1,0(~)1()1()()(22211121N n p p n p p p p Y X &−+−−−−,当p 1 = p 2 = p 但未知时,此时用总频率2121ˆn n Yn X n p++=作为p 的点估计替换p ,在大样本场合,有)1,0(~11)ˆ1(ˆ21N n n p pY X U &+−−=,假设H 0:p 1 = p 2 vs H 1:p 1 ≠ p 2, 大样本,选取统计量)1,0(~11)ˆ1(ˆ21N n n p pY X U &+−−=,显著性水平α = 0.05,u 1 − α /2 = u 0.975 = 1.96,双侧拒绝域W = {| u | ≥ 1.96},因n 1 = 120,n 2 = 85,501=x n ,232=y n ,有3561.0851202350ˆ2121=++=++=n n y n x n p,则W u ∈=+−×−=1519.28511201)3561.01(3561.0852312050,并且检验的p 值p = 2P {U ≥ 2.1519} = 0.0314 < α = 0.05,故拒绝H 0,接受H 1,可以认为男女同学在喜爱武侠小说方面有显著差异.5. 假定电话总机在单位时间内接到的呼叫次数服从泊松分布,现观测了40个单位时间,接到的呼叫次数如下:0 2 3 2 3 2 1 0 2 2 1 2 2 1 3 1 1 4 1 1 5 1 2 2 3 3 1 3 1 3 4 0 6 1 1 1 4 0 1 3.在显著性水平0.05下能否认为单位时间内平均呼叫次数不低于2.5次?并给出检验的p 值. 解:设电话总机在单位时间内接到的呼叫次数X ~ P(λ),有)(~1λn P X X n ni i ∑==,大样本,有)1,0(~N nX n n X n &λλλλ−=−,假设H 0:λ = 2.5 vs H 1:λ < 2.5, 大样本,选取统计量)1,0(~N nX U &λλ−=, 显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,左侧拒绝域W = {u ≤ −1.645}, 因975.1=x ,n = 40,λ = 2.5, 则W u ∈−=−=1.2405.25.2975.1,并且检验的p 值p = P {U ≤ −2.1} = 0.0179 < α = 0.05,故拒绝H 0,接受H 1,不能认为单位时间内平均呼叫次数不低于2.5次;6. 通常每平方米某种布上的疵点数服从泊松分布,现观测该种布100 m 2,发现有126个疵点,在显著性水平0.05下能否认为该种布每平方米上平均疵点数不超过1个?并给出检验的p 值. 解:设每平方米该种布上的疵点数X ~ P(λ),有)(~1λn P X X n ni i ∑==,大样本,有)1,0(~N nX n n X n &λλλλ−=−,假设H 0:λ = 1 vs H 1:λ > 1, 大样本,选取统计量)1,0(~N nX U &λλ−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645},因26.1=x ,n = 100,λ = 1, 则W u ∈=−=6.21001126.1,并且检验的p 值p = P {U ≥ 2.6} = 0.0047 < α = 0.05, 故拒绝H 0,接受H 1,不能认为该种布每平方米上平均疵点数不超过1个; 7. 某厂的一批电子产品,其寿命T 服从指数分布,其密度函数为p (t ; θ ) = θ −1exp{− t /θ } I t > 0,从以往生产情况知平均寿命θ = 2000 h .为检验当日生产是否稳定,任取10件产品进行寿命试验,到全部失效时停止.试验得失效寿命数据之和为30200.试在显著性水平α = 0.05下检验假设H 0:θ = 2000 vs H 1:θ ≠ 2000.解:假设H 0:θ = 2000 vs H 1:θ ≠ 2000,选取统计量)2(~222n Xn χθχ=,显著性水平α = 0.05,5908.9)20()2(2025.022/==χχαn ,1696.34)20()2(2975.022/1==−χχαn ,双侧拒绝域W = {χ 2 ≤ 9.5908或χ 2 ≥ 34.1696},因30201030200==x ,n = 10,θ = 2000, 则W ∉=××=20.30200030201022χ,并且检验的p 值p = P {χ 2 ≥ 30.20} = 0.0667 > α = 0.05,故接受H 0,拒绝H 1,即可以认为其平均寿命等于2000 h . 8. 设X 1, X 2, …, X n 为取自两点分布b (1, p )的随机样本.(1)试求单侧假设检验问题H 0:p ≤ 0.01 vs H 1:p > 0.01的显著水平α = 0.05的检验; (2)若要这个检验在p = 0.08时犯第二类错误的概率不超过0.10,样本容量n 应为多大? 解:(1)假设H 0:p = 0.01 vs H 1:p > 0.01,若为小样本,选取统计量),(~1p n b X X n ni i ∑==,显著性水平α = 0.05,p = 0.01,取⎭⎬⎫⎩⎨⎧≥⋅⋅=⎭⎬⎫⎩⎨⎧≤⋅⋅=∑∑−=−=−95.099.001.0min 05.099.001.0min 102c k k n k k n n c k kn k k n C C c ,当n ≤ 5时,c 2 = 1;当6 ≤ n ≤ 35时,c 2 = 2;当36 ≤ n ≤ 82时,c 2 = 3;当83 ≤ n ≤ 137时,c 2 = 4; 右侧拒绝域}{2c x n W ≥=, 根据x n ,作出决策; 若为大样本,选取统计量)1,0(~)1(N np p pX U &−−=,显著性水平α = 0.05,u 1 − α = u 0.95 = 1.645,右侧拒绝域W = {u ≥ 1.645}, 计算u ,作出决策;(2)在p = 0.08时,)08.0,(~1n b X X n ni i ∑==,则犯第二类错误的概率10.092.008.0}08.0|{}08.0|{1022≤⋅⋅==<==∉=∑−=−c k k n k kn C p c X n P p W X n P β,当n ≤ 5时,c 2 = 1,β = 0.92n ≥ 0.6591;当6 ≤ n ≤ 35时,c 2 = 2,2184.092.008.01≥⋅⋅=∑=−k k n k kn C β;当36 ≤ n ≤ 82时,c 2 = 3, 若n = 64,1050.092.008.02=⋅⋅=∑=−k kn kknC β;若n = 65,0991.092.008.02=⋅⋅=∑=−k k n k kn C β;故n ≥ 65.9. 有一批电子产品共50台,产销双方协商同意找出一个检验方案,使得当次品率p ≤ p 0 = 0.04时拒绝的概率不超过0.05,而当p > p 1 = 0.30时,接受的概率不超过0.1,请你帮助找出适当的检验方案. 解:设这批电子产品中的次品数为∑==ni i X X n 1,有),(~p n b X n ,假设H 0:p = 0.04 vs H 1:p > 0.04, 小样本,选取统计量),(~p n b X n , 显著性水平α = 0.05,p = 0.04,。