开环步进电机与闭环步进电机系统比较
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
步进电机控制方法步进电机是一种将电脉冲信号转换为角位移的执行器,广泛应用于打印机、数控机床、纺织机械、包装设备等自动控制系统中。
步进电机控制方法的选择对于系统的性能和稳定性具有重要影响,下面将介绍几种常见的步进电机控制方法。
1. 开环控制。
开环控制是最简单的步进电机控制方法之一,通过给步进电机施加一定的脉冲信号来控制其旋转角度。
这种方法简单直接,但无法对步进电机的运动状态进行实时监测和调整,容易出现失步现象,适用于对精度要求不高的场合。
2. 半闭环控制。
半闭环控制是在开环控制的基础上增加了位置传感器反馈的控制方法。
通过位置传感器实时监测步进电机的位置,将反馈信息与设定值进行比较,从而实现对步进电机位置的闭环控制。
这种方法相比于开环控制能够更好地提高系统的稳定性和精度,但仍然存在一定的失步风险。
3. 闭环控制。
闭环控制是最为精确的步进电机控制方法,通过在步进电机上增加编码器等位置传感器,实时反馈步进电机的位置信息,并对其进行精确控制。
闭环控制能够及时调整步进电机的运动状态,减小失步风险,提高系统的稳定性和精度,适用于对位置精度要求较高的场合。
4. 微步进控制。
微步进控制是一种通过改变步进电机相序激励方式,使步进电机在每个步距内分成多个微步距的控制方法。
微步进控制能够提高步进电机的分辨率,减小振动和噪音,提高系统的平稳性和精度,适用于对步进电机运动要求较高的场合。
总结。
在实际应用中,步进电机控制方法的选择应根据具体的控制要求和系统性能需求来确定。
不同的控制方法各有特点,开环控制简单直接,但精度较低;半闭环控制提高了系统的稳定性和精度,但仍存在失步风险;闭环控制精度最高,但成本较高。
微步进控制能够提高步进电机的平稳性和分辨率,但相应的控制电路较为复杂。
因此,在选择步进电机控制方法时,需要综合考虑系统的实际需求和成本因素,选择最合适的控制方法来实现系统的稳定运行和高精度控制。
三、单项选择题:1。
CNC 系统软件必须完成管理和控制两大任务,下面任务中哪个不属于控制任务?()A 、诊断B 、插补C 、位控D 、译码 2。
下列正确表示机床坐标系的是()A 、XB 、XC 、ZD 、Y3。
脉冲当量的大小决定了加工精度,下面哪种脉冲当量对应的加工精度最高?()A 、1um/脉冲B 、5um/脉冲C 、10um/脉冲D 、0。
01mm/脉冲 4.设编程原点在工件的上表面,执行下列程序后,钻孔深度是(). G90 G01 G43Z-50H01 F100(H01补偿值—2。
00mm )A .48mm;B 。
52mm ;C.50mm 。
5。
一直线的起点坐标在坐标原点,终点坐标为A (x a 、y a ),刀具的坐标为P (x 、y )。
用逐点比较法对该直线进行插补时的偏差函数是()。
A.F =x ·y -x a ·y a ;B 。
F =x a ·y -y a ·x ;C 。
F =x a ·x -y a ·y ;D 。
F =x a +y a -x -y 6。
加工中心与其他数控机床的主要区别是()。
A 。
有刀库和自动换刀装置;B 。
机床转速高;C 。
机床刚性好;D 。
进刀速度高 7.数控机床的数控装置包括().A.光电读带机和输入程序载体;B 。
步进电机和伺服系统C.输入、信息处理和输出单元;D 。
位移、速度传感器和反馈系统 8。
G00的指令移动速度值是()。
A .机床参数指定;B 数控程序指定;C 操作面板指定。
9.编程坐标系一般指的是()A .机床坐标系;B.工件坐标系;10.下面哪项任务不是数据预处理(预计算)要完成的工作?()A 、位置控制B 、刀具半径补偿计算C 、刀具长度补偿计算D 、象限及进给方向判断 11.A 步进电机的转速是否通过改变电机的()而实现。
A.脉冲频率B 。
脉冲速度C 。
通电顺序。
12.程序编制中首件试切的作用是()。
步进电机的开环控制和闭环控制一、步进电机的开环掌握1、步进电机开环伺服系统的一般构成图1 步进电机开环伺服系统步进电动机的电枢通断电次数和各相通电挨次打算了输出角位移和运动方向,掌握脉冲安排频率可实现步进电动机的速度掌握。
因此,步进电机掌握系统一般采纳开环掌握方式。
图为开环步进电动机掌握系统框图,系统主要由掌握器、功率放大器、步进电动机等组成。
2、步进电机的掌握器1、步进电机的硬件掌握步进电动机在—个脉冲的作用下,转过一个相应的步距角,因而只要掌握肯定的脉冲数,即可精确掌握步进电动机转过的相应的角度。
但步进电动机的各绕组必需按肯定的挨次通电才能正确工作,这种使电动机绕组的通断电挨次按输入脉冲的掌握而循环变化的过程称为环形脉冲安排。
实现环形安排的方法有两种。
一种是计算机软件安排,采纳查表或计算的方法使计算机的三个输出引脚依次输出满意速度和方向要求的环形安排脉冲信号。
这种方法能充分利用计算机软件资源,以削减硬件成本,尤其是多相电动机的脉冲安排更显示出它的优点。
但由于软件运行会占用计算机的运行时间,因而会使插补运算的总时间增加,从而影响步进电动机的运行速度。
另一种是硬件环形安排,采纳数字电路搭建或专用的环形安排器件将连续的脉冲信号经电路处理后输出环形脉冲。
采纳数字电路搭建的环形安排器通常由分立元件(如触发器、规律门等)构成,特点是体积大、成本高、牢靠性差。
2、步进电机的微机掌握:目前,伺服系统的数字掌握大都是采纳硬件与软件相结合的掌握方式,其中软件掌握方式一般是利用微机实现的。
这是由于基于微机实现的数字伺服掌握器与模拟伺服掌握器相比,具有下列优点:(1)能明显地降低掌握器硬件成本。
速度更快、功能更新的新一代微处理机不断涌现,硬件费用会变得很廉价。
体积小、重量轻、耗能少是它们的共同优点。
(2)可显著改善掌握的牢靠性。
集成电路和大规模集成电路的平均无故障时(MTBF)大大长于分立元件电子电路。
(3)数字电路温度漂移小,也不存在参数的影响,稳定性好。
步进电机有几种工作方式在现代工业和自动化领域中,步进电机是一种常用的电动机之一。
步进电机具有结构简单、运行稳定、定位准确等优点,被广泛应用于各种设备和系统中。
根据不同的控制方式和工作原理,步进电机可以分为几种不同的工作方式。
1. 开环控制方式开环控制方式是步进电机最基本的工作方式之一。
在开环控制下,系统仅根据输入的脉冲信号来驱动步进电机,而没有反馈信号用于监测电机的实际运动情况。
这意味着系统无法实时调整电机的运行状态,容易出现失步或者误差累积的问题。
开环控制方式适用于一些对定位精度要求不高的场合,成本较低。
2. 半闭环控制方式半闭环控制方式在开环控制的基础上增加了位置传感器或编码器等反馈装置,用于监测步进电机的实际位置信息。
根据反馈信号,系统可以进行部分的位置校正,提高了系统的稳定性和定位精度。
半闭环控制方式适用于一些对定位精度要求较高的场合,但相比全闭环控制,其成本和复杂度较低。
3. 全闭环控制方式全闭环控制方式是步进电机的高级控制方式之一。
在全闭环控制下,系统不仅通过位置传感器获取电机的实际位置信息,还将这些信息反馈给控制器进行实时校正。
这样可以确保步进电机在高速运动或负载变化时仍能保持准确的位置控制,提高了系统的响应速度和稳定性。
全闭环控制方式适用于对精准定位和高速响应要求较高的场合,但相应地增加了系统的成本和调试难度。
4. 微步进控制方式除了以上三种基本的控制方式外,还有一种常见的控制方式是微步进控制。
微步进控制通过改变步进电机的相间电流波形,将每一步的细分成更小的微步,从而使电机的1转动更加平滑和精确。
相较于传统的全步进控制方式,微步进控制可以提高电机的分辨率和平稳性,但也会增加电机的功耗和控制复杂度。
不同的工作方式适用于不同的应用场合,用户可以根据自身需求和预算选择合适的步进电机控制方式。
在实际应用中,需综合考虑定位精度、速度要求、成本限制等因素,选择最适合的控制方式,以达到最佳的工作效果。
现如今步进电机设备被广泛运用在生活的各个领域,对人们的生活带来了很多的便利。
步进电机的主要优点之一是适于开环控制。
但是,步进电机的开环控制无法避免步进电机本身所固有的缺点,即共振、振荡、失步和难以实现高速。
另一方面,开环控制的步进电机系统的精度要高于分级是很困难的,其定位精度相对较低。
因此,在精度和稳定性要求比较高的系统中,就必须果用闭环控制系统。
步进电机的闭环控制是采用位置反馈和(或)速度反馈来确定与转子位置相适应的相位转换,可大大改进步进电机的性能。
在闭环控制的步进电机系统中,或可在具有给定精度下跟踪和反馈时,扩大工作速度范围,或可在给定速度下提高跟踪和定位精度,或可得到极限速度指标和极限精度指标。
步进电机的闭环控制性能与开环控制性能相比,具有如下优点:a.随着输出转矩的增加,二者的速度均以非线性形式下降,但是,闭环控制改善了矩频特性。
b.闭环控制下,输出功率/转矩曲线得以改善,原因是,闭环下,电机励磁转换是以转子位置信息为基础的,电流值决定于电机负载,因此,即使在低速度范围内,电流也能够充分转换成转矩。
c.闭环控制下,效率/转矩曲线得以改善。
d.采用闭环控制,可得到比开环控制更高的运行速度,更稳定、更光滑的转速。
e.利用闭环控制,步进电机可自动地、有效地被加速和减速。
f.闭环控制相对开环控制在快速性方面提高的定量评价,可借助比较Ⅳ步内通过某个路径间隔的时间得出:n-步进电机转换拍数(N>n)。
g.应用闭环驱动,效率、功率和速度同时得到提高。
闭环驱动的步进电机的性能在所有方面均优于开环驱动的步进电机。
步进电机闭环驱动具有步进电机开环驱动和直流无刷伺服电机的优点。
因此,在可靠性要求很高的位置控制系统中,闭环控制的步进电机将获得广泛应用。
深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。
我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。
都说闭环与开环相比,其控制精度相对来讲比较高,在注塑机上表现为射出位置的重复性较高,最近对所用的机台作了一下比较,有几台开环的机,观察了一个小时,射出位置的复位准确度达到了95%,即每次射出终止位置都一样,每次都是16.5mm,,比闭环的还好,这该怎么解释呢??搞注塑的人都知道注塑机控制系统的执行元件主要是电机(如交流或直流电机及伺服电机、步进电机等)、液压油缸或液压马达,这两类执行元件的控制并无实质区别,当采用注塑机控制器进行闭环控制时,其控制和校正具有很大的相通性.注塑机闭环控制系统包括通讯、校正、※区补偿、限幅、D/A、A/D、可逆计数模块.系统采用模糊控制器实现模糊控制, 采用随机接受信息和主动反馈信息的通讯模式,接受注塑机控制器的各种控制命令和数据,检测反馈信号,自动完成控制任务.注塑机闭环控制系统具有※区补偿、零点漂移自动测定及补偿、注塑机参数可随时修改..所谓闭环控制也称反馈控制,它是指注塑工艺员预先规定注塑参数,通过对注塑机执行机构施加信号,并把注塑机电控系统输出量的一部分或全部,经过一定的转换,反馈到注塑机电控系统的输入端,并与之进行比较,将比较得到的差异施加于执行机构,以减少两者之间的偏差而进行的控制。
注塑机闭环控制的突出特点是具有自我调节功能。
控制器在发现某一过程状态记录与实际有偏差时,可以及时采取补救措施,从而保证注塑工艺参数的可靠准确实现。
閉环机所指是压力及流量带反馈控制或有射胶监控整个射胶过程及修正的射胶閉环,有射胶閉环,射胶才更精准,精度误差可凖0.5%关于开环与闭环,正如游总所说,其特点之关键在于具有自我调节功能,换句话说,就是具有抗干扰性.闭环控制是应用输出与输入信号之差来作用于控制器,进而来减少系统误差.而开环系统则没有这个功能.当系统的输入量已知,并且不存在任何干扰时,采用开环系统是完全能够达到稳定化的生产的,此时并不需要闭环控制.但是这个情况几乎无法实现.当存在着无法预知的干扰或系统中元件参数存在着无法预计的变化时,闭环系统才能充分发挥作用.我们做产品时,都有这样的经历:一个产品刚开始生产时,质量很难稳定下来,但只要连续性生产,越到后来,越稳定.为什么呢?就是外部条件(比如模温\料温\机床油温\模板温度\)等逐渐趋于稳定,其波动的干扰作用减弱.但是一遇到外部条件稍有变动(如油路不畅造成流量下降),系统就会难以恢复到原有状态.也可以这样理解:原有建立起来的平衡被打破,系统需要较长时间达到新的平衡点,这是我们不愿意看到的,我们当然希望只有一个平衡点,当外界出现干扰时,控制系统能够削弱干扰,继续保持在原平衡点.所以,闭环的作用也就在此.还有一个:就是开环控制系统可以用高精度的元件或过硬的硬件设施来弥补其自身的不足,比如我们的液压系统中的压力流量型调速阀(即人们说的PQ阀),它可以削弱油温和负载压力的变化对流量的影响.我们的恒温恒湿车间用来削弱环境温度波动的干扰,我们的模具恒温机用来削弱模具温度变化的干扰,我们的油冷却器用来削弱油温变化的干扰.这些设施再配合高精度的机械和液压元件,是可以达到闭环控制系统的效果的.再来回答楼主的问题:塑化计量位置的重复精度高,可以使用高精度的位置传感器及良好的螺杆制动机制来实现.而且,位置检测本身就具有闭环性质,因为螺杆的实时位置就是靠传感器来检测,并输入到控制器(当然要经过一定的A/D转换)中,没有达到设定值时,系统当然会保持塑化动作,直到达到设定的塑化位置为止.注塑机需要闭环控制的几个地方是:注射保压压力\注射速度\油温\料温\模温\,当然开合模速度也可以实现闭环控制,但这个是摆设,意义不大.既然要反馈,就必须有传感器对控制对象进行实时的检测,比如压力控制,需要在注射油缸甚至是模具型腔里安装压力传感器,并将这个传感器信号实时的传入控制器内,与系统设定值进行比较,将其差值通过P.I.D组合控制,从而使实际压力值尽量与设定值相当.而料温控制,属于恒温控制,为自动调节系统之一,肯定属于闭环控制了,热电偶就是其传感器.伺服阀和伺服电机,内部有硬件反馈装置或伺服驱动器,更加具有实时和控高精度的优越性.这种零件应用于注塑机系统中,更加能够实现高精度和高的工艺重复精度.再配合控制器的闭环控制,高精度高稳定性就能够很好的实现了!应用伺服阀,液压机是能够与使用伺服电机的全电机有得一比的.其实这两个最明显的就是要求压力速度调节系统零件要灵敏,稳定,开环控制如果没有好的速度压力比例阀,注射很难稳定,但是工艺上用开环控制比较容易解决生产问题,我在用震德机的过程中就深有感受,震德机的闭环控制压力恒定,只可以调节速度位置,在保压过程中压力也不按设定的比例来走,很难生产要求高的产品,但用开环的时候又不稳定,主要是液压调节系统不好,同一个产品如果在三菱机上生产,开机的和生产过程中的废品会少三分二,三菱机调好后可以一个星期不用调节,但是震德机就不行,唉不过一分钱一分货.刘震9605:其实这两个最明显的就是要求压力速度调节系统零件要灵敏,稳定,开环控制如果没有好的速度压力比例阀,注射很难稳定,但是工艺上用开环控制比较容易解决生产问题,我在用震德机的过程中就深有感受,震德机的闭环控制压力恒定,只可以调节速度位置,在保压过程中压力也不按设定的比例来走,很难生产要求高的产品,但用开环的时候又不稳定,主要是液压调节系统不好,同一个产品如果在三菱机上生产,开机的和生产过程中的废品会少三分二,三菱机调好后可以一个星期不用调节,但是震德机就不行,唉不过一分钱一分货.楼主所说的震德机是没有闭环控制功能的!闭环控制的压力不会恒定,除非你设定的值不变.如果使用闭环控制的话,压力是不可能不按照你设定的值走的,除非你的电子放大板出现故障,比例线性调节功能失控.而且控制器的开环与闭环控制是预先编好了程序的,也就是说,系统运行时,必须有一个反馈环节,这个反馈环节要求控制器的CPU必须输入外部反馈信号,再经过比较器运算,再输出控制信号.所以,闭环机是不能随意"关闭"闭环功能的,除非你修改系统程序,但现在的控制器多使用电脑,而不是PLC,是不可以随意更改系统应用程序的哦!你所说的开环不稳定,主要还是液压系统设计不过关或液压元件制造不过硬造成的.因为开环控制系统是不存在稳定性问题的.只要机械的零部件质量优质可靠,以及外部条件不发生频繁的波动(这个条件能够满足,比如环境温度是不会频繁波动的),输出就是稳定的,但是,输出具有不可控制性,换句话说,就是实际压力与你设定的压力偏差很大的话,它就一直存在这个偏差,系统不会去修正这个偏差而使压力达到你设定的值,只要这个偏差不变,我们从外部看起来,就是很稳定的,这就是我们注塑工艺需要的"工艺重复精度".我们不在乎系统偏差多与少,关键是要保证偏差值的不变.通俗的说,如果第一件产品压力偏差小,下一件产品成型时,由于油温的持续上升或液压管路堵塞,压力偏差大,压力曲线的重复性差,那是不可接受的.但是开环系统要做到始终保持重复精度高,是比较勉强的.我接触的主要就是三菱机,MM系列.它的注射压力和速度是开环控制.使用位置传感器检测位置信号,并与设定值比较,进而实现指定位置上的速度压力切换.也就是说,采用位移检测来实现多级注射压力速度的开环控制.至于三菱机性能为什么要好些,道理很简单,它使用的液压元件制造工艺优良,油路设计合理,机械零件精密度高,也就是所说的一分钱一分货吧,硬件上的优势可以弥补软件(即控制系统的控制方式)的不足.。
步进电机结构及工作原理步进电机是一种将电能转化为机械能的电机,其工作原理是通过交替激励电流使电机转动一定角度。
步进电机的结构主要包括转子、定子、驱动电路和传感器。
转子是步进电机的旋转部件,通常采用多个磁极组成。
常见的转子形式包括两相、三相、四相等。
每个磁极上通有一个电线圈,通过控制电流的通断来实现对电机的控制。
定子是一个定位部件,通常由磁铁或磁性材料制成。
定子的作用是提供一个磁场,使转子能够在不同的位置停留。
定子的磁场较为稳定,当转子旋转时,定子的磁场不随其变化。
驱动电路是步进电机的控制部分,负责向电机提供合适的电流信号,控制电机旋转的角度和速度。
驱动电路一般由调速器和功率放大器组成,通过对电流的控制来实现对电机的精确控制。
传感器是一种用于检测电机转动状态的装置,主要用于监控电机的位置和速度。
传感器可以是光电传感器、霍尔传感器等。
当电机旋转到指定位置时,传感器会发出信号,将信号传输给控制系统。
步进电机的工作原理是利用保持磁场的定子和改变磁场的转子之间的相互作用来实现电机的旋转。
当定子的磁场与转子的磁场相互作用时,转子会发生磁力作用,从而使步进电机旋转。
步进电机根据不同的控制方式可以分为开环步进电机和闭环步进电机。
开环步进电机是通过控制驱动电路向电机提供脉冲信号来控制电机的旋转角度和速度。
当驱动电路接收到一个脉冲信号后,会向电机通入一定电流,使电机转动一个固定的角度。
通过不断输入脉冲信号,可以实现电机的连续旋转。
闭环步进电机是在开环步进电机的基础上增加了位置反馈系统。
闭环步进电机通过传感器检测电机的位置和速度,并将信息返回给驱动电路。
驱动电路根据传感器的反馈信号来调整电流的大小和方向,实现对电机转动的精确控制。
步进电机具有结构简单、控制方便、输出扭矩大等优点,常应用于机床、自动控制系统、印刷设备等领域。
步进电机的单脉冲控制、双脉冲控制、开环控制和闭环控制
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。
虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
步进电机的单脉冲控制与双脉冲控制步进电机的控制有单电压和高低电压控制之分;
单电压控制用一串脉冲信号控制一个电子开关的通、断来控制电机驱动绕组得电、失电;高低电压控制在单电压控制的基础上,用另一串脉冲控制一个电子开关的通、半导通,两个开关串联,两个控制脉冲同频率但不同相位和宽度。
达到给绕组的供电电压全、一半、迅速关断的目的。
步进电机的开环控制和闭环控制步进电机的开环控制
1、步进电机开环伺服系统的一般构成
步进电动机的电枢通断电次数和各相通电顺序决定了输出角位移和运动方向,控制脉冲分配频率可实现步进电动机的速度控制。
因此,步进电机控制系统一般采用开环控制方式。
图为开环步进电动机控制系统框图,系统主要由控制器、功率放大器、步进电动机等组成。
2、步进电机的控制器
1、步进电机的硬件控制
步进电动机在个脉冲的作用下,转过一个相应的步距角,因而只要控制一定的脉冲数,即。
电机驱动解决方案引言概述:电机驱动是现代工业中不可或缺的一部分,它在各个领域中发挥着重要的作用。
为了满足不同应用的需求,人们设计出了各种电机驱动解决方案。
本文将介绍五种常见的电机驱动解决方案,分别是直流电机驱动、交流电机驱动、步进电机驱动、无刷直流电机驱动和伺服电机驱动。
一、直流电机驱动1.1 电压调速控制:直流电机驱动的一个重要应用是通过调整电压来控制电机的转速。
通过改变电压的大小,可以实现电机的启动、加速、减速和停止等操作。
1.2 电流控制:直流电机驱动还可以通过控制电流来实现对电机的精确控制。
通过调整电流的大小,可以实现电机的力矩控制、位置控制和速度控制等功能。
1.3 脉宽调制:脉宽调制是一种常见的直流电机驱动技术,通过改变脉冲的宽度来控制电机的转速和方向。
脉宽调制可以实现高效的能量转换,提高电机的效率和响应速度。
二、交流电机驱动2.1 变频调速控制:交流电机驱动常用的控制方法是变频调速控制。
通过改变交流电源的频率和电压,可以实现对电机的转速和转矩的精确控制。
2.2 矢量控制:矢量控制是一种高级的交流电机驱动技术,它可以实现对电机的精确位置和速度控制。
通过测量电机的转子位置和速度,可以实时调整电机的控制参数,提高电机的性能和响应速度。
2.3 无传感器控制:传统的交流电机驱动需要使用传感器来测量电机的位置和速度,但无传感器控制技术可以实现对电机的精确控制,而无需使用传感器。
这种技术可以简化系统的结构,提高系统的可靠性和稳定性。
三、步进电机驱动3.1 开环控制:步进电机驱动常用的控制方法是开环控制。
通过控制电机的驱动信号,可以实现电机的步进运动。
步进电机驱动具有简单、可靠的特点,适用于一些低速、高精度的应用。
3.2 微步控制:微步控制是一种改进的步进电机驱动技术,它可以实现对电机的更精确的控制。
通过改变电机的驱动信号,可以使电机以更小的步距运动,提高电机的分辨率和平滑度。
3.3 闭环控制:闭环控制是一种高级的步进电机驱动技术,它可以实现对电机的位置和速度的闭环控制。
闭环步进电机的优点与应用闭环步进电机是一种智能型的电机设备,其主要特点是在步进电机的控制方式中,引入了闭环控制。
在工作中,闭环步进电机通过采集电机运行状态的反馈信号,实现对电机转速、角度和位置的精准控制。
相比较于传统的开环步进电机,闭环步进电机在精度、稳定性和准确性等方面都有着显著的提升。
下面我们来看看闭环步进电机的优点与应用范围。
闭环步进电机通过引入反馈信号,消除了传统步进电机控制中的漏步现象,有效提高了电机的控制精度。
在一些对精度要求较高的场合,如机床、自动化装备以及精密加工等领域,闭环步进电机的应用非常广泛。
闭环步进电机的闭环控制能够及时响应电机反馈信号,并对电机的运行状态进行实时调整,从而有效提高电机的运行稳定性。
在需要进行低速稳定行驶的电机控制中,闭环步进电机的应用非常显著。
闭环步进电机在控制精度和运行稳定性方面的提高,使得其在定位任务中也有着非常广泛的应用。
在一些需要对电机进行高精度定位的场合,如医疗器械、航空航天领域等,电机的定位精度远高于传统步进电机。
在需要对电机做一定的加速和减速操作的场合,如要求电机做频繁短时运动操作的场合,步进电机的动态响应能力非常优越。
闭环步进电机的高精度、高稳定性和高可靠性,使得其在自动化控制领域中有着广泛的应用。
如电子设备、机器人、自动化装备等领域中的丝杆驱动、旋转操作等都可以运用到步进电机。
作为一种智能型的电机设备,其在精度、稳定性、定位精度、动态响应能力等方面都有着显著优势,并且应用领域也非常广泛。
在未来,随着闭进电机技术的不断发展和完善,相信它将会在自动化控制领域中扮演着越来越重要的角色。
与同样高精度的伺服电机相比,闭环步进电机有着更高的性价比。
这种电机控制技术的设计和整合更容易,并且制造成本也较低,因此成本相对较为低廉。
这款电机有价格性能比,具有更好的性价比。
闭环步进电机可以广泛用于许多行业,包括机械自动化、印刷机、纺织机、医疗仪器、工具设备、激光设备等各种领域。
最大的区别是:1、伺服电机闭环的,本身有反馈。
2、步进电机是开环系统,没有反馈。
闭环比开环精度高。
3、上位控制:伺服多数可以接脉冲信号,也可以接模拟电压信号,伺服电机一般分交流跟直流,精度较高,而步进只能接脉冲信号,现在很多简化的也伺服只能接脉冲信号。
4、起动频率:一般只有步进有这么个参数,因为步进电机快速启动,也就是说你上来给他一个频率很高的脉冲,他会堵转,给一个脉冲,电机起动一下。
容易丢步伺服基本上没有这个问题。
5、工作环境:一般来说,伺服更脆弱些,容易出问题,工作环境恶劣的时候伺服就不是太好用,那种低温,高温,防暴,防水的伺服因为生产难度较大基本上都是天价,当然这种步进也不便宜。
步进电机选型中必须注意的问题1、选择保持转矩(HOLDING TORQUE)保持转矩也叫静力矩,是指步进电机通电但没有转动时,定子锁住转子的力矩。
由于步进电机低速运转时的力矩接近保持转矩,而步进电机的力矩随着速度的增大而快速衰减,输出功率也随速度的增大而变化,所以说保持转矩是衡量步进电机负载能力最重要的参数之一。
比如,一般不加说明地讲到1N.m的步进电机,可以理解为保持转矩是1N.m。
2、选择相数两相步进电机成本低,步距角最少1.8 度,低速时的震动较大,高速时力矩下降快,适用于高速且对精度和平稳性要求不高的场合;三相步进电机步距角最少1.5度,振动比两相步进电机小,低速性能好于两相步进电机,最高速度比两相步进电机高百分之30至50,适用于高速且对精度和平稳性要求较高的场合;5相步进电机步距角更小,低速性能好于3相步进电机,但成本偏高,适用于中低速段且对精度和平稳性要求较高的场合。
3、选择步进电机应遵循先选电机后选驱动器原则,先明确负载特性,再通过比较不同型号步进电机的静力矩和矩频曲线,找到与负载特性最匹配的步进电机;精度要求高时,应采用机械减速装置,以使电机工作在效率最高、噪音最低的状态;避免使电机工作在振动区,如若必须则通过改变电压、电流或增加阻尼的方法解决;电源电压方面,建议57电机采用直流24V-36V、86电机采用直流46V、110电机采用高于直流80V;大转动惯量负载应选择机座号较大的电机;大惯量负载、工作转速较高时,电机而应采用逐渐升频提速,以防止电机失步、减少噪音、提高停转时的定位精度;鉴于步进电机力矩一般在40Nm以下,超出此力矩范围,且运转速度大于1000RPM时,即应考虑选择伺服电机,一般交流伺服电机可正常运转于3000RPM,直流伺服电机可可正常运转于10000RPM。
开环和闭环都是控制方面经常使用的术语。
开环控制就是没有反馈系统的控制,比方你家使用的调光台灯,旋钮调节到哪里就是哪里,感觉不对可以再次调节一下。
闭环控制,一般由人们设定目标,由电路自己的检测电路实行反馈检测数据。
达到跟踪设定的操作过程就叫做闭环控制。
比方自己家的空调系统,就是一个闭环的控制,高级的在遥控手柄这方面检测室内温度,做一个比较大的闭环控制。
中央空调更是需要使用更高一个等级的闭环控制才能够保持若干部位的均衡温度步进电机和伺服电机的区别在于:1、控制精度不同。
步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。
2、控制方式不同;一个是开环控制,一个是闭环控制。
3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。
交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。
4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。
6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。
7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合1.步进电机本身价格便宜,且国产品性能也不错。
2.系统一般是开环的,这经济上就更省些。
但不能失步工作。
3.步进电机系统基本都是国产的,控制器基本都是单片机系统,成本低。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。
步进电机本身是属于精密控制类电机,但是属于开环控制方式,故有些场合及应用方式用开环电机是不行的,比如电机丢步造成重大财产损失或生命安全的。
带编码器步进电机,就是在步进电机的基础上加编码器,它能够避免因为步进电机丢步而造成损失,编码器就是个保险。
还有一种应用就是加绝对值编码器来作为定位的原点位置,有些场合不方便加原点位置,带编码器步进电机和步进伺服电机(闭环步进电机)最主要区别就是编码器信号接收方式,带编码器步进电机的编码器信号是控制系统接受的,步进伺服电机(闭环步进电机)的编码器信号是驱动器接受的。
步进伺服电机或称闭环步进电机,此产品结合了步进电机和伺服电机的优点,在步进电机上面加编码器,在驱动器上接受编码器信号,运动方式就是你发一个指令,A点到B点,若电机万一丢步后编码器反馈到驱动直接监督让电机走到B的位置,交流伺服电机原理就是普通电机快到原点时直接通过编码器找位置,故到位置点的时候会震荡,很多半导体设备或要求高精度设备就用步进伺服电机(闭环步进电机),不用交流伺服,因为交流伺服到位置点的时候会震荡,影响精度。
步进伺服电机(闭环步进电机)和交流伺服电机优缺点:1:步进伺服电机(闭环步进电机)本身大惯量,传动皮带场合比交流伺服更好,而大惯量缺点就是响应速度和高速效果比不上交流伺服。
2:交流伺服电机运行噪声比步进伺服电机(闭环步进电机)更好,因为步进伺服电机(闭环步进电机)运动原理还是和步进电机一样,通过定子和转子相吸产生动力。
3:运行精度平滑性上步进伺服电机(闭环步进电机)比交流伺服更好,因为达到终点不会震荡。
4:性价比,步进伺服电机(闭环步进电机)比交流伺服电机便宜很多。
深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。
闭环步进电机工作原理
闭环步进电机是在传统的开环步进电机的基础上加入了反馈系统,以实现对电机运动的更为准确的控制。
以下是闭环步进电机的工作原理:
1. 步进电机基础:步进电机是一种特殊的直流电动机,它按步进角度运动,每个步进角度对应电机的一个步进。
传统的开环步进电机是通过控制电流和脉冲信号来驱动电机,但它没有反馈系统,无法主动感知实际转动情况。
2. 闭环控制系统:闭环步进电机引入了位置反馈装置,如光电编码器或霍尔效应传感器。
这个反馈系统能够实时感知电机的位置,并将这个信息反馈给控制器。
3. 位置控制:控制器根据预定的位置和实际的位置之间的差异,计算出误差,并通过调整相应的控制信号来纠正误差。
这种反馈机制使得闭环步进电机在运动过程中可以更加准确地达到目标位置。
4. 电流控制:闭环步进电机还可以通过控制电流来调整电机的力矩,以适应负载的变化。
这可以提高电机的运动平稳性和负载能力。
5. 速度控制:通过对位置信息的连续监测,闭环步进电机也可以实现速度控制。
控制器可以调整脉冲信号的频率,使电机以稳定的速度运动。
6. 实时响应:由于闭环步进电机能够实时感知位置并纠正误差,它具有更高的实时响应性。
这在一些对运动精度要求较高的应用中非常重要。
总体来说,闭环步进电机通过引入位置反馈系统,使得电机在运动中能够更加精确地控制位置、速度和电流,提高了运动的稳定性和准确性。
这使得闭环步进电机在一些对精度要求较高的应用中得到广泛应用,如精密仪器、医疗设备等。
步进电机控制方法详解
步进电机是一种电动机,能够将电脉冲转换为机械位移,具有精准定位、无需传感器反馈等优点,在许多行业中得到广泛应用。
步进电机的控制方法多种多样,包括开环控制和闭环控制两种基本方式。
1. 开环控制
开环控制是最简单直接的步进电机控制方法之一。
通过控制每次输入的脉冲数量和频率来控制电机旋转的角度和速度。
开环控制不需要反馈系统,因此结构简单、成本低廉,适用于一些简单的应用场景。
但是开环控制无法实时纠正误差,容易受到外部因素干扰,精度相对较低。
2. 步进电机控制方法详解
在现代步进电机应用中,闭环控制方式更为常见。
闭环控制通过在电机上添加编码器或传感器,实时监测电机的位置、速度和加速度等参数,将这些信息反馈给控制系统,从而动态调整控制电流和脉冲信号,确保电机的运动精准稳定。
闭环控制能够有效消除误差和震动,提高系统的响应速度和稳定性,适用于对精度要求较高的场合。
3. 如何选择合适的控制方法
在选择步进电机控制方法时,需要根据具体应用场景和要求来进行判断:
•如果是一些简单的定位任务,对精度要求不高,可以选择开环控制方法,简单易行。
•如果是需要高精度、高速度的精密定位任务,或是需要长时间稳定运行的场合,建议选择闭环控制方式,确保系统的稳定性和可靠性。
综上所述,步进电机的控制方法多种多样,开环控制和闭环控制各有优劣。
在实际应用中,应根据具体需求来选择合适的控制方式,以达到最佳的控制效果。
步进电机作
为一种重要的执行元件,在自动化控制系统中具有重要的地位和作用,不断推动着工业自动化技术的发展。
步进电机的分类及特点电机步进电机是一种将电脉冲信号转换成相应角位移或线位移的电动机。
每输入一个脉冲信号,转子就转动一个角度或前进一步,其输出的角位移或线位移与输入的脉冲数成正比,转速与脉冲频率成正比。
因此,步进电动机又称脉冲电动机。
步进电机相对于其它控制用途电机的最大区别是,它接收数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,它本身就是一个完成数字模式转化的执行元件。
而且它可开环位置控制,输入一个脉冲信号就得到一个规定的位置增量,这样的所谓增量位置控制系统与传统的直流控制系统相比,其成本明显减低,几乎不必进行系统调整。
步进电机的角位移量与输入的脉冲个数严格成正比,而且在时间上与脉冲同步。
因而只要控制脉冲的数量、频率和电机绕组的相序,即可获得所需的转角、速度和方向。
作为一种控制用的特种电机,步进电机无法直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。
在微电子技术,特别计算机技术发展以前,控制器(脉冲信号发生器)完全由硬件实现,控制系统采用单独的元件或者集成电路组成控制回路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路。
这就使得需要针对不同的电机开发不同的驱动器,开发难度和开发成本都很高,控制难度较大,限制了步进电机的推广。
步进电动机的结构形式和分类方法较多,一般按励磁方式分为磁阻式、永磁式和混磁式三种;按相数可分为单相、两相、三相和多相等形式。
在我国所采用的步进电机中以反应式步进电机为主。
步进电机的运行性能与控制方式有密切的关系,步进电机控制系统从其控制方式来看,可以分为以下三类:开环控制系统、闭环控制系统、半闭环控制系统。
半闭环控制系统在实际应用中一般归类于开环或闭环系统中。
(1)永磁式步进电动机。
其转子有永磁体的磁极,在气隙中产生极性交替磁场,定子由四相绕组组成。
当A相绕组通电时,转子将转向该相绕组所确定的磁场方向。
步进电机多轴运动控制系统的研究1. 本文概述随着现代工业自动化和精密控制技术的快速发展,步进电机因其高精度、易于控制等特点,在多轴运动控制系统中扮演着至关重要的角色。
本文旨在深入研究步进电机在多轴运动控制系统中的应用,探讨其控制策略、系统设计及性能优化等方面的问题。
本文将概述步进电机的基本原理和工作特性,分析其在多轴运动控制中的优势。
接着,将重点探讨步进电机在多轴控制系统中的控制策略,包括开环控制和闭环控制,以及这两种控制策略在实际应用中的优缺点比较。
本文还将详细讨论多轴运动控制系统的设计与实现,包括硬件选型、软件编程及系统集成等方面。
特别关注步进电机与控制器之间的接口技术、运动控制算法的实现,以及系统在实际工作环境中的稳定性和可靠性。
本文将探讨步进电机多轴运动控制系统的性能优化方法,包括速度、精度和效率等方面的提升策略。
通过实验验证和数据分析,评估不同优化策略的实际效果,为步进电机在多轴运动控制系统中的应用提供理论指导和实践参考。
本文将从原理分析、控制策略、系统设计到性能优化等多个方面,全面深入研究步进电机在多轴运动控制系统中的应用,旨在为相关领域的研究和实践提供有益的参考和指导。
2. 步进电机原理及特性步进电机是一种特殊的电机类型,其运动不是连续的,而是按照固定的步长进行。
这种电机的特性使其非常适合需要精确控制位置和速度的应用场景。
步进电机通常被用在开环控制系统中,因为它们不需要持续的反馈信号来调整其运动。
步进电机的工作原理基于电磁学。
电机内部包含一系列电磁极,当电流通过这些电磁极时,它们会产生磁场。
这些磁场与电机内部的永磁体相互作用,产生旋转力矩,从而使电机转动。
通过控制电流的方向和顺序,可以控制电机的旋转方向和步长。
步进电机的主要特性包括其步距角、定位精度和动态性能。
步距角是电机每接收一个脉冲信号所转动的角度,这个角度通常很小,可以在5到8之间。
定位精度是指电机能够准确到达的目标位置,这主要取决于电机的制造精度和控制系统的精度。
开环步进电机与闭环步进电机系统比较
步进电机系统是运动控制行业的基石。
我们将研究开环系统与闭环系统之间的差异,并了解步进电机最新的发展,步进电机系统比以往更快,更安静,更节能。
从电压驱动和完全步进的早期阶段开始,步进电机系统已经走过了漫长的道路。
首先是PWM驱动和微步进,然后是数字信号处理器(DSP)和反共振算法。
现在,新的闭环步进技术确保步进电机在未来几年继续成为运动控制行业的基石。
这是AppliedMotionProducts的StepSERVO闭环集成步进电机的剖视图。
无论运动是线性运动还是旋转运动,决定哪种电机和驱动系统最合适的两个首要考虑因素是扭矩和效率。
这适用于最终的应用是:自动装配系统,材料处理机器,3D打印机,笛卡尔定位器,蠕动泵,还是无数其他应用,其中步进电机是优选技术方案。
步进系统的最新发展是应用低成本,高分辨率的反馈设备和先进的DSP使步进运动形成一个闭环的环路。
这种控制可以提高闭环步进性能,使其优于开环系统。
正如我们所看到的,一个这样的闭环系统在集成电机设计上得以实现,包括反馈设备,驱动器和控制器板,电源,通信和I/O电子设备,以及电机侧面和背面的系统连接器。
开环与闭环步进系统比较
首先让我们探讨高性能闭环步进系统在扭矩和效率方面与传统开环步进系统的比较。
闭环步进系统优于开环系统,如实验室测试结果所示,比较两个系统的加速度(扭矩),效率(功耗),位置误差(精度),发热量和噪音水平。
只考虑扭矩和加速度之间的关系。
扭矩-速度曲线显示闭环步进系统的峰值和连续扭矩范围明显优于开环步进系统的可用扭矩范围。
通常情况下,现实世界中的扭矩会转化为加速度-因此具有更大扭矩的电机可以更快地加速给定负载。
为了在实验室中测试扭矩性能的这种差异,同样大小的开环和闭环步进电机系统获得相同的惯性负载。
编程命令两个系统执行相同的移动配置文件,除了加速率和最高速度在每个系统中缓慢增加,直到它们产生定位错误。
这里我们有一个开环与闭环系统之间的移动剖面比较。
这是来自StepSERVO闭环系统和来自开环系统的系统之间的比较。
闭环系统(由于其更高的扭矩产生能力)获得最大加速率2,000转/秒2和最高速度20转/秒(1,200转/分钟),如此处所示。
假设开环系统的最大加速度为1,000转/秒2,最高速度为10转/秒(600转/分钟)。
该最高转速为10转/秒与转矩-速度曲线的平坦部分结束的位置相关。
闭环系统(由于其更高的扭矩产生能力)获得最大加速率2,000转/秒2和最高速度20转/秒(1,200转/分钟)。
这是开环系统性能的两倍,并将移动时间减少了近一半-从110毫秒减少到60毫秒。
对于需要高响应的应用(例如索引,边缘导向定位和拾取和放置系统),闭环系统提供了明显的性能优势。
开环与闭环效率比较
为了测量开环与闭环系统的相对效率,假设我们使用相同尺寸的相同两个电机重复相同的测试。
这次我们将闭环和开环电机并排运行,具有相同的惯性负载,但是运行编程使得运动曲线保持恒定且相等,这样两个系统都能执行相同的工作量。
这是StepSERVO闭环系统与开环系统的相对比较图表。
请注意闭环步进系统的卓越性能,如实验室测试结果所示,比较两个系统的加速度(扭矩),效率(功耗),位置误差(精度),发热量和噪音水平。
当两个电机反复指向相同的移动曲线时,测量来自供给两个系统的直流电源的电流消耗并计算功耗。
从价值图中可以看出,开环步进系统的平均功耗为43.8瓦,而闭环系统的平均功耗仅为三分之一-平均为14.2瓦。
功耗的这种显着差异清楚地表明闭环系统的更高效率操作。
任何希望提高开环步进系统系统效率的用户现在都可以考虑简单升级到闭环系统,并期望显着降低功耗。
这种StepSERVO闭环系统和开环系统的功耗比较显示了StepSERVO的更高效率。
如何解决电机发热问题
功耗测试的自然延伸是对电机发热的研究。
开环步进系统是简单的野兽。
只需设置电机额定电流的驱动器,驱动器将尽力为电机提供电流,无论是否需要产生的转矩。
这通常会导致产生热量而不是能量产生应用功能-这也是开环步进系统通常比闭环对应系统运行更热的原因。
这也意味着机器设计人员必须采取额外措施来应对这种热量,通常包括在人工操作员附近运行的步进电机周围的特殊防护,或者安装额外的冷却系统,如风扇。
考虑在实验室中使用与上述相同的开环和闭环系统进行的电动机发热测试的结果。
在该测试中,两个系统再次产生相同的工作量来驱动相同的惯性载荷,并且允许它们运行直到它们达到热平衡。
开环系统的外壳温度达到76.0°C,而闭环系统在温度仅为36.9°C的情况下达到热平衡-不到开环系统的一半。
电机发热显著减少意味着机器制造商的组件成本降低,因为它们可以省略额外的防护和冷却子系统。
这是StepSERVO闭环系统和开环系统的实验室测试温度比较。
它显示了使用与本文详述的其他测试相同的开环和闭环系统进行电机加热测试的结果。
噪音测试比较
关于开环步进系统的另一个常见抱怨是,它们会产生相当多的可听噪声。
在某些环境中,例如实验室,医院和办公室,这种噪音可能给机器设计者带来真正的问题。
步进电机发出的噪声源于高电频率和定子齿中的快速磁通变化,并且因为无论负载如何,开环系统都在满额定电流下运行。
另一方面,闭环步进系统为电动机提供足够的电流来控制负载,从而产生更少的可听噪声。
此处显示的是可听噪声,与开环系统和StepSERVO闭环系统的速度相对应。
闭环步进系统为电机提供足够的电流来控制负载,与开环设置相比,这导致可听噪声要小得多。
为了产生本文附带的声学噪声图中所示的测试结果,在隔音室中测量每个系统的声学噪声。
闭环系统比开环选项安静得多,速度从0到20转/秒。
该速度范围与最常使用步进电机系统的应用的实际速度范围一致,这意味着如果切换到闭环系统,绝大多数步进电机应用可受益于降低的电机噪声。
更好的精度可以消除位置误差
开环步进电机系统因其在没有反馈机构或闭环控制系统的情况下精确定位负载的能力而受到重视,但前提是开环系统具有足够的扭矩余量,使得在正常操作期间不会发生位置误差。
为了提高精度,并且为了更稳健的系统设计,关闭来自高分辨率编码器的反馈的伺服位置环允许闭环系统自动补偿扭矩需求的增加,否则会导致开环系统中的位置误差。
这极大地提高了整体系统精度,特别是对于高度动态的应用,例如拾取和放置系统以及需要短时间,快速移动和频繁改变方向的3D打印机。
StepSERVO闭环(峰值扭矩),StepSERVO闭环(连续扭矩)和开环(可用扭矩)之间的动态扭矩比较。
这些图显示了闭环步进系统的峰值和连续扭矩范围以及开环步进系统的可用扭矩范围。
开环系统输出的最大加速度为1,000转/秒2,最高速度为10转/秒(600转/分钟)。
该最高转速为10转/秒与转矩-速度曲线的平坦部分结束的位置相关。
升级现有的步进系统
在集成步进电机系统中的组件中,当从开环到闭环时,电动机,功率放大器和通信成本通常不会增加。
控制电子设备可能需要更多的中央处理能力或存储器来伺服控制电动机,但这些通常不会对列表价格产生影响。
开环和闭环步进系统之间的成本差异主要在于增加了高分辨率反馈设备,但制造方面的改进使这些设备越来越便宜。
所以现在,闭环步进系统保持了开环步进系统相对于其他类型定位系统(例如传统伺服系统)的成本优势,但几乎在所有方面都大大提高了性能。
除了最小的成本增加之外,通过NEMA框架尺寸产品简化了从开环步进系统到闭环系统的升级。
闭环NEMA23步进电机与开环NEMA23步进电机具有相同的框架尺寸,导向直径,螺栓孔圆和螺栓孔直径,因此安装支架保持不变。
闭环系统可获得的更大扭矩意味着闭环步进电机的轴直径可能更大,但通常可以通过简单地改变联轴器来很容易地解决这个问题。