克隆载体
- 格式:doc
- 大小:74.00 KB
- 文档页数:9
第一章 概 论 第二章 基因疫苗工作原理 第三章 基因疫苗抗原基因的筛选和克隆 第四章 基因疫苗的构建 第五章 基因疫苗制备第六章 基因疫苗免疫方法 第七章 基因疫苗免疫效果检测 第八章 影响基因疫苗免疫效果的因素第九章 基因疫苗安全性第十章 细菌病基因疫苗第十一章 病毒病基因疫苗第十二章 寄生虫病基因疫苗第十三章 肿瘤基因疫苗第十四章 控制动物生长性能的基因疫苗 四、常用的克隆载体克隆载体就是将目的基因导入宿主细胞进行复制,从而获得大量克隆化片段的运载工具,常用的克隆载体种类很多,主要包括质粒、粘粒和噬菌体等。
其中,质粒是目前应用最为广泛的克隆载体。
下面简要介绍作为克隆质粒的特性和结构。
(一)质粒特性质粒是指在染色体外能够独立复制和稳定遗传的一类环状双链 DNA 分子。
有的质粒处于染色体外的游离状态,可以随着染色体的复制而复制,并且通过细胞分裂传递到子代。
有的质粒在一定条件下能够可逆地整合到寄主染色体上。
质粒的表示常根据 1976 年提出质粒命名原则,用小写字母 p 代表质粒,在 p 字母后面用两个大写字母代表发现这一质粒的作者或者实验室名称。
例如质粒 pUCl8 ,字母 p 代表质粒, UC 是构建该质粒的研究人员的姓名代号, 18 代表构建的一系列质粒的编号。
质粒广泛地分布于原核生物细胞中,也存在于一些真核细胞中。
质粒相对分子质量范围为10 6 -2 @ 10 8 。
根据质粒在受体细胞内的数量将质粒分为严紧型质粒和松弛型质粒两种类型。
严紧型质粒在每个细胞只有 1 个至几个拷贝;松弛型质粒在每个细胞中有 10-200 个拷贝。
质粒可以分为三种构型,一种是呈现超螺旋的 SC 构型( scDNA ),一种是开环 DNA( ocDNA ),另一种是呈线形分子的 L 构型。
质粒 DNA 与一般 DNA 分子的理化性质相似,例如溶于水、不溶于乙醇等有机溶剂、能吸收紫外线、可嵌入溴乙锭染料等。
实验室常利用这些理化特性鉴定和纯化质粒。
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为携带”感兴趣的外源DNA实现外源DNA勺无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。
)其中,为使插入的外源 DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子 -- 核糖体结合位点 -- 克隆位点 -- 转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体( Expression vectors )就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体 pKK223-3 是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在 mRNAk有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3〜10 bp处的由3 —9bp组成的序列。
这段序列富含嘌吟核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体 RNA的识另U与结合位点。
第1篇一、实验目的1. 学习克隆载体的构建方法,掌握分子克隆的基本原理和操作步骤。
2. 掌握利用限制性内切酶和DNA连接酶进行DNA片段的插入和连接。
3. 熟悉重组质粒的鉴定和扩增方法。
二、实验原理克隆载体是分子生物学研究中常用的工具,它可以将目的基因插入其中,并在宿主细胞中进行扩增。
克隆载体的构建主要包括以下步骤:1. 设计引物:根据目的基因序列设计特异性引物,用于PCR扩增目的基因片段。
2. PCR扩增:利用引物扩增目的基因片段。
3. 载体线性化:利用限制性内切酶将载体线性化,使其具有末端粘性。
4. DNA片段连接:将目的基因片段与载体进行连接。
5. 转化宿主细胞:将连接后的重组质粒转化至宿主细胞。
6. 鉴定和扩增:通过PCR、酶切等方法对转化后的细胞进行鉴定和扩增。
三、实验材料1. 试剂:PCR引物、限制性内切酶、DNA连接酶、DNA分子量标准、Taq酶、pUC19载体、感受态细胞等。
2. 仪器:PCR仪、电泳仪、凝胶成像系统、移液器、DNA纯化柱等。
四、实验步骤1. 设计引物:根据目的基因序列设计特异性引物,引物长度一般为20-30个碱基,其中包含酶切位点。
2. PCR扩增:利用引物扩增目的基因片段,PCR反应体系如下:- 10×PCR缓冲液5μl- dNTPs(每种2.5μmol/L)4μl- 引物(上下游引物各1μmol/L)2μl- DNA模板1μl- Taq酶0.5μl- ddH2O补充至50μl3. 载体线性化:利用限制性内切酶将载体线性化,反应体系如下:- 载体DNA 5μl- 10×酶切缓冲液5μl- 限制性内切酶1μl- ddH2O补充至20μl4. DNA片段连接:将PCR产物与载体进行连接,反应体系如下:- 线性化载体DNA 5μl- PCR产物5μl- 10×连接缓冲液5μl- DNA连接酶1μl- ddH2O补充至20μl5. 转化宿主细胞:将连接后的重组质粒转化至感受态细胞,具体操作方法如下:- 将感受态细胞铺板于含有适当抗生素的培养基上,37℃培养过夜。
基因克隆载体有什么用途
1.基因表达载体:基因克隆载体被用来将感兴趣的基因克隆到表达主
机中。
通过将基因与适当的调控序列结合,如启动子、增强子和终止子等,可以实现对基因的调控和表达。
这种表达基因的载体在生物制药、蛋白质
生产以及基因治疗等领域有广泛的应用。
2.基因敲除载体:基因克隆载体可以用于基因敲除研究,即通过将目
标基因的编码序列替换或删除,实现对基因功能的研究和破坏。
这种方法
可以用来揭示基因在生物发育、生理过程和疾病发生中的作用和机制。
4. RNAi载体:基因克隆载体还可用于RNA干扰(RNA interference,RNAi)技术研究。
通过将特定的RNA序列克隆到载体中,可以实现对目标
基因的特异性抑制,进而揭示基因功能和信号传导途径。
5.DNA库构建:基因克隆载体也可以用于构建DNA库,即将一组基因(如全基因组)克隆到载体中形成文库。
这种文库可以用来筛选和分析目
标基因,加快新基因发现和功能研究的进程。
此外,基因克隆载体还可以用于分子标记和荧光报告基因的构建,以
及基因转导、基因传递和转基因生物的制备等方面。
总的来说,基因克隆
载体是基因工程研究中的重要工具,可以实现对基因的调控、研究和应用,对生物学研究、生物技术开发和医学治疗等领域具有重要的推动作用。
一部分:概念解析二部分:问题解答克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。
) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。
)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
分子克隆质粒载体去磷酸化实验方法步骤对单酶切后的产物去磷酸化是指5‘端的磷酸基团,(3’端是-OH)。
用CIAP去磷酸化,它能将5‘端突出的磷酸基团消化掉,使质粒载体自身不能形成闭合的环状结构。
单酶切的末端能够发生载体自连。
Calf Intestinal Alkaline Phosphatase,简称CIAP,中文名称为小牛肠碱性磷酸酶,是一种可以催化DNA、RNA、核糖核苷酸和脱氧核糖核苷酸水解释放5′末端或3′末端磷酸基团的酶。
Calf Intestinal Alkaline Phosphatase也可以脱去蛋白质丝氨酸、苏氨酸或酪氨酸残基上的磷酸基团。
经限制性内切酶酶切的质粒5'端带有磷酸基团,在进行基因克隆时为避免质粒发生自连,可以使用Calf Intestinal Alkaline Phosphatase去除5'末端磷酸基团。
脱去5′末端磷酸基团的质粒不能发生自连。
用途:去除DNA、RNA 5′或3′末端的磷酸基团;通过去除载体或DNA片断5′末端的磷酸基团,防止载体或DNA片断自连;通过5′末端脱磷,为5′末端磷酸化放射性标记准备模板;用于蛋白质丝氨酸、苏氨酸、酪氨酸残基的去磷酸化。
载体单酶切过夜,然后65度失活,直接加CIAP去磷酸化后,建议用酚、氯仿抽提或者用胶回收后做连接,因为CIAP去磷酸化酶在螯合剂存在下,经65度30分钟加热处理,99%的活性不可逆失活(根据反应条件不同有时也有外),用胶回收可以除去酶蛋白。
最好做个对照,检验你的去磷酸化是否成功。
--------------------------------------------------------------------------------前些天才做完载体单酶切连接,现将自己的经验介绍如下:1. 载体单酶切三个小时足以,时间长并不一定好。
2. 如果不需要连接效率的话,可以不用去磷酸化,但载体单酶切纯化后最好马上与你新制备的具相同粘末端的目的片段进行连接反应,也就是说一定要保持单酶切后的载体与目的片段的“新鲜”。
3. 载体和目的片段单酶切后建议直接用柱纯化,我用的promega的柱,回收率很高。
我的目的片段2KB,载体13KB。
4. 连接反应目的片段与载体的摩尔比要高,最好10-20:1,因为单酶切后的载体与目的片段具有相同的粘末端容易出现自连,过量的目的段可以促进两者的反应,有利于出现重组子。
5. 我的单酶切的载体没有去磷酸化,单酶切目的片段也没有磷酸化,4度24小时连接,挑24个单菌落有3个重组子。
分子克隆载通常在基因工程中选作载体的有:①质粒——环状双链小型DNA 分子,种类甚多,有的可在细菌细胞内独立复制,有的亦可用于动、植物细胞。
例如:根瘤土壤杆菌所携带的Ti 质粒常用作植物细胞基因工程的载体。
人工改造的质粒常用的有pBR322天然质粒,派生质粒pmB1,psC101等②噬菌体——常用的是λ噬菌体。
经构建后,常用于细菌细胞。
常见的有Mu噬菌体载体。
③病毒——例如猿猴空泡病毒SV40 常用作动物细胞基因工程的载体。
④粘粒(cosmid,装配性质粒),由质粒和Mu噬菌体的cos位点u或膜等构建而成的一种大容量克隆载2、平末端的连接:可先生成粘性末端,在带平头末端的DNA片段的3’-末端加上多聚核苷酸的尾巴,在载体上加上互补的尾巴,然后用DNA连接酶连接。
重组的DNA分子是在DNA连接酶的作用下,有Mg2 、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。
1.理想载体应具备的基本条件(1)必须具有自主复制的能力。
(2)有适宜的限制酶切点,最好对多种限制酶有单一切点。
(3)具有选择性遗传标记。
若有对重组体DNA进行选择的标记,更为理想。
(i)检测载体是否接上了目的基因。
(ii)检测重组体是否进入受体细胞。
(4)载体的分子量应小,可以携带外源DNA的幅度较宽2.载体的种类(1)质粒载体及其改造。
如pBR322(已根据需要改建)有5个独特的酶切位点和2个抗生素耐性基因。
能独立复制。
(2)噬菌体载体及其改造。
易入转移到宿主细胞。
如λ噬菌体改造成charon载体。
这种噬菌体的中央部分不是必需的可以切除。
插入较大的外源DNA片段(2.2×104bp)。
可根据噬菌斑直接判断是否有外源DNA插入,有较强的启动子,能增强外源DNA的表达。
(3)科斯质粒(cosmid)载体,又称粘粒。
是由λDNA和细菌质粒DNA重组而构成的杂种质粒,它有质粒的很多优点,又可包装到噬菌体头部,便于进入宿主细胞。
(4)真核细胞的克隆载体。
(i)SV40 猿猴病毒,小的共价闭合环状DNA分子。
既能整合到染色体上,也能独立自主复制。
由SV40衍生的SVGT-5已成功地应用于猴肾细胞内克隆β-珠蛋白等哺乳动物基因。
(ii)Ti质粒。
根瘤农杆菌的质粒,可以转化植物细胞。
3.DNA片段和载体的连接(1)粘性末端连接连接酶(2)平整末端连接连接酶(3)同聚末端连接在末端转移酶作用下,可以在DNA的3'-OH端合成低聚多核苷酸。
(4)人工接头分子连接人工合成寡聚核苷酸片段应用连接酶把目的基因与合适的载体相连,重新组合的DNA片段称为重组DNA或简称重组体,又称异源嵌合体。
重组体必须引入受体细胞,才能进行增殖表达。
4.重组体导入宿主细胞(1)常用方法a.转化:将重组质粒DNA分子引入到受体细胞称为转化。
b.转染:将重组噬菌体或重组病毒DNA引入受体细胞,这里所用的噬菌体DNA并没有包上它的外壳(transfection)。
c.转导:用噬菌休作载体的方法。
这里所用的噬菌体DNA被包上了它的外壳。
但这是离体包装。
不是感染过程中包上的。
d.注射:如果宿主是比较大的动植物细胞则可用注射方法把重组DNA分子导入。
(2)成功的关键:受体细胞应处于感受态。
即处于最适于摄取和容忍外源DNA的生理状态。
转化率应达到10-7以上。
可采用氯化钙处理受体细胞。
4℃温育。
42℃短时脉冲冲击。
使呈感受态。
先用酶除去细胞壁,形成原生质体后再用CaCl处理。
DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。
两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。
但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA连接酶浓度或增加DNA浓度来提高平末端的连接效率。
T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP复合物;然后,酶-ATP复合物再结合到具有5’磷酸基和3’羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。
连接反应通常将两个不同大小的片断相连。
很多DNA聚合酶在进行PCR扩增时会在PCR产物双链DNA每条链的3’端加上一个突出的碱基A。
pUCm-T载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的T。
这样,pUCm-T载体的两端就可以和PCR产物的两端进行正确的AT配对,在连接酶的催化下,就可以把PCR产物连接到pUCm-T载体中,形成含有目的片断的重组载体。
连接反应的温度在37℃时有利于连接酶的活性。
但是在这个温度下粘末端的氢键结合是不稳定的。
因此采取折中的温度,即12-16℃,连接12-16h (过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。
实验原理一.重组质粒的构建T质粒载体重组的DNA分子是在DNA连接酶的作用下,有Mg2 、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。
DNA连接酶有两种:T4噬菌体DNA连接酶和大肠杆菌DNA连接酶。
两种DNA连接酶都有将两个带有相同粘性末端的DNA分子连在一起的功能,而且T4噬菌体DNA连接酶还有一种大肠杆菌DNA连接酶没有的特性,即能使两个平末端的双链DNA分子连接起来。
但这种连接的效率比粘性末端的连接率低,一般可通过提高T4噬菌体DNA连接酶浓度或增加DNA浓度来提高平末端的连接效率。
T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP复合物;然后,酶-ATP复合物再结合到具有5’磷酸基和3’羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。
连接反应通常将两个不同大小的片断相连。
很多DNA聚合酶在进行PCR扩增时会在PCR产物双链DNA每条链的3’端加上一个突出的碱基A。
pUCm-T载体是一种已经线性化的载体,载体每条链的3’端带有一个突出的T。
这样,pUCm-T载体的两端就可以和PCR产物的两端进行正确的AT配对,在连接酶的催化下,就可以把PCR产物连接到pUCm-T载体中,形成含有目的片断的重组载体。
连接反应的温度在37℃时有利于连接酶的活性。
但是在这个温度下粘末端的氢键结合是不稳定的。
因此采取折中的温度,即12-16℃,连接12-16h (过夜),这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。
二. 感受态制备原理细菌在0°C CaCl2低渗溶液中胀成球形,丢失部分膜蛋白,成为容易吸收外源DNA的感受态。
三. β-半乳糖甘酶显色反应选择法LacZ基因是大肠杆菌乳糖操纵子中的一个基因,可以编码β—半乳糖核苷酶。
β—半乳糖核苷酶是由4个亚基组成的四聚体,可催化乳糖的水解.用X-Gal为底物进行染色时,呈蓝色。
现在一些特定的质粒(比如pUC/pBS等),常带有β—半乳糖核苷酶的调控序列和β—半乳糖核苷酶N端146个氨基酸(α肽段)的编码序列,在这个编码序列里还插入一个多克隆位点(MCS),它并不影响lacZ的表达。
另外,常用的大肠杆菌带有β—半乳糖核苷酶C端部分序列(β肽段),的编码序列。
在各自独立的情况下,这些质粒与大肠杆菌各自编码的β—半乳糖核苷酶片段都没有酶的活性。
只有当携带α肽编码信息的克隆载体成功进入宿主细胞,在培养基诱导物IPTG的诱导下,载体质粒能够合成β—半乳糖核苷酶N端(α肽段),这样就与宿主细胞合成的β—半乳糖核苷酶C端部分序列(β肽段)互补,形成完整的β—半乳糖核苷酶活性蛋白。
而当外源基因插入到此种载体质粒lacZ的多克隆位点后,会造成lacZ 基因不能表达,从而不能合成β—半乳糖核苷酶;而对于空载体,lacZ基因正常表达,通过α互补合成β—半乳糖核苷酶,分解培养基里的色素底物X-gal,最终形成蓝色的化合物,出现蓝色菌斑。
编辑本段实验准备清洗,5个100ml锥形瓶(外加1个小的),6副培养皿,3个小试剂瓶,接种环,涂布棒0.1mol/LCaCl2:取0.11098g氯化钙固体定容至10mlAmp(100mg/ml):溶解0.1g氨苄青霉素钠盐于足量的水中,最后定容至1ml,用0.22μm滤膜过滤除菌.编辑本段实验过程(一).目的基因片段与载体连接器材旋涡混合器,微量移液取样器,移液器吸头,1.5ml 微量离心管,双面离心管架,台式离心机,干式恒温气浴。