命题联结词
- 格式:ppt
- 大小:471.50 KB
- 文档页数:16
第1 章命题逻辑第1 章命题逻辑授课内容知识点1:命题、联结词及命题符号化知识点2:命题公式、真值表及公式分类知识点3:等价式与等价演算知识点4:对偶式与蕴涵式知识点5:范式第1 章命题逻辑授课内容知识点6:主析取范式与主合取范式知识点7:命题演算的推理理论知识点8:有效结论证明方法知识点9:命题演算推理实例解析知识点1:命题、联结词及命题符号化一问题的引入命题逻辑是研究由命题为基本单位构成的前提和结论之间的可推导关系。
那么,什么是命题?如何表示和构成?如何进行推理的?例如:已知:如果今天星期三,那么公鸡会下蛋。
今天是星期三。
问题:根据以上前提你能推出什么结论?二命题、联结词及命题符号化1 命题的概念定义1.1.1:能够判断真假的陈述句称作命题。
命题仅有两种可能的真值:真和假,且二者只能居其一。
真用1或T表示,假用0或F表示。
由于命题只有两种真值,所以称这种逻辑为二值逻辑。
例1.1.1 判断下列语句哪些是命题①-1是整数。
②地球是围绕月亮转的。
③3+5=8。
④木星的表面温度是20 F。
⑤不要讲话!⑥你吃饭了吗?⑦本命题是假的。
(他正在说谎。
等)解①-④都是命题,①和③的真值为真,②真值是假,④不知真和假,但真值是可以确定的。
⑤⑥都不是命题。
⑦无法确定它的真值,当它假时,它便真;当它真时,它便假。
这种断言叫悖论。
2 命题的分类与表示•命题分为两类,第一类是原子命题,它是由再也不能分解成更为简单的语句构成的命题,称为原子命题。
用英文字母P,Q,R,…或带下标Pi,Qi,Ri,…表示之。
例如,用P表示武汉是一座美丽的城市,记为P:武汉是一座美丽的城市。
冒号:代表表示的意思•第二类是复合命题,它由原子命题、命题联结词和圆括号组成。
3 联结词1.3.1 否定联结词﹁P定义1.1.2设P表示一个命题,由命题联结词⎤和命题P连接成⎤P,称⎤P为P的否定式复合命题,⎤P读“非P”。
称⎤为否定联结词。
⎤P是真当且仅当P为假;否定联结词“⎤”的定义可由表1-1表示。
命题与逻辑联结词
一、命题与逻辑联结词 1、命题定义
可以判断真假的语句叫“命题” 2、分类 简单命题
复合命题(由简单命题与逻辑联结词构成)
p 或q :q p ∨ p 且q :q p ∧
非p :p ⌝(命题p 的否定) 3、判断复杂命题的真假 一真或真,一假且假. 4、四种命题 (1)原命题.
若p ,则q . (2)逆命题
若q ,则p . (3)否命题
若p ⌝,则q ⌝. (4)逆否命题
若q ⌝,则p ⌝.
5、四种命题关系
(1)原命题与逆否命题同真同假. (2)逆命题与否命题同真同假. 6、命题的否定与否命题. (1)命题的否定:(只否定结论). p 表示命题,非p 叫做命题的否定; 若p 则q ,则命题的否定为:若p 则q ⌝ (2)否命题(既否定条件,又否定结论) 若p 则q 的否命题为: 若p ⌝则q ⌝.
二、充分条件与必要条件. 1、充分条件
若q p ⇒,则p 是q 的充分条件(q 的充分条件p ) 2、必要条件
若q p ⇒,则q 是p 的充分条件(p 的充分条件q ) 3、充要条件
若q p ⇒且p q ⇒(或q p ⇔)则p 是q 的充要条件。
4、充分条件与必要条件判定 (1)数轴法 (2)集合法
(3)等价法
三:全称量词与存在量词 1、 全称量词:“所有的”.“任意一个”.“每个”,用“∀”表示。
存在量词:“存在一个”.“至少有一个”.“有些”,用“∃”表示. 2、 全称命题(含有全称量词的命题):();,x p M x ∈∀
特称命题(含有存在量词的命题):().,00x p M x ∈∃
3、含有一个量词的命题的否定.
4、一些常用正面描述的词语的否定形式:。
联言命题中常用的联结词可以表示什么意思
联言命题中常用的联结词主要有:
1. 并列关系:并且、又、而且、同时、此外、或者、既…又…、不但…而且…;
2. 递进关系:而、更、另外、又、再者、此外、比如、然而、因此、所以、以至于、甚至于;
3. 对比关系:但是、然而、反之、相反、尽管、即使、不管;
4. 转折关系:但、不过、可是、不仅、不但、反而;
5. 条件关系:如果、假如、只有、仅当、当…的时候;
6. 结果关系:因此、以至于、以致、致使、所以、故而。
上述联结词可以表达出不同的逻辑关系,例如并列关系表示多个情况同时存在;递进关系表示前一种情况增加了一个新的情况;对比关系表示前面强调的情况和当前强调的情况存在差异;转折关系表示前一种情况和当前情况相反;条件关系表示某一情况必须满足另一情况;结果关系表示前一情况导致了后一情况的发生。
逻辑联结词和四种命题1、逻辑联结词(1)命题:一般地,我们把用语言、符号、式子表达的,可以判断真假的语句叫做命题其中判断为真的语句叫真命题,判断为假的语句叫假命题(2)逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词或:两个简单命题至少一个成立且:两个简单命题都成立非:对一个命题的否定(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫复合命题(4)表达形式用小写的拉丁字母p、 q 、 r 、 s……来表示简单命题复合命题有三类:① p或q ② p且q ③非p(5)真值表:表示命题真假的表叫真值表①非p② p且q③p或q2、四种命题(1)一般地,用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p则 q(p q);逆命题:若q则 p(q p);否命题:若┐p则┐q(┐p┐q);逆否命题:若┐q则┐p(┐q ┐p)(2)四种命题的关系原命题逆命题否命题逆否命题(3)一个命题的真假与其他三个命题的真假有如下四种关系①原命题为真,它的逆命题不一定为真②原命题为真,它的否命题不一定为真③原命题为真,它的逆否命题一定为真④逆命题为真,否命题一定为真3、反证法证明命题的一般步骤(1)否定结论(2)从假设出发,经过推理论证得出矛盾(3)断定假设错误,肯定结论成立反证法属于间接证法,当证明一个结论成立,已知条件较少,或结论的情况较多,或结论是以否定形式出现,如某些结论中含有“至多”、“至少”、“唯一”、“不可能”、“不都”等指示性词语时往往考虑采用反证法证明结论成立。