2014高考数学一轮复习课件2.6对数与对数函数
- 格式:ppt
- 大小:1.01 MB
- 文档页数:43
第6讲对数与对数函数1.对数概念如果a x=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x负数和零没有对数1的对数是零:log a1=0 底数的对数是1:log a a=1 对数恒等式:alog a N=N运算性质log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=nlog a M(n∈R)换底公式公式:log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0) 推广:log am b n=nmlog a b;log a b=1log b a2.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数3.对数函数的变化特征在同一平面直角坐标系中,分别作出对数函数y =log a x,y =log b x,y =log c x,y =log d x(a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线y =1,分别与四个图象自左向右交于点A(c,1),B(d,1),C(a,1),D(b,1),得到底数的大小关系是:b >a >1>d >c >0.根据直线x =1右侧的图象,单调性相同时也可以利用口诀:“底大图低”来记忆.4.反函数指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)log a (MN)=log a M +log a N.( ) (2)log a x ·log a y =log a (x +y).( )(3)函数y =log 2x 及y =log 133x 都是对数函数.( )(4)对数函数y =log a x(a>0且a≠1)在(0,+∞)上是增函数.( ) (5)函数y =ln 1+x1-x与y =ln(1+x)-ln(1-x)的定义域相同.( )(6)对数函数y =log a x(a>0且a≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只经过第一、四象限.( )答案:(1)× (2)× (3)× (4)× (5)× (6)√ [教材衍化]1.(必修1P68练习T4改编)(log 29)·(log 34)=________. 解析:(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.答案:42.(必修1P73探究改编)若函数y =f(x)是函数y =2x的反函数,则f(2)=________. 解析:由题意知f(x)=log 2x, 所以f(2)=log 22=1. 答案:13.(必修1P71表格改编)函数y =log a (4-x)+1(a >0,且a≠1)的图象恒过点________. 解析:当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图象恒过点(3,1). 答案:(3,1)4.(必修1P82A 组T6改编)已知a =2-13,b =log 213,c =log 1213,则a,b,c 的大小关系为________.解析:因为0<a<1,b<0,c =log 1213=log 23>1.所以c>a>b.答案:c>a>b [易错纠偏](1)对数函数图象的特征不熟致误; (2)忽视对底数的讨论致误; (3)忽视对数函数的定义域致误.1.已知a>0,a ≠1,函数y =a x与y =log a (-x)的图象可能是________.(填序号)解析:函数y =log a (-x)的图象与y =log a x 的图象关于y 轴对称,符合条件的只有②. 答案:②2.函数y =log a x(a>0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a>1时,有log a 4-log a 2=1,解得a =2;②当0<a<1时,有log a 2-log a 4=1,解得a =12.所以a =2或12.答案:2或123.函数y =log 23(2x -1)的定义域是________. 解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1. 答案:⎝ ⎛⎦⎥⎤12,1对数式的化简与求值(1)(2020·杭州市七校联考)计算:log 212=______,2log 23+log 43=________.(2)若a =log 43,则2a+2-a=________. 【解析】 (1)log 212=log 22-12=-12;2log 23+log 43=2log 23+12log 23=2log 2(3·312)=3 3.(2)因为a =log 43=log 223=12log 23=log 23,所以2a+2-a=2log 23+2-log 2 3 =3+2log 233=3+33=433. 【答案】 (1)-12 3 3 (2)433对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数的运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.计算:2log 510+log 514=________,2log 43=________.解析:2log 510+log 514=log 5⎝ ⎛⎭⎪⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log 23= 3.答案:232.2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1=________. 解析:原式=2(lg 2)2+lg 2·lg 5+(1-lg 2)=2(lg 2)2+2lg 2·lg 5+1-lg 2 =2lg 2(lg 2+lg 5)+1-lg 2 =lg 2+1-lg 2=1. 答案:1对数函数的图象及应用(1)函数y =2log 4(1-x)的图象大致是( )(2)函数y =log a (x +4)-1(a>0,a ≠1)的图象恒过定点A,若点A 在直线x m +yn =-1上,且m>0,n>0,则3m +n 的最小值为( )A .13B .16C .11+6 2D .28【解析】 (1)函数y =2log 4(1-x)的定义域为(-∞,1),排除A,B ;又函数y =2log 4(1-x)在定义域内单调递减,排除D.(2)函数y =log a (x +4)-1(a>0,a ≠1)的图象恒过A(-3,-1), 由点A 在直线x m +y n =-1上可得,-3m +-1n =-1,即3m +1n=1,故3m +n =(3m +n)×⎝ ⎛⎭⎪⎫3m +1n =10+3⎝ ⎛⎭⎪⎫n m +m n ,因为m>0,n>0,所以n m +mn≥2n m ×m n =2(当且仅当n m =mn,即m =n 时取等号), 故3m +n =10+3⎝ ⎛⎭⎪⎫n m +m n ≥10+3×2=16,故选B.【答案】 (1)C (2)B利用对数函数的图象可求解的两类热点问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数y =log a (x +c)(a,c 为常数,其中a>0,a ≠1)的图象如图所示,则下列结论成立的是( )A .a>1,c>1B .a>1,0<c<1C .0<a<1,c>1D .0<a<1,0<c<1解析:选D.由对数函数的性质得0<a<1,因为函数y =log a (x +c)的图象在c>0时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0<c<1.2.已知函数f(x)=log a (x +b)(a>0且a≠1)的图象过两点(-1,0)和(0,1),则log b a =________. 解析:f(x)的图象过两点(-1,0)和(0,1).则f(-1)=log a (-1+b)=0且f(0)=log a (0+b)=1,所以⎩⎪⎨⎪⎧b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以logb a =1. 答案:1对数函数的性质及应用(高频考点)对数函数的性质是每年高考的必考内容之一,多以选择题或填空题的形式考查,难度低、中、高档都有.主要命题角度有:(1)求对数型函数的定义域; (2)比较对数值的大小; (3)解对数不等式;(4)与对数函数有关的复合函数问题. 角度一 求对数型函数的定义域函数f(x)=log 13(4x -5)的定义域为( )A.⎝ ⎛⎭⎪⎫54,+∞B.⎝⎛⎭⎪⎫-∞,54 C.⎝ ⎛⎦⎥⎤54,32 D.⎝ ⎛⎭⎪⎫54,32 【解析】 要使函数有意义,应满足⎩⎪⎨⎪⎧4x -5>0,log 13(4x -5)≥0,所以0<4x -5≤1,54<x ≤32.故函数f(x)的定义域为⎝ ⎛⎦⎥⎤54,32.【答案】 C角度二 比较对数值的大小(1)已知奇函数f(x)在R 上是增函数.若a =-f(log 215),b =f(log 24.1),c =f(20.8),则a,b,c 的大小关系为( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b(2)设a =log 3π,b =log 23,c =log 32,则( ) A .a>b>c B .a>c>b C .b>a>cD .b>c>a【解析】 (1)由f(x)是奇函数可得,a =-f ⎝ ⎛⎭⎪⎫log 215=f(log 25),因为log 25>log 24.1>log 24=2>20.8,且函数f(x)是增函数,所以c<b<a.(2)因为a =log 3π>log 33=1,b =log 23<log 22=1,所以a>b,又b c =12log 2312log 32=(log 23)2>1,c>0,所以b>c,故a>b>c.【答案】 (1)C (2)A 角度三 解对数不等式设函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,log 12(-x ),x<0.若f(a)>f(-a),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【解析】 由题意,得⎩⎪⎨⎪⎧a>0,log 2a>-log 2a或⎩⎪⎨⎪⎧a<0,log 12(-a )>log 2(-a ), 解得a>1或-1<a<0.故选C. 【答案】 C角度四 与对数函数有关的复合函数问题(1)(2020·金丽衢十二校联考)函数y =lg|x|( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递增D .是奇函数,在区间(0,+∞)上单调递减(2)若f(x)=lg(x 2-2ax +1+a)在区间(-∞,1]上递减,则a 的取值范围为________.【解析】 (1)因为lg|-x|=lg|x|,所以函数y =lg|x|为偶函数,又函数y =lg|x|在区间(0,+∞)上单调递增,由其图象关于y 轴对称可得,y =lg|x|在区间(-∞,0)上单调递减,故选B.(2)令函数g(x)=x 2-2ax +1+a =(x -a)2+1+a -a 2,对称轴为x =a,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a>0,a ≥1,解得1≤a<2,即a∈[1,2). 【答案】 (1)B (2)[1,2)(1)比较对数值的大小的方法①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. ③若底数与真数都不同,则常借助1,0等中间量进行比较. (2)解对数不等式的类型及方法①形如log a x>log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a>1与0<a<1两种情况讨论.②形如log a x>b 的不等式,需先将b 化为以a 为底的对数式的形式再进行求解. (3)解决与对数函数有关的函数的单调性问题的步骤1.(2020·宁波模拟)已知a>0,a ≠1,函数f(x)=log a |ax 2-x|在[3,4]上是增函数,则a 的取值范围是( )A.16≤a<14或a>1 B .a>1 C.18≤a<14 D.15≤a ≤14或a>1 解析:选A.令t =|ax 2-x|,y =log a t,当a>1时,外函数为递增函数,所以内函数t =|ax 2-x|,x ∈[3,4],要为递增函数,所以1a <3或4≤12a ,解得a>13或a≤18,所以a>1,当0<a<1时,外函数为递减函数,所以内函数t=|ax 2-x|,x ∈[3,4],要为递减函数,12a ≤3<4<1a ,解得16≤a<14,综上所述,16≤a<14或a>1,故选A.2.(2020·绍兴一中高三期中)已知f(x)=lg(2x -4),则方程f(x)=1的解是________,不等式f(x)<0的解集是________.解析:因为f(x)=1,所以lg(2x -4)=1,所以2x -4=10,所以x =7;因为f(x)<0,所以0<2x -4<1,所以2<x<2.5,所以不等式f(x)<0的解集是(2,2.5).答案:7 (2,2.5)思想方法系列1 分类讨论思想研究指数、对数函数的性质已知函数f(x)=log a (2x -a)(a>0且a≠1)在区间[12,23]上恒有f(x)>0,则实数a 的取值范围是( )A .(13,1)B .[13,1)C .(23,1)D .[23,1)【解析】 当0<a<1时,函数f(x)在区间[12,23]上是减函数,所以log a (43-a)>0,即0<43-a<1,解得13<a<43,故13<a<1;当a>1时,函数f(x)在区间[12,23]上是增函数,所以log a (1-a)>0,即1-a>1,解得a<0,此时无解.综上所述,实数a 的取值范围是(13,1).【答案】 A本题利用了分类讨论思想,在研究指数、对数函数的性质时,常对底数a 的值进行分类讨论,实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.已知函数y =b +ax2+2x(a,b 是常数且a>0,a ≠1)在区间[-32,0]上有y max =3,y min =52,试求a,b 的值.解:令t =x 2+2x =(x +1)2-1, 因为x∈[-32,0],所以t∈[-1,0].(1)若a>1,函数f(x)=a t在[-1,0]上为增函数, 所以a t∈[1a,1],则b +ax2+2x ∈[b +1a ,b +1],依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.(2)若0<a<1,函数f(x)=a t在[-1,0]上为减函数, 所以a t∈[1,1a],则b +ax2+2x ∈[b +1,b +1a ],依题意得⎩⎪⎨⎪⎧b +1a =3,b +1=52,解得⎩⎪⎨⎪⎧a =23,b =32.综上,a,b 的值为⎩⎪⎨⎪⎧a =2,b =2或⎩⎪⎨⎪⎧a =23,b =32.[基础题组练]1.实数lg 4+2lg 5的值为( ) A .2 B .5 C .10D .20解析:选A.lg 4+2lg 5=2lg 2+2lg 5=2(lg 2 +lg 5)=2lg (2×5)=2lg 10=2.故选A. 2.函数f(x)=ln (x +3)1-2x的定义域是( ) A .(-3,0) B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)解析:选A.因为f(x)=ln (x +3)1-2x,所以要使函数f(x)有意义,需使⎩⎪⎨⎪⎧x +3>0,1-2x >0,即-3<x<0. 3.(2020·浙江省名校新高考研究联盟联考)若log 83=p,log 35=q,则lg 5(用p 、q 表示)等于( ) A.3p +q5 B.1+3pqp +qC.3pq1+3pqD .p 2+q 2解析:选C.因为log 83=p,所以lg 3=3plg 2,又因为log 35=q,所以lg 5=qlg 3,所以lg 5=3pqlg2=3pq(1-lg 5),所以lg 5=3pq1+3pq,故选C.4.若函数f(x)=ax -1的图象经过点(4,2),则函数g(x)=log a1x +1的图象是( )解析:选D.由题意可知f(4)=2,即a 3=2,a =32. 所以g(x)=log 321x +1=-log 32(x +1).由于g(0)=0,且g(x)在定义域上是减函数,故排除A,B,C.5.(2020·瑞安四校联考)已知函数f(x)=log 12|x -1|,则下列结论正确的是( )A .f ⎝ ⎛⎭⎪⎫-12<f(0)<f(3)B .f(0)<f ⎝ ⎛⎭⎪⎫-12<f(3)C .f(3)<f ⎝ ⎛⎭⎪⎫-12<f(0)D .f(3)<f(0)<f ⎝ ⎛⎭⎪⎫-12 解析:选C.f ⎝ ⎛⎭⎪⎫-12=log 1232,因为-1=log 122<log 1232<log 121=0,所以-1<f ⎝ ⎛⎭⎪⎫-12<0;f(0)=log 121=0;f(3)=log 122=-1,所以C 正确.6.设函数f(x)=log 12(x 2+1)+83x 2+1,则不等式f(log 2x)+f(log 12x )≥2的解集为( )A .(0,2] B.⎣⎢⎡⎦⎥⎤12,2C .[2,+∞)D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 解析:选B.因为f(x)的定义域为R,f(-x)=log 12(x 2+1)+83x 2+1=f(x),所以f(x)为R 上的偶函数.易知其在区间[0,+∞)上单调递减,令t =log 2x,所以log 12x =-t,则不等式f(log 2x)+f(log 12x )≥2可化为f(t)+f(-t)≥2,即2f(t)≥2,所以f(t)≥1,又因为f(1)=log 122+83+1=1,f(x)在[0,+∞)上单调递减,在R 上为偶函数,所以-1≤t≤1,即log 2x∈[-1,1],所以x∈⎣⎢⎡⎦⎥⎤12,2,故选B. 7.(2020·瑞安市高三四校联考)若正数a,b 满足log 2a =log 5b =lg(a +b),则1a +1b 的值为________.解析:设log 2a =log 5b =lg(a +b)=k, 所以a =2k,b =5k,a +b =10k,所以ab =10k, 所以a +b =ab,则1a +1b =1.答案:18.设函数f(x)=|log a x|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n -m 的最小值为13,则实数a的值为________.解析:作出y =|log a x|(0<a <1)的大致图象如图,令|log a x|=1. 得x =a 或x =1a ,又1-a -⎝ ⎛⎭⎪⎫1a -1=1-a -1-a a =(1-a )(a -1)a <0, 故1-a <1a-1,所以n -m 的最小值为1-a =13,a =23.答案:239.(2020·台州模拟)已知函数f(x)=log a (8-ax)(a>0,a ≠1),若f(x)>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a>1时,f(x)=log a (8-ax)在[1,2]上是减函数, 由f(x)>1恒成立,则f(x)min =log a (8-2a)>1, 解得1<a<83,当0<a<1时,f(x)在x∈[1,2]上是增函数, 由f(x)>1恒成立,则f(x)min =log a (8-a)>1, 且8-2a<0,所以a>4,且a<1,故不存在.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83. 答案:⎝ ⎛⎭⎪⎫1,83 10.已知函数f(x)=⎩⎪⎨⎪⎧|log 3x|,0<x≤3,2-log 3x ,x >3,若a <b <c,且f(a)=f(b)=f(c),则a +b +c 的取值范围为________.解析:由f(a)=f(b)=f(c),可知-log 3a =log 3b =2-log 3c,则ab =1,bc =9,故a =1b ,c =9b ,则a +b+c =b +10b ,又b∈(1,3),位于函数f(b)=b +10b 的减区间上,所以193<a +b +c <11.答案:⎝⎛⎭⎪⎫193,1111.函数f(x)=log 12(a x-3)(a>0且a≠1).(1)若a =2,求函数f(x)在(2,+∞)上的值域;(2)若函数f(x)在(-∞,-2)上单调递增,求a 的取值范围.解:(1)令t =a x-3=2x-3,则它在(2,+∞)上是增函数,所以t>22-3=1, 由复合函数的单调性原则可知,f(x)=log 12(2x-3)在(2,+∞)上单调递减,所以f(x)<f(2)=log 12 1=0,即函数f(x)在(2,+∞)上的值域为(-∞,0).(2)因为函数f(x)在(-∞,-2)上单调递增,根据复合函数的单调性法则,所以t =a x-3在(-∞,-2)上单调递减且恒为正数,即⎩⎪⎨⎪⎧0<a<1,t min>a -2-3≥0,解得0<a≤33. [综合题组练]1.设x,y,z 为正数,且2x=3y=5z,则( ) A .2x<3y<5z B .5z<2x<3y C .3y<5z<2xD .3y<2x<5z解析:选D.设2x=3y=5z =k>1, 所以x =log 2k,y =log 3k,z =log 5k.因为2x -3y =2log 2k -3log 3k =2log k 2-3log k 3=2log k 3-3log k 2log k 2·log k 3=log k 32-log k 23log k 2·log k 3=log k98log k 2·log k 3>0,所以2x>3y ;因为3y -5z =3log 3k -5log 5k =3log k 3-5log k 5=3log k 5-5log k 3log k 3·log k 5=log k 53-log k 35log k 3·log k 5=log k 125243log k 3·log k 5<0,所以3y<5z ;因为2x -5z =2log 2k -5log 5k =2log k 2-5log k 5=2log k 5-5log k 2log k 2·log k 5=log k 52-log k 25log k 2·log k 5=log k2532log k 2·log k 5<0,所以5z>2x.所以5z>2x>3y,故选D.2.(2020·宁波高三模拟)两个函数的图象经过平移后能够重合,称这两个函数为“同形”函数,给出四个函数:f 1(x)=2log 2(x +1),f 2(x)=log 2(x +2),f 3(x)=log 2x 2,f 4(x)=log 2(2x),其中“同形”函数是( )A .f 2(x)与f 4(x)B .f 1(x)与f 3(x)C .f 1(x)与f 4(x)D .f 3(x)与f 4(x)解析:选A.f 3(x)=log 2x 2是偶函数,而其余函数无论怎样变换都不是偶函数,故其他函数图象经过平移后不可能与f 3(x)的图象重合,故排除选项B,D ;f 4(x)=log 2(2x)=1+log 2x,将f 2(x)=log 2(x +2)的图象沿着x 轴先向右平移两个单位得到y =log 2x 的图象,再沿着y 轴向上平移一个单位可得到f 4(x)=log 2(2x)=1+log 2x 的图象,根据“同形”函数的定义可知选A.3.(2020·浙江新高考冲刺卷)已知函数f(x)=ln(e 2x+1)-mx 为偶函数,其中e 为自然对数的底数,则m =________,若a 2+ab +4b 2≤m,则ab 的取值范围是________.解析:由题意,f(-x)=ln(e-2x+1)+mx =ln(e 2x +1)-mx,所以2mx =ln(e 2x +1)-ln(e-2x+1)=2x,所以m =1,因为a 2+ab +4b 2≤m,所以4|ab|+ab≤1,所以-13≤ab ≤15,故答案为1,⎣⎢⎡⎦⎥⎤-13,15.答案:1 ⎣⎢⎡⎦⎥⎤-13,154.(2020·宁波诺丁汉大学附中高三调研)已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)单调递减,若实数a 满足f(log 3a)+f(log 13a )≥2f(1),则a 的取值范围是________.解析:由于函数f(x)是定义在R 上的偶函数,则f(-x)=f(x),即有f(x)=f(|x|), 由实数a 满足f(log 3a)+f(log 13a )≥2f(1),则有f(log 3a)+f(-log 3a )≥2f(1), 即2f(log 3a )≥2f(1)即f(log 3a )≥f(1), 即有f(|log 3a|)≥f(1),由于f(x)在区间[0,+∞)上单调递减, 则|log 3a|≤1,即有-1≤log 3a ≤1, 解得13≤a ≤3.答案:⎣⎢⎡⎦⎥⎤13,3。