抛物线的几何性质第一课时
- 格式:ppt
- 大小:157.00 KB
- 文档页数:11
3.3.2 抛物线的简单几何性质 第1课时 抛物线的简单几何性质【课前预习】知识点一向右 向左 向上 向下 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R x 轴 y 轴 (0,0) e=1 诊断分析(1)× (2)√ (3)√ [解析] (1)抛物线不关于原点对称. (2)抛物线只有一个焦点、一条对称轴,抛物线没有对称中心. (3)抛物线的离心率均为1.知识点二1.(2)焦点弦 x 0+p2 p2-x 0 y 0+p2 p2-y 0 2.2p 诊断分析(1)√ (2)× (3)× [解析] (1)抛物线x 2=4y ,y 2=4x 的焦点到准线的距离都是2,是相同的,离心率都是1,也相同. (2)过抛物线的焦点且垂直于对称轴的弦长是2p. (3)抛物线y 2=2px (p>0)的焦半径长|PF|=x 1+p2. 【课中探究】探究点一例1 解:(1)由y 2=8x ,得p=4,变量x 的范围为x ≥0,∴该抛物线的顶点、焦点、准线、对称轴分别为(0,0),(2,0),直线x=-2,x 轴.(2)椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px ,其中p>0.∵抛物线的焦点到顶点的距离为3,即p2=3,∴p=6,∴抛物线的标准方程为y 2=12x 或y 2=-12x ,其准线方程为x=-3或x=3.变式 解:(1)设AB 与x 轴交于点E ,则由|AB|=2得E (√3,0),∴A (√3,1).设抛物线的方程为y 2=2px (p>0),则1=2p ·√3,∴2p=√33,∴抛物线的方程为y 2=√33x.(2)由(1)知2p=√33,∴p 2=√312,∴抛物线的焦点坐标为(√312,0),准线方程为x=-√312,离心率e=1.探究点二例2 解:(1)因为直线l 的倾斜角为60°,所以其斜率k=tan 60°=√3,又F (32,0),所以直线l 的方程为y=√3(x -32).由{y 2=6x ,y =√3(x -32),消去y 得x 2-5x+94=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5,而|AB|=|AF|+|BF|=x 1+p2+x 2+p2=x 1+x 2+p , 所以|AB|=5+3=8.(2)结合(1)知|AB|=|AF|+|BF|=x 1+p2+x 2+p2=x 1+x 2+p=x 1+x 2+3=9,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3,又准线方程是x=-32,所以点M 到准线的距离为3+32=92.变式 AD [解析] 设直线AB 的方程为x=ty+p 2,将x=ty+p2代入y 2=2px ,得y 2-2pty-p 2=0,则y 1+y 2=2pt ,y 1y 2=-p 2,x 1+x 2=t (y 1+y 1)+p=2pt 2+p ,x 1x 2=y 12y 224p2=p24.当直线AB 与x 轴垂直时,t=0,|AB|最小,故A 中说法正确;1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24=2p,故B 中说法错误;以弦AB 为直径的圆的圆心为(x 1+x 22,y 1+y 22),半径为12|AB|=12(x 1+x 2+p )=pt 2+p ,圆心到准线的距离d=12(x 1+x 2)+12p=pt 2+p=12|AB|,所以圆与准线x=-p 2相切,故C 中说法错误;y 1y 2=-p 2,故D 中说法正确.故选AD .探究点三例3 (1)A (2)2√2 [解析] (1)依据抛物线的对称性,以及等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=4x 上,可设另外两个顶点的坐标分别为(m 24,m),(m 24,-m)(m>0),∴tan 30°=√33=mm 24,解得m=4√3,故这个等边三角形的边长为2m=8√3.故选A .(2)因为抛物线C 的方程为y 2=4√2x ,所以2p=4√2,可得p2=√2,所以焦点为F (√2,0),准线方程为x=-√2,又P 为抛物线C 上一点,且|PF|=3√2,所以点P 到准线x=-√2的距离为3√2,所以x P =3√2-√2=2√2,所以y P 2=4√2×2√2=16,所以|y P |=4,所以S △POF =12×|OF|×|y P |=12×√2×4=2√2.变式 (1)B [解析] 根据题意,可得F (1,0),准线方程为x=-1.不妨设A (x ,y )(y>0),∵|AQ|=43,∴x+1=43,∴x=13,∴A (13,2√33),∴直线AF 的方程为2√33-0=x -113-1,即y=-√3(x-1).将x=-1代入y=-√3(x-1)中,可得y=2√3,∴B (-1,2√3).将y=2√3代入y 2=4x 中,可得x=3,∴P (3,2√3).△PBF 的周长C △PBF =|FB|+|PF|+|PB|,又|FB|=√22+(2√3)2=4,|PF|=|PB|=4,∴C △PBF =12.故选B .(2)解:设点A (x 0,y 0)(x 0>0),由题意可知点B (x 0,-y 0).∵抛物线的焦点F (p2,0)是△AOB 的垂心,∴AF ⊥OB ,∴k AF ·k OB =-1,即y 0x 0-p2·(-y 0x 0)=-1,∴y 02=x 0(x 0-p 2).又y 02=2px 0,∴x 0=2p+p 2=5p2, ∴直线AB 的方程为x=5p2.。
3.3.2抛物线的简单几何性质第1课时抛物线的简单几何性质【学习目标】能类比椭圆、双曲线几何性质的研究方法得到抛物线的范围、对称性、顶点、离心率等几何性质及其代数表达.◆知识点一抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形焦点坐标(p2,0)(-p2,0)(0,p2)(0,-p2)准线方程x=-p2x=p2y=-p2y=p2开口方向范围对称轴顶点坐标离心率【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线关于原点对称.( )(2)抛物线只有一个焦点、一条对称轴,无对称中心. ( )(3)抛物线的标准方程虽然各不相同,但是其离心率都相同.( )◆知识点二抛物线的焦半径、焦点弦与通径1.焦半径与焦点弦(1)抛物线上一点与焦点F连接的线段叫作焦半径.(2)过抛物线焦点的直线与抛物线相交,直线被抛物线所截得的线段称为抛物线的.设A(x0,y0)为抛物线上任意一点,则四种标准方程形式下的焦半径公式和焦点弦长|MN|(M(x1,y1),N(x2,y2))为标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)焦半径|AF|焦点弦长|MN|x1+x2+p-x1-x2+p y1+y2+p-y1-y2+p2.通径经过抛物线的焦点作垂直于对称轴的直线交抛物线于A,B两点,线段AB称为抛物线的通径,通径的长|AB|为.【诊断分析】判断正误.(请在括号中打“√”或“×”)(1)抛物线x2=4y,y2=4x的焦点到准线的距离是相同的,离心率也相同.( )(2)过抛物线的焦点且垂直于对称轴的弦长是p(p>0).( )(3)P(x1,y1)是抛物线y2=2px(p>0)上一点,F是抛物线的焦点,则|PF|=x1+p.( )◆探究点一抛物线的几何性质例1 (1)已知抛物线y2=8x,求出变量x的范围及该抛物线的顶点、焦点、准线、对称轴.(2)抛物线的顶点在原点,对称轴与椭圆9x2+4y2=36的短轴所在的直线重合,抛物线的焦点到顶点的距离为3,求抛物线的标准方程及抛物线的准线方程.变式已知等边三角形AOB的边长为2,O为坐标原点,AB⊥x轴,且点A在第一象限.(1)求以O为顶点且过点A,B的抛物线的方程;(2)求(1)中所求抛物线的焦点坐标、准线方程及离心率e.[素养小结]运用抛物线的几何性质要把握三个要点:(1)定性:由抛物线的标准方程看抛物线的开口方向,关键是看准二次项是x还是y,一次项的系数是正还是负.(2)定量:确定焦点到准线的距离p(p>0).(3)转化:抛物线上的一点到焦点的距离与到准线的距离相等,解题时适时转化可起到事半功倍的效果.◆探究点二焦点弦的性质问题例2已知直线l经过抛物线y2=6x的焦点F,且与抛物线交于A,B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.变式 (多选题)经过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,设A(x1,y1),B(x2,y2),则下列说法中正确的是( )A.当AB与x轴垂直时,|AB|最小B.1|AF|+1|BF|=p2C.以弦AB为直径的圆与直线x=-p2相离D.y1y2=-p2[素养小结]抛物线焦点弦长的求法:设过抛物线y2=2px(p>0)的焦点F的弦的端点为A(x1,y1),B(x2,y2),利用弦所在直线的方程(注意方程的设法)与抛物线方程联立、消元,由根与系数的关系求出x1+x2,由公式|AB|=x1+x2+p求出焦点弦长.◆探究点三抛物线几何性质的应用例3 (1)已知等边三角形的一个顶点位于原点,另外两个顶点在抛物线y2=4x上,则这个等边三角形的边长为( )A.8√3B.4√2C.4√3D.3√2(2)已知抛物线C:y2=4√2x的焦点为F,O为坐标原点,P为抛物线C上一点,且满足|PF|=3√2,则△POF的面积为.变式 (1)以抛物线C:y2=4x的焦点F为端点的射线与C及C的准线l分别交于A,B两点,过B且平行于x轴的直线交C于点P,过A且平行于x轴的直线交l于点Q,若|AQ|=43,则△PBF的周长为( )A.16B.12C.10D.6(2)已知A,B是抛物线y2=2px(p>0)上不同的两点,O为坐标原点,若|OA|=|OB|,且△AOB的垂心恰是此抛物线的焦点,求直线AB的方程.[素养小结]利用抛物线的性质可以解决的问题:(1)对称性:解决抛物线的内接三角形问题.(2)焦点、准线:解决与抛物线的定义有关的问题.(3)范围:解决与抛物线有关的最值问题.(4)焦点:解决焦点弦问题.。
2.3.2抛物线的简单几何性质(第一课时)(人教A版普通高中教科书数学选择性必修第一册第三章)一、教学目标1.掌握抛物线的简单几何性质:范围、对称性、顶点、离心率;2.能根据抛物线的几何性质对抛物线方程进行讨论;3.对通径、焦半径公式进行初步探索;4.进一步理解数形结合的思想方法在解析几何中的应用。
二、教学重难点1.教学重点:抛物线的简单几何性质、利用抛物线的几何性质求方程、对通径与焦半径公式的初步探究。
2.教学难点:利用数形结合法对通径、焦半径公式的探究。
三、教学过程1.利用数形结合的思想探究抛物线的简单几何性质1.1 知识回顾,温故知新【学生活动】学生完成学案内容,对抛物线的四种方程、图形、焦点坐标、准线方程进行复习。
【设计意图】之前学过椭圆、双曲线的几何性质,都是通过图形和方程两方面进行研究的,因此引导学生对抛物线的四种方程、图形、焦点坐标、准线方程进行复习,有利于对抛物线性质的进一步探索。
1.2 数形结合,类比探究问题1:类比用标准方程研究椭圆、双曲线几何性质的过程与方法,请思考:我们要研究抛物线的哪些几何性质?如何研究这些性质?【预设答案】前面我们学习了椭圆、双曲线的范围、对称性、顶点、离心率,在双曲线中还学习了渐近线。
我们是通过“数”和“形”两方面对椭圆、双曲线的几何性质进行探究的。
【设计意图】类比椭圆、双曲线几何性质的研究思路,为接下来用数形结合法研究抛物线的几何性质进行铺垫。
问题2:观察图形,你能发现抛物线横、纵坐标的取值范围吗?【预设答案】通过观察图形,学生很容易得到开口向右的抛物线中横、纵坐标的取值范围,即为问题3:从数的角度,也就是从抛物线方程的角度,怎样得到抛物线中横纵坐标的取值范围呢?【预设答案】在方程中,并无限制,因此。
而因为,且,所以。
【设计意图】让学生从“数”和“形”两个角度探索抛物线的范围。
问题4:观察图形,抛物线有几条对称轴?是否有对称中心?【预设答案】学生观察图形容易得到开口向右的抛物线关于轴对称,没有对称中心。
《抛物线的几何性质》学历案(第一课时)一、学习主题本学习主题为中职数学课程中的《抛物线的几何性质》。
抛物线作为基本几何图形之一,在数学领域有着广泛的应用,同时也是物理、工程等学科的重要研究内容。
通过本课的学习,学生将掌握抛物线的基本概念、几何性质和计算方法,为后续的数学学习及实际应用打下基础。
二、学习目标1. 理解抛物线的基本概念,掌握抛物线的标准方程。
2. 掌握抛物线的几何性质,包括对称性、顶点、焦点和准线等。
3. 学会利用抛物线的几何性质解决简单的数学问题。
4. 培养学生的空间想象能力和数学应用能力。
三、评价任务1. 评价学生对抛物线基本概念的掌握情况,能否正确理解并描述抛物线的基本特征。
2. 评价学生对抛物线标准方程的理解和应用能力,能否正确运用标准方程进行计算。
3. 评价学生对抛物线几何性质的理解和掌握情况,能否准确判断抛物线的对称性、顶点、焦点和准线等。
4. 评价学生解决实际问题的能力,能否将所学知识应用到实际问题中,并正确解答。
四、学习过程1. 导入新课:通过生活中的实例(如喷泉、投篮运动轨迹等)引入抛物线的概念,激发学生的兴趣。
2. 新课学习:讲解抛物线的基本概念、标准方程及其几何意义。
重点讲解抛物线的几何性质,包括对称性、顶点、焦点和准线等。
通过图示和实例分析,帮助学生深入理解。
3. 课堂互动:学生提问、讨论,教师解答并引导学生深入思考。
通过小组合作学习,互相交流学习心得和解题方法。
4. 巩固练习:布置相关练习题,包括选择题、填空题和计算题等,让学生运用所学知识进行练习。
5. 课堂总结:总结本节课的学习内容和学习重点,强调抛物线几何性质的理解和应用。
五、检测与作业1. 课堂检测:通过课堂小测验或作业纸等方式,检测学生对本节课知识点的掌握情况。
2. 课后作业:布置适量的课后作业,包括抛物线几何性质的运用和实际问题解决等,帮助学生巩固所学知识。
六、学后反思1. 学生反思:学生应反思自己在本次学习中的收获和不足,总结学习方法和解题技巧。
抛物线的几何性质教学目标:1.掌握抛物线的几何性质;能根据几何性质确定抛物线的标准方程;2.能利用工具作出抛物线的图形.提高综合解题能力教学重点及难点:1.抛物线的几何性质,抛物线定义,性质应用2.几何性质的应用,解题思路分析教学过程:第一课时抛物线的几何性质Ⅰ.复习回顾简要回顾抛物线定义及标准方程的四种形式(要求学生回答)练习:①已知抛物线y2=2px的焦点为F,准线为l,过焦点F的弦与抛物线交于A、B两点,过A、B分别作AP⊥l,BQ⊥l,M为PQ的中点,求证:MF⊥ABAN、BN,图8--24则Rt△APM≌Rt△AMF,∴|PN|=|FN|,同理,|QN|=|FN|,从而|QN|=|PN|,于是有,M 与N 重合,故MF ⊥AB 说明:F 点在以PQ 为直径的圆上,故∠PFQ 为直角。
②在抛物线y 2=2x 上方有一点M (3,310),P 在抛物线上运动,|PM|=d 1,P 到准线的距离为d 2,求当d 1 +d 2最小时,P 的坐标。
注:连MF ,与抛物线交点即为所求。
(2,2) 这一节,我们根据抛物线的标准方程)0(22>=p px y ①来研究它的几何性质Ⅱ.讲授新课1.范围当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支的区别,无渐近线). 2.对称性抛物线关于x 轴对称.我们把抛物线的对称轴叫抛物线的轴.3.顶点抛物线和它的轴的交点叫抛物线的顶点.即坐标原点.4.离心率抛物线上的点M与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e表示.由抛物线定义可知,e=1.说明:①对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程.②根据一次项的变量确定对称轴和焦点位置,根据一次项系数的符号确定开口方向。
根据焦参数p的值确定抛物线开口的大小,p越大,抛物线开口越开阔。
③抛物线没有渐近线.④垂直于对称轴的焦点弦叫抛物线的通径,其长为2p。