初中数学八年级下册:《 一次函数》单元试卷含答案
- 格式:docx
- 大小:129.68 KB
- 文档页数:6
八年级数学下册《一次函数》单元测试卷(附带答案)一.选择题(每题3分,共30分)1现有变量x和y的四个关系式:y=|x|,|y|=x,y2=2x,y=2x2,其中y是x的函数的有()A.1个B.2个C.3个D.4个2下列各图象不表示函数的是()A.B.C.D.3.下列函数中,是正比例函数的是()A.y=﹣x﹣1B.C.y=﹣x+2D.y=5x24.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD 的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.5.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距A地18千米的B地,他们离开A地的距离S(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据题目和图象所提供的信息,下列说法正确的是()A .乙比甲先到达B 地 B .乙在行驶过程中没有追上甲C .乙比甲早出发半小时D .甲的行驶速度比乙的行驶速度快6.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k≤3 C .0≤k<3 D .0<k<3 7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位 C .向上平移53个单位 D .向下平移53个单位 8.经过一、二、四象限的函数是 A.y=7 B.y=-2xC.y=7-2xD.y=-2x -79. 甲、乙两人准备在一段长为1200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m /s 和6 m /s ,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )的函数图象是( )10. 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出水,⑶4点到6点不进水也不出水.其中正确的是( ) A .⑴B .⑶C .⑴⑶D .⑴⑵⑶二、填空题(每题3分,共30分)11. 直线2(2)y x =-可以由直线2y x =向 平移 个单位得到的.12. 若一次函数2(1)12k y k =-+-的图象不经过第一象限,则k 的取值范围是 .13. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为__________.14.直线y =kx +b 的上有两点A (﹣1,0)、B (2,1),则此直线的解析式为 . 14.一次函数y =(m +2)x +1若y 随x 的增大而增大,则m 的取值范围是___________. 15.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的 不等式0ax b +<的解集是 .16.直线12+-=x y 关于y 轴对称的直线的解析式_________.17.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是 .18某地出租车计费方法如图,x (km )表示行驶里程,y (元)表示车费,请根据图象解答下列问题:(1)该出租车的起步价是 元;(2)当x >2时,写出y 与x 的关系式 .甲 乙 丙60506543201211020时间(小时)时间(小时)时间(小时)出水量(立方米)进水量(立方米)O O O(3)小强有一次乘出租车的里程为18km,则他应付出租车车费为.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.如图,在平面直角坐标系中,一次函数y=﹣2x+1的图象与x轴、y轴分别交于A、B两点.(1)求A、B两点的坐标.(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.20.如图,直线y=kx+b分别交x轴于点A(4,0),交y轴于点B(0,8).(1)求直线AB的函数表达式;(2)若点P(2,m),点Q(n,2)是直线AB上两点,求线段PQ的长.21.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?22.如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t 之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?23.在抗击“新冠肺炎”工作中,某医院研制了一种防治“新冠肺炎”的新药,在试验药效时发现,如果成人按规定的剂量服用,那么服药后2小时血液中含药量最高,达每毫升8微克(1微克毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,当成人按剂量服药后. (1)分别求出和时与之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时对治病是有效的,那么这个有效时间是多长?310-=y x 2x ≤2x >yx24.某品牌包子铺出售两种包子:肉馅包子每个卖3元,素馅包子每个卖1元,春节来临之际,为酬谢新老客户,同时也为扩大店面影响,老板制定了两种让利方案. 甲方案:买一个肉馅包子就免费送一个素馅包子; 乙方案:均按八折出售.小马家筹备年货,计划在该店买20个肉馅包子,x (x 20)个素馅包子.(1)分别写出小马家按两种方案购买所需的费用y(元)与x (个)之间的函数关系式; (2)若小马家预计买肉馅包子20个,素馅包子30个,设按甲方案买n 个肉馅包子,余下的按乙方案购买,如何购买才能使老板让利最多?并求出让利的金额。
一、选择题1.若正比例函数y=(m﹣2)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<22.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或5+1 B.3或5C.2或5D.3或5+13.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x-3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.52B.42C.32D.54.已知点P(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C .D .5.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t <<6.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x < 7.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-8.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 234······应交电费y (元)0.55 1.1 1.65 2.2 ······x y x y x ②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( ) A .4个B .3个C .2个D .1个9.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③10.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在11.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( ) ①,B C 两港之间的距离为60海里 ②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时 ④甲船到达C 港时,乙船还需要一个小时才到达C 港 ⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个12.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <-二、填空题13.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.14.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.15.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________.x-1 0 my 1-2-516.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.17.若点()14,y -,()22,y 都在直线2y x =-+上,则1y __________2y (填“>”或“=”或“<”)18.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k xy k x b =⎧⎨=+⎩的解是___________.19.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.20.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题21.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.22.为了满足广大人民群众的消费需求,某商场计划于今年“五一黄金周”期间,用160000元购进一批家电,这批家电的进价和售价如下表:(1)若全部资金用来购买彩电和洗衣机共100台,问商店可以购买彩电和洗衣机各多少台?(2)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价) 类别 彩电 冰箱 洗衣机 进价 2000 1600 1000 售价22001800110023.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值.(2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.24.已知在平面直角坐标系中,直线()11140y k x k =+≠与直线()2220y k x k =≠交于点()6,12C ,直线1y 分别与x 轴,y 轴交于点A 和点B .(1)求直线1y 与2y 的表达式及点A ,点B 的坐标;(2)x 轴上是否存在点P ,使ACP ∆的面积为30,若存在,求出点P 的坐标;若不存在,说明理由;(3)x 轴上是否存在点Q ,使OCQ ∆为等腰三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.25.某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当20x ≥时,求y 与x 之间的函数关系式; (3)种植时间为多少天时,总用水量达到3500米3. 26.已知直线36y x =+,求:(1)直线与x 轴,y 轴分别交于A B 、两点,求A 、B 两点坐标; (2)若点(),3C m 在图象上,求m 的值是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.D解析:D 【分析】利用一次函数与坐标轴的交点求出△AOB 的两条直角边,并运用勾股定理求出AB .根据已知可得∠CAD=∠OBA,分别从∠ACD=90°或∠ADC=90°时,即当△ACD≌△BOA时,AD =AB,或△ACD≌△BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB=2222OA OB+=+=.125∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD=AD+OA51;如图2所示,当△ACD≌△BAO时,∠ADC=∠AOB=90°,AD=OB=2,∴OD=OA+AD=1+2=3.综上所述,OD的长为351.故选:D.【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.3.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为52故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.4.C解析:C【分析】根据点P在第二象限,确定m<0,n>0,根据k,b的符号,确定图像的分布即可.【详解】∵点P(m,n)在第二象限,∴m<0,n>0,∴图像分布在第一,第三象限,第四象限, 故选C. 【点睛】本题考查了根据k ,b 的符号确定一次函数图像的分布,熟记k ,b 的符号与图像分布的关系是解题的关键.5.C解析:C 【分析】分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围. 【详解】解:当直线y=-x+b 过点M (3,4)时,得4=-3+b ,解得:b=7, 则7=1+t ,解得t=6.当直线y=-x+b 过点N (5,6)时,得6=-5+b ,解得:b=11, 则11=1+t ,解得t=10.故若点M ,N 位于l 的异侧,t 的取值范围是:6<t <10. 故选:C . 【点睛】本题考查了坐标平面内一次函数的图象与性质,得出直线l 经过点M 、点N 时的t 值是解题关键.6.A解析:A 【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可. 【详解】∵当x=-3时,kx+b=2, 且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-, 故选A. 【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.7.B解析:B 【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可. 【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.8.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 9.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A .【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.10.C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求.【详解】解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩, 解得:21a b =⎧⎨=-⎩, ∴2x ﹣1=11,解得:x =6.故选:C .【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.11.D解析:D【分析】根据甲、乙的图象去分析出甲、乙的行驶过程,从而求出速度,相遇时间等信息,去判断选项的正确性.【详解】解:通过乙的图象可以看出B 、C 两港之间距离是90海里,故①错误,甲从A 港出发,经过B 港,到达C 港,乙从B 港出发,到达C 港,甲比乙快,所以甲、乙只会相遇一次,故②正确,甲的速度:300.560÷=(海里/小时),乙的速度:90330÷=(海里/小时),甲比乙快30海里/小时,故③正确,A 港距离C 港3090120+=(海里),120602÷=(小时),即甲到C 港需要2小时,乙需要3小时,故④正确, ()3060301÷-=(小时),即甲追上乙需要1个小时,1个小时乙行驶了30海里,∴()1,30P ,故⑤正确,正确的有:②③④⑤.故选:D .【点睛】本题考查一次函数的应用,解题的关键是能够根据所给函数图象结合实际意义去进行分析得到想要的信息.12.B解析:B【分析】由当x1<x2时y1>y2,利用一次函数的性质可得出-(2m+3)<0,解之即可得出m的取值范围.【详解】解:∵当x1<x2时,y1>y2,∴-(2m+3)<0,解得:m>-32.故选:B.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.二、填空题13.【分析】由图像可知C点时正好甲车出现故障可求出甲车所走的路程为及时间为可求出甲车的速度进而可求出甲车返回A地时的速度D点为乙车遇到甲车并把货物搬运到乙车上可得乙车的行驶的总路程为和时间进而可求出乙车解析:()5.1,150【分析】由图像可知,C点时正好甲车出现故障,可求出甲车所走的路程为20012080km km km-=及时间为1.6h,可求出甲车的速度,进而可求出甲车返回A地时的速度,D点为乙车遇到甲车并把货物搬运到乙车上,可得乙车的行驶的总路程为120km 和时间3.6 1.60.5 1.5h--=,进而可求出乙车的速度,根据甲乙两车返回A地,B地的时间为甲车大于乙车,故乙车先到B地,点E是乙车先到达B地时甲乙两车相距的距离和对应的时间,进而可求出E点坐标.【详解】由题可知;点C(1.6,120)时正好甲车出现故障停车,∴甲车走的路程为:20012080km km km-=,所用时间为:1.6h,∴甲车的速度为:8050/1.6kmv km hh==,∴甲车返回A地的速度为:250/20/5km h km h ⨯=,∴甲车返回A 地的时间为:80420/km h km h=, 点D(3.6,0)为乙车遇到甲车并把货物搬运到乙车上,∴乙车走的路程为:20080120km km km -=,所用时间为:3.6 1.60.5 1.5h --=, ∴乙车的速度为:12080/1.5km v km h h==, 乙车返回B 地按原速度返回,∴乙车返回B 地时间为:1.5h ,可得乙车先返回到B 地点E 是乙车先到达B 地时甲乙两车相距的距离和对应的时间,设点E 的坐标为(,x y ),则 3.6 1.5 5.1x h =+=,甲乙两车各自返回1.5h 时相距的距离为:()20/80/ 1.5150y km h km h h km =+⨯=, 故答案为:(5.1,150 )【点睛】本题考查了一次函数的实际应用,读懂图像准确理解题意是解题关键14.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以 解析:②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c ->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∴c >0,d >0,∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y =ax +b 与y =cx +d 的图象的交点P 的横坐标为1,∴a +b =c +d ,故④正确;⑤∵一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),且d c->-1,c >0,∴c >d .故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.15.1【分析】根据给定点的坐标利用待定系数法可求出一次函数解析式再代入(m-5)求出m 的值即可【详解】解:设一次函数的解析式为y=kx+b (k≠0)将(-11)(0-2)代入y=kx+b 得:解得:∴一次解析:1【分析】根据给定点的坐标,利用待定系数法可求出一次函数解析式,再代入(m ,-5)求出m 的值即可.【详解】解:设一次函数的解析式为y=kx+b (k≠0),将(-1,1),(0,-2)代入y=kx+b ,得:12k b b -+⎧⎨-⎩==, 解得:32k b -⎧⎨-⎩==, ∴一次函数的解析式为y=-3x-2.当x=m 时,y=-3×m-2=-5,∴m=1.故答案为:1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据给定点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】根据图象上点的坐标性质得出点各点纵坐标进而利用三角形的面积得出继而得到规律据此解题即可【详解】解:是轴上的点且分别过点作轴的垂直交直线于点的横坐标为:纵坐标为:同理可得:的横坐标为:纵坐标为 解析:3820194040【分析】 根据图象上点的坐标性质得出点12321,,,,n n T T T T T --各点纵坐标,进而利用三角形的面积得出1231n S S S S -、、,继而得到规律1111n n S n n --⎛⎫=- ⎪⎝⎭,据此解题即可. 【详解】解:1231,,,,n P P P P +,是x 轴上的点且11223211n n OP PP P P P P n --=====, 分别过点12321,,,,,n n P P P P P --作x 轴的垂直交直线22y x =-+于点12321,,,,n n T T T T T --,1T ∴的横坐标为:1n ,纵坐标为:22n-, 111211212S n n n n ⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 同理可得:2T 的横坐标为:2n ,纵坐标为:42n-, 2121S n n ⎛⎫∴=- ⎪⎝⎭, 3T 的横坐标为:3n ,纵坐标为:62n-, 3131S n n ⎛⎫∴=- ⎪⎝⎭, 4T 的横坐标为:4n ,纵坐标为:82n-, 以此规律可得:1111n n S n n --⎛⎫=- ⎪⎝⎭, 12311111(1)22n n S S S S n n n n --⎡⎤∴++++=---=⎢⎥⎣⎦, ∴当4n =时,1234413248S S S S -+++==⨯, 当2020n =时,1232019202012019220204040S S S S -++++==⨯. 故答案为:38;20194040. 【点睛】本题考查一次函数图象上点的坐标特征,是重要考点,难度一般,掌握相关知识是解题关键.17.>【分析】由y =−x +2可知k =−1<0故y 随x 的增大而减小由−4<2可得y1y2的大小关系【详解】解:∵k =−1<0∴y 随x 的增大而减小∵−4<2∵y1>y2故答案为:>【点睛】本题主要考查一次函解析:>【分析】由y =−x +2可知k =−1<0,故y 随x 的增大而减小,由−4<2,可得y 1,y 2的大小关系.【详解】解:∵k =−1<0,∴y 随x 的增大而减小,∵−4<2,∵y 1>y 2故答案为:>【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.18.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题【详解】解:∵一次函数y1=k1x 与y=k2x+b 的图象的交点坐标为(12)∴二元一次方程组的解为故答案是:【点睛】本题考查了一次函解析:12x y =⎧⎨=⎩【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y 1=k 1x 与y=k 2x+b 的图象的交点坐标为(1,2),∴二元一次方程组12y k x y k x b =⎧⎨=+⎩的解为12x y =⎧⎨=⎩. 故答案是:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 19.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3. 故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.20.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A 坐标为(23)∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y =-计算即可.【详解】解:∵A 坐标为3),∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是-a ,3),∵恰好落在正比例函数y =-的图象上,∴)3a -=,解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.(1)y =2x+1;(2)(0,1)和(﹣12,0) 【分析】(1)由待定系数法可求得直线l 1的解析式;(2)令x=0可求得其与y 轴的交点坐标,令y=0,可求得其与x 轴的交点坐标.【详解】解:(1)∵直线l 1:y=kx+b 经过点A (12,2)和点B (2,5). ∴12225k b k b ⎧+=⎪⎨⎪+=⎩,解得21k b =⎧⎨=⎩, 即y=2x+1;(2)令x=0,则y=1;令y=0,则x=-12,∴直线l1与坐标轴的交点坐标为(0,1)和(-12,0).【点睛】本题考查待定系数法求一次函数的解析式,一次函数的上点的坐标特征,熟练掌握待定系数法是解题的关键.22.(1)商店可以购买彩电60台,洗衣机40台.(2)共有四种进货方案. a=37时商店获得的最大利润为17400元.【分析】(1)根据题意商店购买彩电x台,则购买洗衣机(100−x)台,列出一元一次方程,解方程即可得出答案;(2)根据题意设购买彩电和冰箱a台,则购买洗衣机为(100−2a)台,列出不等式,解不等式得共有四种进货方案,进而计算出当a=37时,获得的利润最大.【详解】解:(1)设商店购买彩电x台,则购买洗衣机(100−x)台.由题意,得2000x+1000(100−x)=160000,解得x=60,则洗衣机为:100−x=40(台),所以,商店可以购买彩电60台,洗衣机40台.(2)设购买彩电和冰箱各a台,则购买洗衣机为(100−2a)台.根据题意,得2000a+1600a+1000(100−2a)≤160000,∴整理得:4a≤150,a≤37.5.∵100−2a≤a,∴33 13≤a,解得33 13≤a≤37.5.因为a是整数,所以a=34、35、36、37.因此,共有四种进货方案.设商店销售完毕后获得的利润为w元,则w=(2200−2000)a+(1800−1600)a+(1100−1000)(100−2a),=200a+10000,∵200>0,∴w随a的增大而增大,∴当a=37时,w最大值=200×37+10000=17400,所以,商店获得的最大利润为17400元.【点睛】本题主要考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.23.(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】 (1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论.【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6),∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2,把点C 坐标代入上式,解得:k=1,故:k=1,b=2,(2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点,此时PA PC -最大,()2,0A ',PA PA '=,设A C '的解析式为y ax m =+,将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE ,则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点,则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小,而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值,把点B 、F 点坐标代入一次函数表达式:y=nx+b′,解得:BF 所在的直线表达式为:y=-4x+2,令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】 此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.24.(1)1443y x =+,22y x =,()30A -,,()0,4B ;(2)存在,()12,0P ,()28,0P -;(3)存在,1(65,0)Q ,2(65,0)Q -,3(12,0)Q ,4(15,0)Q【分析】(1)把()6,12C 代入直线表达式即求出1y 与2y 的表达式,从而可求得B 的坐标; (2)由三角形面积可得到AP 的长,要注意P 点可能在A 点的左侧或右侧;(3)分OC=OQ ,OC=CQ ,CQ=OQ 三种情况讨论即可.【详解】解:(1)把()6,12C 代入114y k x =+中,得11264k =+, 解,得143k =, 1443y x ∴=+. 把()6,12C 代入22y k x =,得2126k =,解,得22k =,22y x ∴=.把0y =代入1443y x =+,得3x =-, ()3,0A ∴-, 把0x =代入1443y x =+,得4y =, ()0,4B ∴.(2)存在. P 在x 轴上,30ACP S ∆=,点C 的纵坐标为12,12302ACP AP S ∆⋅∴==, 解得5AP =,点P 可以在A 点的左边,也可以在A 点的右边,()12,0P ∴,()28,0P -.(3)存在1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .若OC=OQ 时,OC =,∴OQ =∴1Q ,2(Q -,若OC=CQ 时,根据等腰三角形“三线合一”可知OQ=12,∴3(12,0)Q ,若OQ=CQ 时,()2222612OQ CQ OQ -+==,解得OQ=15,∴4(15,0)Q ,综上所述,1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .【点睛】本题考查了一次函数的解析式,等腰三角形的性质,注意分类讨论是解题的关键. 25.(1)500米3;(2)y=150x-2500;(3)40天【分析】(1)看x=20时,所对应的函数值是多少即可;(2)设出一次函数解析式,把(20,500),(30,2000)代入一次函数解析式,求得k ,b 的值即可;(3)把y=3500代入(2)得到的一次函数解析式,求得x 的值即可.【详解】解:(1)当x=20时,y=500,所以,第20天的总用水量为500米3;(2)设所求的函数解析式为y=kx+b ,把(20,500),(30,2000)代入一次函数解析式得:20500302000k b k b +⎧⎨+⎩==, 解得:1502500k b ⎧⎨-⎩==, ∴y=150x-2500;(3)当y=3500时,150x-2500=3500,解得,x=40答:时间为40天时,总用水量达到3500米3.【点睛】考查一次函数的应用;用待定系数法求得一次函数解析式是常用的解题方法. 26.(1)A (-2,0)、B (0,6);(2)-1【分析】(1)直线与x 轴交点的纵坐标等于零;直线与y 轴交点的横坐标等于零;(2)把该点代入已知函数解析式,列出关于m 的方程,通过解方程来求m 的值.【详解】解:(1)令y=0,则3x+6=0,解得:x=-2;令x=0,则y=6.所以,直线与x 轴,y 轴的交点坐标坐标分别是A (-2,0)、B (0,6);(2)把C (m ,3)代入y=3x+6,得到3m+6=3,即m=-1.【点睛】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(-b k,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .。
初中八年级数学下册第十九章一次函数单元复习试题(含答案)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.易证:CE CF =.(1)在如图中,若G 在AD 上,且45GCE ∠=︒.试猜想GE ,BE ,GD 三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图,在四边形ABCD 中90B D ==︒∠∠,BC CD =,点E ,点G 分别是AB 边,AD 边上的动点.若∠BCD =α,∠ECG =β,试探索当α和β满足什么关系时,如图中GE ,BE ,GD 三线段之间的关系仍然成立,并说明理由.②在平面直角坐标中,边长为1的正方形OABC 的两顶点A ,C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图3).设△MBN 的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?若不变,请直接写出结论.【答案】(1)GE BE GD =+,理由见解析;(2)①2αβ=时,GE BE GD =+;理由见解析;②在旋转正方形OABC 的过程中,P 值无变化.【解析】 【分析】(1)由SAS 证得△EBC ≌△FDC ,再由SAS 证得△ECG ≌△FCG ,可得到EG=FG ,即可得出结果;(2)①延长AD 到F 点,使DF=BE ,连接CF ,可证△EBC ≌△FDC ,结合条件可证得△ECG ≌△FCG ,故EG=GF ,可得出结论;②延长BA 交y 轴于E 点,可证得△OAE ≌△OCN ,进一步可证得△OME ≌△OMN ,可求得MN=AM+AE ,易求出最终结果【详解】(1)GE BE GD =+,理由如下:四边形ABCD 是正方形,F 是AD 延长线上一点,BC DC ∴=,90FDC EBC ∠=∠=︒, 在EBC ∆和FDC ∆中,DF BE FDC EBC BC DC =⎧⎪∠=∠⎨⎪=⎩,()EBC FDC SAS ∴∆≅∆,DCF BCE ∴∠=∠,CE CF =, 45GCE ∠=︒,904545BCE DCG ∴∠+∠=︒-︒=︒, 45DCG DCF ∴∠+∠=︒, ECG FCG ∴∠=∠,在ECG ∆和FCG ∆中,CG CG ECG FCG CE CF =⎧⎪∠=∠⎨⎪=⎩,()ECG FCG SAS ∴∆≅∆,EG GF ∴=,GE BE GD ∴=+;(2)①2αβ=时,GE BE GD =+;理由如下:延长AD 到F 点,使DF BE =,连接CF ,如图(2)所示:90B D ∠=∠=︒, 90B FDC ∴∠=∠=︒,在EBC ∆和FDC ∆中,DF BE FDC EBC BC DC =⎧⎪∠=∠⎨⎪=⎩,()EBC FDC SAS ∴∆≅∆,DCF BCE ∴∠=∠,CE CF =, BCE DCG GCF ∴∠+∠=∠, 当2αβ=时,ECG FCG ∠=∠,在ECG ∆和FCG ∆中,CG CG ECG FCG CE CF =⎧⎪∠=∠⎨⎪=⎩,()ECG FCG SAS ∴∆≅∆,EG GF ∴=, GE BE GD ∴=+;②在旋转正方形OABC 的过程中,P 值无变化; 延长BA 交y 轴于E 点,如图(3)所示:则45AOE AOM ∠=︒-∠,904545CON AOM AOM ∠=︒-︒-∠=︒-∠,AOE CON ∴∠=∠.又OA OC =,1809090OAE OCN ∠=︒-︒=︒=∠.在OAE ∆和OCN ∆中,90AOE CON OA OC EAO NCO ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()OAE OCN ASA ∴∆≅∆.OE ON ∴=,AE CN =.在OME ∆和OMN ∆中,45OE ON EOM NOM OM OM =⎧⎪∠=∠=︒⎨⎪=⎩.()OME OMN SAS ∴∆≅∆.MN ME AM AE ∴==+. MN AM CN ∴=+,2P MN BN BM AM CN BN BM AB BC ∴=++=+++=+=.∴在旋转正方形OABC 的过程中,P 值无变化.【点睛】本题是四边形综合题,考查了一次函数的综合运用、正方形的性质、全等三角形的判定与性质、三角形的周长等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.102.某村为美化村道,计划在村道两旁种植A、B两种树木,需要购买这两种树苗共800棵.A、B两种树苗的相关信息如下表:设购买A种树苗x棵,绿化村道的总费用为y元,根据上表提供的信息,解答下列问题:(1)求出y与x之间的函数关系式;(2)若这批树苗种植后成活了670棵,则绿化村道的总费用需要多少元?【答案】(1)50136000=-+;(2)绿化村道的总费用需要111000元.y x【解析】【分析】(1)根据“费用=树苗棵数⨯(单价+植树费)”求出树苗A、B的费用,两者求和即可得;(2)根据表中的成活率列出方程,求出树苗A的棵数,再代入(1)的结果即可.【详解】800x-棵(1)由题意得:购买A种树苗x棵,则购买B种树苗()∴(10020)(15020)(800)y x x =+++⨯- 整理得:50136000y x =-+故y 与x 之间的函数关系式为50136000y x =-+; (2)由题意得:()80%90%800670x x +-= 解得:500x =当500x =时,50500136000111000y =-⨯+= 答:绿化村道的总费用需要111000元. 【点睛】本题考查了一次函数的实际应用、一元一次方程的实际应用,依据题意正确建立方程是解题关键.错因分析:(1)不能根据题意找出y 与x 之间的关系;(2)不能找到正确的自变量x 的值代入关系式中求y 的值.103.已知ABC 的面积是12cm 2,BC=6cm ,在BC 边上有一动点P ,连接AP ,设BP 为xcm ,ABP △的面积为ycm 2,(1)求y 与x 之间的关系式(2)用表格表示当x 从1到6时(每次增加1),y 的对应值. (3)当x=0时,y 的值等于多少?此时说明了什么?【答案】(1)y=2x ;(2)见解析;(3)y=0,说明ABP △不存在 【解析】 【分析】(1)根据三角形的面积和BC的长,可以求出BC边上的高,进而利用三角形的面积公式可以表示出y与x之间的关系式;(2)分别求出当x=1,2,3,4,5,6时,对应的y值,用表格表示即可;(3)当x=0时,即BP=0,此时点P与点B重合.【详解】解:(1)△ABC的面积是12cm2,BC=6cm,则在BC边上的高为2×12÷6=4cm,∴△ABP的面积为:y=12x×4=2x,(0≤x≤6);(2)用表格表示:(3)当x=0时,y=0,此时点P与点B重合,说明△ABP不存在.【点睛】本题考查了一次函数的意义和求一次函数的关系式,正确理解题意是解决问题的关键.104.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx 在第一象限内的图像交于点P,且△POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.【答案】(1) k=2(2)y=2x-4【解析】试题分析:(1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;(2)先求出PM,再求出BN然后用锐角三角函数求出OB,即可.试题解析:(1)∵点A(m,2)在直线y=2x上,∴2=2m,∴m=1,∴点A(1,2),∵点A(1,2)在反比例函数y=kx 上,∴k=2,(2)如图,设平移后的直线与y 轴相交于B ,过点P 作PM ⊥OA ,BN ⊥OA ,AC ⊥y 轴由(1)知,A(1,2),∴∠BON=sin ∠AOC=AC OA =∵S △POA=12OA ×PM=12,∴PM=5, ∵PM ⊥OA ,BN ⊥OA , ∴PM ∥BN , ∵PB ∥OA ,∴四边形BPMN 是平行四边形,∴,∵sin ∠BON=55BNOB OB ==, ∴OB=4, ∵PB ∥AO , ∴B(0,−4),∴平移后的直线PB 的函数解析式y=2x −4.点睛:此题是反比例函数和一次函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,平行四边形的判定和性质,坐标与图形变化-平移,锐角三角函数的意义,解本题的关键是作出辅助线.105.如图,在平面直角坐标系中,过点()6,0B 的直线AB 与直线OA 相交于点()4,2A .(1)直线OA 的关系式为 ;直线AB 的关系式为 (直接写出答案,不必写过程).(2)求OAC ∆的面积.(3)若有一动点M 沿路线O A C →→运动,当3OCM S ∆=时,求点M 坐标.【答案】(1)y =12x ,y =﹣x +6;(2)12;(3)M 的坐标是:(1,12)或(1,5)【解析】 【分析】(1)根据待定系数法,即可得到答案;(2)先求出点C 的坐标,再根据三角形的面积公式,即可求解; (3)设M 的横坐标为m ,根据S △OCM =3,得m =1,再分2种情况讨论:①当点M 在y =12x 上时,②当点M 在y =12x 上时,分别求出答案即可. 【详解】 (1)设直线OA 的关系式为:y =k x ,把()4,2A 代入y =k x ,得:2=4k ,解得:k=12, ∴直线OA 的关系式为y =12x ; 设直线AB 的关系式是:y=kx+b ,把()4,2A ,()6,0B 代入y=kx+b ,得:4260k b k b +=⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, ∴直线AB 的关系式是:y =﹣x +6;(2)在y =﹣x +6中,令x =0,解得:y =6,∴C (0,6),∴S △OAC =12×6×4=12; (3)设M 的横坐标为m ,∵S △OCM =3,∴S △OCM =12×6m =3, ∴m =1,当点M 在y =12x 上时,把x =1代入y =12x ,得:y =12×1=12,则M 的坐标是(1,12); 当点M 在y =﹣x +6上时,把x =1代入y =﹣x +6,得:y =5,则M 的坐标是(1,5).综上所述:M 的坐标是:(1,12)或(1,5).【点睛】本题主要考查一次函数与几何图形的综合,掌握三角形的面积公式和一次函数的性质,是解题的关键,体现了数形结合的思想方法.106.已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.(1)探究m取不同值时,二次函数y的图象与x轴的交点的个数情况;(2)设二次函数的图象与x轴的交点为A(x1,0),B(x2,0),且x12+x22=5,与y轴的交点为C,它的顶点为M,求直线CM的表达式.【答案】答案见解析【解析】整体分析:(1)二次函数y的图象与x轴的交点的个数即是一元二次方程x2-(2m-1)x +m2+3m+4=0的根的个数;(2)由x12+x22=5,结合根与系数的关系,确定m的值,得到点C,M的坐标,即可求出直线CM的解析式.解:(1)根据题意得,[-(2m-1)]2-4×1×(m2+3m+4)=-16m-15,当-16m-15>0,即m<15-,有两个交点;16当-16m-15=0,即m=15-,有一个交点;16当-16m-15<0,即m>15-,无交点.16(2)由根与系数的关系得x1+x2=2m-1,x1x2=m2+3m+4.因为x12+x22=(x1+x2)2-2x1x2,所以(2m-1)2-2(m2+3m+4)=5,解得m1=6,m2=-1,因为m≤15-,所以m2=-1,16当m=-1时,二次函数的解析式为y=x 2+3x+2,则二次函数的解析式为y=x 2+3x+2的图象与y 轴的交点C (0,2),顶点M (32-,-14). 设一次函数的解析式为y=kx+2,则32-=-124k +,解得x=32, 所以y =32x +2. 所以直线CM 的表达式为y =32x +2. 107.(2012秋•沙坪坝区校级期末)如图,一次函数y=kx+b 的图象经过点A (4,0),直线y=﹣3x+3与x 轴交于点B ,与y 轴交于点D ,且两直线交于点C (2,m ).(1)求m 的值及一次函数的解析式;(2)求△ACD 的面积.【答案】(1)m=﹣3×2+3=﹣3;y=x ﹣6;(2)9.【解析】试题分析:(1)先把点C (2,m )代入y=﹣3x+3得求得m=﹣3,然后利用待定系数法确定一次函数的解析式;(2)先确定直线y=﹣3x+3与x 轴的交点坐标,然后利用S △ACD =S △ABD +S △ABC 进行计算.解:(1)把C(2,m)代入y=﹣3x+3得m=﹣3×2+3=﹣3;把A(4,0),C(2,﹣3)代入y=kx+b得,解得.所以一次函数的解析式为y=x﹣6;(2)对于y=﹣3x+3,令y=0,则x=1,则B(1,0);令x=0,则y=3,则D(0,3).则AB=4﹣1=3,则S△ACD=S△ABD+S△ABC=×3×3+×3×3=9.考点:两条直线相交或平行问题.108.在三个完全相同的小球上分别写上-2,-1,2三个数字,然后装入一个不透明的布袋内搅匀,从布袋中取出一个球,记下小球上的数字为m,放回袋中再搅匀,然后再从袋中取出一个小球,记下小球上的数字为n,组成一对数m n.(,)(1)请用列表或画树状图的方法,表示出数对(,)m n的所有可能的结果;=+不经过第一象限的概率.(2)求直线y mx n.【答案】(1)见解析;(2)49【解析】【分析】(1)根据题意画出树状图,表示出数对(m,n)的所有可能的结果即可;(2)由树状图求得所有等可能的结果与所得到的直线y=mx+n不经过第一象限的情况,再利用概率公式即可求解.【详解】解:(1)树状图如下:∴数对(),m n 的所有可能为()2,2--,()2,1--,()2,2-,()1,2--,()1,1--,()1,2-,()2,2-,()2,1-,()2,2;(2)直线y mx n =+不经过第一象限的概率为49P =. 故答案为:(1)见解析;(2)49 . 【点睛】本题考查用列表法或树状图法求概率,一次函数的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.109.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)求甲种商品与乙种商品的销售单价;(2)设销售甲种商品a 万件.① 甲、乙两种商品的销售总收入为 万元(用含a 的代数式表示);① 若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】(1)甲、乙两种商品的销售单价分别为900元,600元;(2)∴ (300a +4800);②至少销售甲种商品2万件.【解析】【分析】(1)设甲种商品的销售单价为x元,乙种商品的销售单价为y元.,根据题意列出二元一次方程组即可求解;(2)①销售总收入的定义即可列出代数式;∴根据题意列出不等式即可求解.【详解】(1)设甲种商品的销售单价为x元,乙种商品的销售单价为y元.根据题意,得23, 321500 x yx y=⎧⎨-=⎩解这个方程组,得900,600. xy=⎧⎨=⎩答:甲、乙两种商品的销售单价分别为900元,600元.(2)①销售甲种商品a万件,则销售乙种商品为(8-a)万件∴甲、乙两种商品的销售总收入为900a+(8-a)×600=300a+4800,故甲、乙两种商品的销售总收入为(300a+4800)万元故答案为:(300a+4800);∴根据题意,得300a+4800≥5400,解得a≥2.答:至少销售甲种商品2万件.【点睛】此题主要考查二元一次方程与不等式的应用,解题的关键是根据题意找到数量关系列式求解.110.综合与探究:如图,直线y=yy−2与y轴,y轴分别交于y,y两点,其中yy=1.(1)求y的值;(2)若点y(y,y)是直线y=yy−2上的一个动点,当点y仅在第一象限内运动时,试写出yyyy的面积y与y的函数关系式;(3)探索:①在(2)条件下,当点y运动到什么位置时,yyyy的面积是1;②在①成立的情况下,在y轴上是否存在一点y,使△yyyy是等腰三角形?若存在,请写出满足条件的所有y点的坐标;若不存在,请说明理由.【答案】(1)k=2;(2)S=x-1;(3)①当y的坐标为(2,2)时,yyyy的面积是1;②存在,点y坐标P1(-2√2,0),P2(2√2,0),P3(4,0),P4(2,0)..【解析】【分析】(1)先确定出点B的坐标,代入函数解析式中即可求出k;(2)借助(1)得出的函数关系式,利用三角形的面积公式即可求出函数关系式;(3)①利用三角形的面积求出求出点A坐标;【详解】(1)∵OB=1,∴B(1,0),∵点B在直线y=kx-2上,∴k=2(2)由(1)知,k=2,∴直线BC解析式为y=2x-2,∵点A(x,y)是第一象限内的直线y=2x-2上的一个动点,∴y=2x-2(x>1),∴S=S△AOB=12×OB×|y A|=12×1×|2x-2|=x-1,(3)①如图,由(2)知,S=x-1,∵△AOB的面积是1;∴x=2,∴A(2,2),∴OA=2√2,②设点P(m,0),∵A(2,2),∴OP=|m|,AP=√(2−y)2+4,①当OA=OP时,∴m=±2√2,∴P1(-2√2,0),P2(2√2,0),②当OA=AP时,∴2√2=√(2−y)24,∴m=0或m=4,∴P3(4,0),③当OP=AP时,∴|m|=√(2−y)2+4,∴m=2,∴P4(2,0),即:满足条件的所有P点的坐标为P1(-2√2,0),P2(2√2,0),P3(4,0),P4(2,0).【点睛】此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,等腰三角形的性质,解本题的关键是求出点A的坐标.。
初中八年级数学下册第十九章一次函数单元检测试卷习题九(含答案)(109)初中八年级数学下册第十九章一次函数单元检测试卷习题九(含答案)如图所示,是古代一个将军在一次护城战役中,进行的一个布阵图,在一座城池的四周设了八个哨所,每个哨所都要保证有人,其中四个角上哨所的人数相同,城池四周每条边上三个哨所的总人数都为11人.(1)当八个哨所的总人数为32人时,四个角上每个哨所的人数为多少?(2)在保证城池四周每条边上三个哨所的总人数都为11人的条件下,四个角上每个哨所的人数为a,请用含a的代数式表示八个哨所的总人数,并求出八个哨所所需的总人数的最大值与最小值,以及对应a的值.【答案】(1)当八个哨所的总人数为32人时,四个角上每个哨所的人数为3.(2)y=44-4a;当a=1时,y取最大值,最大值为40;当a=5时,y取最小值,最小值为24.【解析】【分析】(1)设四个角上每个哨所的人数为x,则城池四周每条边上中间的每个哨所的人数为(11﹣2x),根据八个哨所的总人数为32人,即可得出关于x的一元一次方程,解之即可得出结论;(2)设八个哨所需要的总人数为y,将八个哨所人数相加即可得出y关于a的一次函数关系式,利用一次函数的性质即可解决最值问题.【详解】解:(1)设四个角上每个哨所的人数为x,则城池四周每条边上中间的每个哨所的人数为(11﹣2x),根据题意得:4x+4(11﹣2x)=32,解得:x=3.答:当八个哨所的总人数为32人时,四个角上每个哨所的人数为3.(2)设八个哨所需要的总人数为y,根据题意得:y=4a+4(11﹣2a)=44﹣4a.∵11121 aa≥-≥,∴1≤a≤5.∵k=﹣4,∴当a=1时,y取最大值,最大值为40;当a=5时,y取最小值,最小值为24.【点睛】本题考查了一元一次方程的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,找出y关于a的函数关系式.102.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<k的解集.【答案】(1)y=2x;(2)P的坐标为(﹣2,0)或(8,0);(3)0<x<1或x >2.【解析】【分析】(1)利用点A在y=﹣x+3上求a,进而代入反比例函数y=kx(k≠0)求k即可;(2)设P(x,0),求得C点的坐标,则PC=|3﹣x|,然后根据三角形面积公式列出方程,解方程即可;(3)解析式联立求得B点的坐标,即可根据图象求得不等式﹣x+3<kx的解集.【详解】解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=kx,∴k=1×2=2;∴反比例函数的表达式为y=2 x(2)∴一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,∴S△APC=1|3﹣x|×2=5,∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);(3)解32y xyx=-+=,解得:12xy==或21y==,∴B(2,1),由图象可知:不等式﹣x+3<kx的解集是:0<x<1或x>2.【点睛】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.103.某通讯公司推出①、②两种收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(2)何时两种收费方式费用相等?【答案】(1)10.130y x ;20.2y x =;(2)300分钟.【解析】【分析】(1)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(2)根据(1)的结论列方程解答即可.【详解】解:(1)设1130y k x =+,22y k x =,由题意得:将(500,80),(500,100)分别代入即可:15003080k +=,10.1k , 2500100k =,20.2k故所求的解析式为10.130y x ;20.2y x =;(2)当通讯时间相同时12y y =,得0.20.130x x =+,解得300x =.答:通话300分钟时两种收费方式费用相等.【点睛】本题考查的是用一次函数解决实际问题,熟悉相关性质是解题的关键. 104.下表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口数那么随着x的变化,y的变化趋势是怎样的?【答案】(1)两个变量;(2)用x表示年份,用y表示世界人口数,那么随着x的变化,y的变化趋势是增大.【解析】【分析】(1)年份和人口数都在变化,据此得到;(2)根据人口的变化写出变化趋势即可;【详解】解:(1)表中有两个变量,分别是年份和人口数;(2)用x表示年份,用y表示世界人口总数,那么随着x的变化,y的变化趋势是增大.【点睛】本题考查了变量与常量的知识,解题的关键是能够了解常量与变量的定义,难度不大.105.规定:把一次函数y=kx+b的一次项系数和常数项互换得y=bx+k,我们称y=kx+b和y=bx+k(其中k·b≠0,且|k|≠|b|))为互助一次函数,例如:y=-2x+3和y=3x-2就是互助一次函数.如图1所示,一次函数y =kx+b和它的互助一次函数的图象l1,l2交于点P,l1,l2与x轴、y轴分别交于点A,B和点C,D.(1)如图1所示,当k=-1,b=5时,直接写出点P的坐标是_________.(2)如图2所示,已知点M(-1,1.5),N(-2,0).试探究随着k,b值的变化,MP+NP的值是否发生变化,若不变,求出MP+NP的值;若变化,求出使MP+NP取最小值时点P的坐标.【答案】(1)(1,4);(2)使MP NP+取最小值时的点P坐标为(1,0.9)【解析】【分析】(1)根据互助一次函数的定义,由k=-1,b=5分别写出两个函数解析式,联立,解二元一次方程组,即可求出交点P的坐标;(2)联立y kx by bx k=+=+,解得x=1,故点P在直线1x=上运动,MP NP+的值随之发生变化;作N点关于1x=的对称点N',根据两点之间线段最短,可知连接对称点和M的线段就是MP+NP的最小值,用待定系数法求出直线MN'的函数解析式,进而求出P点坐标.【详解】(1)联立551y x y x =-+??=-?解得:14x y =??=?即P 点坐标为(1,4),故答案为:(1,4);(2)由y kx b y bx k =+??=+?解得1x y k b =??=+?,即(1,)P k b +,∴随着,k b 值的变化,点P 在直线1x =上运动,MP NP +的值随之发生变化,如图所示,作点(2,0)N -关于直线1x =的对称点(4,0)N ',连接MN '交直线1x =于点P ,则此时MP NP +取得最小值.设直线MN '的函数解析式为y cx d =+,分别将M (-1,1.5)和(4,0)N '代入解析式得:1.504c d c d =-+??=+?解得:0.31.2c d =-??=?∴直线MN '的函数解析式为:0.3 1.2y x =-+,令1x =,则0.9y =∴(1,0.9)P.+取最小值时的点P坐标为(1,0.9).∴使MP NP【点睛】本题考察一次函数综合及运用轴对称求最短路径、待定系数法求函数解析式,理解互助一次函数定义是解题关键.106.小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_____米/分,a=_____;并在图中画出y2与x 的函数图象(2)求小新路过小华家后,y1与x之间的函数关系式.(3)直接写出两人离小华家的距离相等时x的值.【答案】(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】【分析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y 2与x 的函数图象;(2)设所求函数关系式为y 1=kx+b ,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x 的值即可.【详解】(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,小新按此速度再走16分钟到达书店,则a=16×60=960米,小华到书店的时间为960÷40=24分钟,则y 2与x 的函数图象为:故小新的速度为60米/分,a=960;(2)当4≤x ≤20时,设所求函数关系式为y 1=kx+b (k ≠0),将点(4,0),(20,960)代入得:0496020k b k b =+??=+?,解得:60240k b =??=-?,∴y 1=60x ﹣240(4≤x ≤20时)(3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x ,①当两人分别在小华家两侧时,若两人到小华家距离相同,则240﹣6x=40x ,解得:x=2.4;②当小新经过小华家并追上小华时,两人到小华家距离相同,则60x ﹣240=40x ,解得:x=12;故两人离小华家的距离相等时,x 的值为2.4或12.107.已知点()32,-和点()1a a +,都在一次函数1y kx =-的图象上,求a 的值.【答案】a=-1【解析】【分析】根据待定系数法,将()32,-代入解析式求得k ,然后再将()1a a +,代入解析式中,求a 的值.【详解】解:将()32,-代入1y kx =-中,得:-3k-1=2 解得:k=-1∴一次函数y=-x-1将()1a a +,代入y=-x-1中,得:-a-1=a+1,解得:a=-1.【点睛】掌握待定系数法确定待定系数k 是本题的解题关键.108.已知直线l1:y1=2x+3与直线l2:y2=kx﹣1交于A点,A点横坐标为﹣1,且直线l1与x轴交于B点,与y轴交于D点,直线l2与y轴交于C 点.(1)求出A、B、C、D点坐标;(2)求出直线l2的解析式;(3)连结BC,求出S△ABC.【答案】(1)A(﹣1,1),B(﹣1.5,0),D(0,3),C (0,﹣1);(2)y2=﹣2x﹣1;(3)1.【解析】【分析】(1)根据直线及坐标的特点即可分别求解;(2)把A(﹣1,1)代入y2=kx﹣1即可求解;(3)利用S△ABC=S△ABE+S△BCE即可求解.【详解】解:(1)把x=﹣1代入y1=2x+3,得:y=1,即A(﹣1,1),对于y1=2x+3,令x=0,得到y=3;令y=0,得到x=﹣1.5,∴B(﹣1.5,0),D(0,3),把A(﹣1,1)代入y2=kx﹣1得:k=﹣2,即y2=﹣2x﹣1,令x=0,得到y=﹣1,即C(0,﹣1);(2)把A(﹣1,1)代入y2=kx﹣1得:k=﹣2,则y2=﹣2x﹣1;(3)连接BC,设直线l2与x轴交于点E,如图所示,对于y2=﹣2x﹣1,令y=0,得到x=﹣0.5,即OE=0.5,∴BE=OB﹣OE=1.5﹣0.5=1,则S△ABC=S△ABE+S△BCE=12×1×1+12×1×1=1.【点睛】本题要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长即可.109.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+ b的图象上,如图:(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?【答案】(1)y 与x 的函数关系式是1080y x =-+;(2)该设备的销售单价是4万元.【解析】【分析】(1)根据点的坐标,利用待定系数法即可求出月销售量y 与销售单价x 的函数关系式;(2)设该设备的销售单价为x 万元/台,则每台设备的利润为(2x -)万元,销售数量为(1080x -+)台,根据总利润=单台利润×销售数量,即可得出关于x 的一元二次方程,解之取其小于5的值即可得出结论.【详解】(1)∵点(3,50)和点(4,40)在函数y kx b =+的图象上,∴350440k b k b +=??+=?,解得1080k b =-??=?,∴y 与x 的函数关系式是1080y x =-+;(2)设该设备的销售单价为x 万元/台,依题意,得(2)(1080)80x x --+=,整理,得210240-+=,x x解得12==,(不合题意,舍去),x x46x=,∴4答:该设备的销售单价是4万元.【点睛】本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.110.在平面直角坐标系xoy中,抛物线2=++经过点A(0,-3),y x bx cB(4,5).(1)求此抛物线表达式及顶点M的坐标;(2)设点M关于y轴的对称点是N,此抛物线在A,B两点之间的部分=+与图象W恰一个记为图象W(包含A,B两点),经过点N的直线l:y mx n有公共点,结合图象,求m的取值范围.【答案】(1)抛物线的表达式是223=--,顶点坐标是(1,-4);y x x(2)1<m≤9或m=05【解析】【分析】(1)把两个已知点的坐标代入y=x2+bx+c得到关于b、c的方程组,然后解方程组即可确定抛物线解析式,再写出顶点坐标即可;(2)根据题意求出一次函数的解析式,当只有一个交点时,求m的取值范围;【详解】解: (1)将 A (0,-3),B (4,5)代入 2y x bx c =++ 中C=-316+4b+c=5∴c=-3 b=-2∴ 抛物线的表达式是223y x x =--顶点坐标是(1,-4)(2) 如图M 关于y 轴的对称点N(-1.-4) ,由图象知m=0符合条件又设NA 表达式y=kx+b将 A (0,-3),N (-1,-4)代入 y=kx+b 中得b=-3,-k+b=-4 得k=1 b=-3∴y=x-3 再设NB 表达式y=tx+s,得 4t+s=5-t+s=-4 得t=95 s=115 y=95x 115由图示知1<m≤9或m=05。
人教版八年级下册数学《一次函数》单元测试卷(一)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.函数y =的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<2.下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =(0x >) D.y(x <3.小红的爷爷饭后出去散步,从家中走20分钟到一个离家900米的街心花园,与朋友聊天10分钟后,用15分钟返回家里. 图中表示小红爷爷离家的时间与外出的距离之间的关系是 ( )A B C D4.甲、乙两个工程队完成某项工程,首先是甲队单独做10天,然后是乙队加入合作,完成剩下的全部工程,设工程总量是1,工程进度满足如图所示的函数图象,那么实际完成这项工程比甲单独完成这项工程的时间少( ) A.12天 B.13天 C.14天 D.15天分)分)分)分)5.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s (km )与行进时间t (小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是( )6.如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A.4B.4-C.14D.14-7.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是( )A B C D8.如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为S ,则S 关于t 的函数图象大致为( )9.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A .,B .,C .,D .,10.如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D→→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )二 、填空题(本大题共5小题,每小题3分,共15分)11.函数2113y x =+的自变量x 的取值范围是 .12.已知一次函数的图象过点与,则这个一次函数随的增大而 .13.函数1x y x-=的自变量x 的取值范围是 .14.已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. y kx b =+y 0k >0b >0k >0b <0k <0b >0k <0b <()0,3()2,1y x D C P BAO31 1 3 Sx A .O1 1 3 Sx O3 Sx 3O1 1 3 SxB .C .D .2BAOA .B .C .D .S t S tS tStOOOO15.已知直线123141535y x y x y x ==+=+,,的图象如图所示,若无论x 取何值,y 总取12y y ,,3y ,中的最小值,则y 的最大值为 .三 、解答题(本大题共7小题,共55分)16.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x .⑴写出y 关于x 的函数关系式; ⑵求x 的取值范围; ⑶求y 的取值范围.17.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.18.已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点. ②a 为何值时,一次函数的图象与y 轴交于点()0,9.19.右图是某汽车行驶的路程()S km 与时间()min t 的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前9分钟内的平均速度是 ; ⑵汽车在中途停了多长时间? ; ⑶当3016t ≤≤时,求S 与t 的函数关系式.20.判断下列式子中y是否是x的函数.⑴22(35)y x=-⑵y=⑶12y x=-⑷8y x=-21.等腰三角形的周长为30,写出它的底边长y与腰长x之间的函数关系,并写出自变量的取值范围?22.甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物X元.(X>300)试比较顾客到哪家超市购物更实惠?说明理由人教版八年级下册数学《一次函数》单元测试卷答案解析一、选择题1.A2.A3.D4.A5.C6.B;由题意得:16(4)y k x-=+,将y kx=带入等式,即16(4)kx k x-=+,所以解出4k=-7.B8.C9.B10.B;【解析】了解P点的运动路线,根据已知矩形的长和宽求出当点P运动到C点时的S值为1,即当x为1时的S值为1,之后面积保持不变.二、填空题11.x为任意实数12.减小13.0x>14.16;【解析】分别将点()8m,代入两个一次函数解析式,得8m a=-+和8m b=+,联立方程得88m a m b+=-+++,所以16a b+=15.3717;【解析】如图,分别求出123y y y,,交点的坐标3322A⎛⎫⎪⎝⎭,;252599B⎛⎫⎪⎝⎭,;60371717C ⎛⎫ ⎪⎝⎭, 当32x <,1y y =;当232529x y y =,;当2560917x <,2y y = 当36017x y y =,.看图象可得到C 点最高, ∴6017x =,16037=+1=31717y ⨯最大.三 、解答题16.⑴102y x =-;⑵2.55x <<;⑶05y <<【解析】⑴由题意,得10x x y ++=,即102y x =-⑵因为x 、y 为线段,所以0x >,0y >.所以1020x ->,即05x <<;又因为x 、y 为三角形的边长,所以x x y +>,即2102x x >-,所以 2.5x >.所以2.55x << ⑶由2.55x <<,得5210x <<,所以1025x -<-<-,所以01025x <-<.因此y 的取值范围是05y <<.17.①2a =-;②a =18.①2a =-;②a =19.⑴4/min 3km ;⑵7分钟;⑶()3022016t S t =-≤≤. 20.⑴、⑶不是,⑵、⑷是.“y 有唯一值与x 对应”.21.⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 22.设在甲超市所付的购物费用为y 甲元,在乙超市所付的购物费用为y 乙元,由题意可得,y 甲=300+0.8(x-300)=60+0.8x ,y 乙=20090%200)0.920(300)x x x +⨯-=+>(当y 甲=y 乙时0.9200.860x x +=+,解得400x =; 当y 甲<y 乙,时0.9200.860x x +<+,解得400x >;当y甲>y乙,时0.9200.860x x+>+,解得400x<.所以当购买多于300元而少于400元的商品时,选择乙超市比较优惠,当购买400元的商品时,两个超市费用相同,选择哪个都可以,当购买商品大于400元时,选择甲超市比较优惠.人教版八年级下册数学《一次函数》单元测试卷(二)姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
第 1 页 共 4 页八年级数学下册《一次函数》练习题及答案(人教版)一、单选题 1.下列函数:①y =-2x ;②21y x =+;③y =-0.5x -1.其中是一次函数的个数有( )A .0个B .1个C .2个D .3个2.若正比例函数的图象经过点(2,4),则这个图象也必经过点( )A .(2,1)B .(﹣1,﹣2)C .(1,﹣2)D .(4,2)3.一次函数y=x+3的图像与y 轴的交点坐标是( )A .(0,3)B .(0,-3)C .(3,0)D .(-3,0)4.一次函数(0)y kx b k =+≠的图象过点(2,1)-和点(0,4),那么k 、b 的值为( )A .23k =-,4b =B .4k =,32b =- C .32k =-,4b = D .32k ,4b = 5.已知A (﹣1,a ),B (2,b )两点都在关于x 的一次函数y =﹣x +m 的图像上,则a ,b 的大小关系为( )A .a ≥bB .a >bC .a <bD .无法确定6.已知不等式ax+b >0的解集是x <-2,则函数y=ax+b 的图象可能是( )A .B .C .D .7.一次函数()13y k x =++的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标不可能为( )A .()5,4B .1,2C .()2,2--D .()5,1-8.若点P 在一次函数42y x =-+的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B ,能表示这个一次函数图象的方程二、填空题11.若点(),m n在一次函数31y x的图象上,则31n m-+的值为______.12.将直线y=x向右平移1个单位长度,再向上平移3个单位长度得到的直线解析式为________.13.一次函数1y kx k=+-的图象经过第一、三、四象限,则k的取值范围是___________.14.一个函数的图象经过点()1,2,且y随x的增大而增大,则这个函数的解析式可能是______.(答案不唯一,只需写一个)15.直线y=(2﹣a)x+3﹣a在直角坐标系中的图象如图所示,化简|3﹣a|+|2﹣a|=______.三、解答题16.已知直线:l y kx b=+与直线2y x=平行,且直线l过点(2,8),求直线l与x轴的交点坐标17.已知函数y=(2-m)x+2n-3.求当m为何值时.第2页共4页第 3 页 共 4 页 (1)此函数为一次函数?(2)此函数为正比例函数?18.已知2y +与4x -成正比例,且3x =时,1y =.(1)求y 与x 之间的函数表达式;(2)当21y -<<时,求x 的取值范围.19.已知一次函数的图像平行于直线y 12=x ,且经过点A (2,3). (1)求这个一次函数的解析式;(2)当x =4时,求这个一次函数的函数值.第4页共4页。
一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .42.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =3x+3 B .y =3x+23C .y =﹣3x+3 D .y =﹣3x+23 3.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .4.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定6.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录: 蟋蟀每分钟鸣叫的次数温度/°F 14476152 78 160 80 168 82 17684) A .178B .184C .192D .2007.对于函数31y x =-+,下列结论正确的是( ) A .y 随x 的增大而增大 B .它的图象经过第一、二、三象限 C .它的图象必经过点()0,1D .当1x >时,0y >8.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<9.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-10.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <11.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于512.一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,而后只出水不进水,直到水全部排出.假设每分钟的进水量和出水量是两个常数,容器内的水量y (L )与时间x (min )之间的关系如图所示,则下列说法错误的是( )A .每分钟的进水量为5升B .每分钟的出水量为3.75升C .OB 的解析式为y =5x (0≤x≤4)D .当x =16时水全部排出二、填空题13.函数1y x =-中自变量x 的取值范围是________. 14.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.15.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________. 16.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号) 17.在平面直角坐标系中,有直线1l :25y x =+和直线2l :1y x 53=+,直线2l 的有一个点M ,当M 点到直线1l 的距离小于5,则点M 的横坐标取值范围是________. 18.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.19.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出:(),x y(),n n(),m n(),n m(),f x ynm n -m n +如:1,2213f =+=,2,1211f =-=,1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________.20.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A 车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A 车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A 车掉头以原速前往乙处,拿到文件后,A 车加快速度迅速往甲地驶去,此时,A 车速度比B 车快32千米/小时,A 车掉头和拿文件的时间忽略不计,如图是两车之间的距离y (千米)与B 车出发的时间x (小时)之间的函数图象,则当A 车到达甲地时,B 车离工厂还有_____千米.三、解答题21.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.22.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC 关于y 轴的对称图形111A B C △,并写出点1A ,1B ,1C 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,是否存在一点P ,使PA PB +的值最小,若存在,请在图中标出点P 的位置;(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN 沿直线MN 翻折,点A 的对称点为点A ',当点A '落在ABC 的内部(包含边界)时,点M 的横坐标m 的取值范围是________.23.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义; (2)求1y 与x 的函数关系式; (3)求小明到达A 地所需的时间.24.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.25.如图,销售某产品,1l 表示一天的销售收入1y (万元)与销售量x (件)的关系2l 表示一天的销售成本2y (万元)与销售量x 的关系.(1)1y 与x 的函数关系式____________.2y 与x 的函数关系式____________. (2)每天的销售量达到多少件时,每天的利润达到18万元? 26.一次函数23y x =-+的图像经过点P (1,n ). (1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题. 【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩=8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t , 即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确; ④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t , 当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确, 综上所述,正确的有①②,共2个,故选:B . 【点睛】本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.2.D解析:D【分析】过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,设菱形的边长为t,则OA=AB=t,在Rt△ABH中利用勾股定理得到(3﹣t)2+(3)2=t2,解方程求出t,得到A(2,0),再利用P为OB的中点得到P(32,3),然后利用待定系数法求直线AC的解析式即可.【详解】解:过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P(32,32),设直线AC的解析式为y=kx+b,把A(2,0),P(32,32),代入得:20332k bk b+=⎧⎪⎨+=⎪⎩,解得:323kb⎧=-⎪⎨=⎪⎩,∴直线AC的解析式为y33故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.3.A解析:A【分析】依据函数的定义,x取一个值,y有唯一值对应,可直接得出答案.【详解】解:A、根据图象知给自变量一个值,可能有2个函数值与其对应,故A选项不是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B选项是函数,C、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C选项是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D选项是函数,故选:A.【点睛】此题主要考查了函数概念,任意画一条与x轴垂直的直线,始终与函数图象有一个交点,那么y是x的函数.4.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、当k<0,k+1>0时,l1:y kx三象限,故选项A正确,不符合题意;=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、当k<0,k+1<0时,l1:y kx四象限,故选项B正确,不符合题意;=的图象经过一、三象限,l2:y=kx+x-k的图象经过当k>0,k+1>0,-k<0时,l1:y kx一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.5.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.故选:B .【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.D解析:D【分析】根据表中的数据可知,温度每升高2°F ,蟋蟀每分钟鸣叫的次数增加8次,据此列式计算即可.【详解】解:由表中的数据可知,温度每升高2°F ,蟋蟀每分钟鸣叫的次数增加8次,故当室外温度为90°F 时,蟋蟀每分钟鸣叫的次数为:176+8×90-842=176+24=200(次),即当室外温度为90°F 时,蟋蟀每分钟鸣叫的次数是200,故选:D .【点睛】本题主要考查了规律探究及函数的表示方法,理清题意正确列出算式是解答本题的关键. 7.C解析:C【分析】根据一次函数的图象与性质逐项判断即可得.【详解】一次函数31y x =-+中的30k =-<,y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =, y 随x 的增大而减小,∴当13x <时,0y >,则选项D 错误; 故选:C .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键. 8.B解析:B【分析】由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.9.A解析:A【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案.【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.10.D解析:D【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可.解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确; B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误,故选:D .【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.11.B解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交=故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.12.D解析:D【分析】根据题意和函数图象可知每分钟的进水量和出水量,继而即可求解【详解】解:由题意可得,每分钟的进水量为:20÷4=5(L ),A 说法正确,不符合题意;∴OB 的解析式为y =5x (0≤x≤4);C 说法正确,不符合题意;每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L ),B 说法正确,不符合题意; 30÷3.75=8(min ),8+12=20(min ),∴当x =20时水全部排出.D 说法错误,符合题意;【点睛】本题考查一次函数的应用,解题的关键是明确题意和解读函数,找出所求问题需要的条件,利用数形结合的思想.二、填空题13.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从 解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】y =,根据题意得:x≥0 10≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.或【分析】把点A (12)代入直线方程先求出两条直线的解析式然后求出点MN 的坐标再求出MN 的长度利用三角形的面积公式即可求出答案【详解】解:由图可知点A 为(12)直线与y 轴的交点为(01)把点A (12解析:0m ≤或2m ≥【分析】把点A (1,2)代入直线方程,先求出两条直线的解析式,然后求出点M 、N 的坐标,再求出MN 的长度,利用三角形的面积公式,即可求出答案.【详解】解:由图可知,点A 为(1,2),直线2:l y ax b =+与y 轴的交点为(0,1),把点A (1,2)代入1:l y kx =,则2k =;∴12:l y x =;把点A (1,2)和点(0,1)代入2:l y ax b =+,21a b b +=⎧⎨=⎩,解得:11a b =⎧⎨=⎩; ∴2:1=+l y x ;把x m =分别代入两条直线方程,则12y m =,21y m =+,∴点M 的坐标为(m ,2m ),点N 的坐标为(m ,m+1), ∴2(1)1MN m m m =-+=-,∴△AMN 边MN 上的高为:1m - ∵1112AMN S m m ∆=•-•-, 当AMN 的面积等于12时,则 211111(1)222AMN S m m m ∆=•-•-=-=, ∴2m =或0m =, 结合AMN 的面积不小于12, ∴0m ≤或2m ≥;故答案为:0m ≤或2m ≥.【点睛】本题考查了一次函数的性质,解一元一次不等式,求一次函数的解析式,解题的关键是正确的理解题意,掌握一次函数的性质进行解题. 15.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k=-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键. 16.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 17.【分析】利用点到直线的距离公式得到M 的坐标之间的关系式与直线联立解方程组即可得到界点值根据题目要求写出符合题意的范围即可【详解】设点M(mn)直线与坐标轴的交点为EA 与坐标轴的交点为EF 过点A 作AB解析:33m -<<【分析】利用点到直线的距离公式,得到M 的坐标之间的关系式,与直线2l 联立,解方程组即可得到界点值,根据题目要求,写出符合题意的范围即可.【详解】设点M(m ,n),直线1l 与坐标轴的交点为E ,A ,2l 与坐标轴的交点为E ,F ,过点A 作AB ⊥EF ,垂足为B ,过点M 作MC ⊥EA ,垂足为C ,过点M 作MD ⊥y 轴,垂足为D ,根据题意,得OE=5,OA=52,OF=15,AF=OF-OA=252,∴=, ∴1122EF AB AF OE ⋅=⋅,∴11255222AB ⨯=⨯⨯,∴, ∴sin ∠AEB=AB AE=510 4 552=22,∴∠AEB=45°,∴MC=CE,∴ME=10,∴222MD ED ME+=,∴22(5)10m n+-=,∴221(55)103m m+--=,∴29m=,∴3m=±,∵M点到直线1l5∴点M的横坐标取值范围是33m-<<.故答案为33m-<<.【点睛】本题考查了交点坐标的确定,图形的面积,三角函数的定义,不等式解集的确定,熟记坐标与线段的关系,三角函数的定义是解题的关键.18.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn的纵坐标为2n-1再代入n解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1,A2,A3的坐标,即可根据正方形的性质得出C1,C2,C3的纵坐标,根据点的坐标的变化可找出变化规律:点C n的纵坐标为2n-1,再代入n=2020即可得出结论.解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C 2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n 的纵坐标为2n-1是解题的关键.19.-1【分析】根据对应关系f 分三种情况求出x 的取值范围以及相应的x 的值再作出判断即可【详解】解:①若1+2x=3x 即x=1则3x=2解得x=(不符合题意舍去);②若1+2x >3x 即x <1则1+2x-3解析:-1.【分析】根据对应关系f ,分三种情况求出x 的取值范围以及相应的x 的值,再作出判断即可.【详解】解:①若1+2x=3x ,即x=1,解得x=23,(不符合题意,舍去); ②若1+2x >3x ,即x <1,则1+2x-3x=2,解得x=-1,③若1+2x <3x ,即x >1,则1+2x+3x=2, 解得x=15(不符合题意,舍去), 综上所述,x 的值是-1.故答案为:-1.【点睛】 本题考查了一元一次不等式及一元一次方程的应用,函数的概念,理解新定义的运算方法是解题的关键,难点在于分情况讨论.20.96【分析】根据题意和题目的函数图像先求出A 车和B 车的速度然后求出A 车到乙地拿到文件后前往甲地的时间再得到B 车的总时间即可求出A 车到达甲地时B 车离工厂的距离【详解】解:根据题意设A 车的速度为B 车的速 解析:96【分析】根据题意和题目的函数图像,先求出A 车和B 车的速度,然后求出A 车到乙地拿到文件后,前往甲地的时间,再得到B 车的总时间,即可求出A 车到达甲地时B 车离工厂的距离.【详解】解:根据题意,设A 车的速度为1V ,B 车的速度为2V ,则12()640080V V +⨯=+①,A 车前往乙地取文件的过程,有12()(76)8016V V -⨯-=-②,结合①②两式,得148V =,232V =,∴A 车的速度为48千米/小时;B 车的速度为32千米/小时;A 车拿到文件后,距离甲地的距离为:32764160⨯-=千米,∴A 车加速后达到甲地的时间为:160(3232) 2.5÷+=小时;∴B 车一共所走的时间有:7 2.59.5+=小时,∴当A 车到达甲地时,B 车离工厂的距离为:400329.596-⨯=千米;故答案为:96.【点睛】本题考查了二元一次方程组的应用——行程问题,以及函数图像的识别,解题的关键是熟练掌握题意,正确求出A 、B 两车的速度,从而进行解题.三、解答题21.(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+, 2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.22.(1)见解析,1(1,3)A -,1(3,1)B -,1(4,5)C -;(2)见解析;(3)194m <≤【分析】(1)根据轴对称与坐标变化的规律,由(1,3)A ,点(3,1)B ,点(4,5)C 可得1(1,3)A -,1(3,1)B -,1(4,5)C -,描点、连线后即可得到△ABC 关于y 轴的对称图形△A 1B 1C 1; (2)作点A 关于x 轴的对称点A 2,连接A 2B 与x 轴相交于点P ,即可使PA PB +的值最小;(3)先求出AB 的解析式,再求出当点A 落在BC 边上时的点A '的坐标,根据轴对称的性质可得,点M 的横坐标m 等于点A 与点A'的横坐标之和的一半,进而得到点M 的横坐标m 的取值范围.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,1(1,3)A -,1(3,1)B -,1(4,5)C -;(2)如上图所示,点P 为所求作的点.作点A 关于x 轴的对称点A 2,连接A 2B ,交x 轴于点P ,则(AP +BP )此时有最小值; (3)设AB 的解析式为y =kx +b ,依题意得:3145k b k b +=⎧⎨+=⎩, 解得:411k b =⎧⎨=-⎩. ∴y =4x -11.令y =3,则x =72. ∴当点A 关于直线MN 的对称点A '落在BC 上时,点A '的坐标为(72,3). 此时m =12(1+72)=94. 又∵点M 不与点A 重合, ∴点M 的横坐标m 的取值范围是:194m <≤. 故答案为:194m <≤. 【点睛】本题考查了一次函数的应用,熟练掌握轴对称与坐标变化的规律,准确找出对应顶点的位置是解题的关键.23.(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键. 24.(1)34k =;(2)()918804S x x =+-<<;(3)16,23⎛⎫- ⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭【分析】(1)把点E 的坐标()8,0-代入直线6y kx =+,即可求得答案;(2)根据三角形的面积公式列出解析式,根据题意求出自变量x 的取值范围;(3)根据“分得的两个三角形面积之比为1:2”的不确定性,进行分类讨论,再由同高三角形面积之比即为底之比可求得对角线交点的坐标,进而可求得直线HQ 的解析式,进而利用两一次函数解析式求得交点P 的坐标.【详解】解:(1)∵点()8,0E -在直线y kx b =+上∴086k =-+ ∴34k =. (2)∵34k = ∴直线的解析式为:364y x =+ ∵P 点在364y x =+上, ∴设3,4P x x b ⎛⎫+ ⎪⎝⎭ ∴OPA 以OA 为底的边上的高是364x + ∵点P 在第二象限∴3366 44x x+=+∵点A的坐标为(6,0)-∴6OA=∴366941824xS x⎛⎫+⎪⎝⎭==+,即9184S x=+∵P点在第二象限∴自变量x的取值范围是:80x-<<∴OPA的面积S与x的函数表达式为:()918804S x x=+-<<.(3)根据题意,PQ是四边形EPOQ的对角线∵不确定分得的两个三角形的比为1:2还是2:1∴有两种情况①当1121P EQPQOSS=时,1PQ与x轴交于1H,如图:∵8EQ=∴18,03H⎛⎫-⎪⎝⎭∵()0,2Q-∴直线1H Q的解析式为324y x=--∴324364y xy x⎧=--⎪⎪⎨⎪=+⎪⎩∴1632xy⎧=-⎪⎨⎪=⎩∴116,23P⎛⎫-⎪⎝⎭;②当2212P EQP QOSS=时,2P Q与x轴交于2H,如图:∵8EQ=∴216,03H⎛⎫-⎪⎝⎭∵()0,2Q-∴直线2H Q的解析式为328y x=--∴328364y xy x⎧=--⎪⎪⎨⎪=+⎪⎩∴64923xy⎧=-⎪⎪⎨⎪=⎪⎩∴2642,93P⎛⎫-⎪⎝⎭∴综上所述,当点P为16,23⎛⎫- ⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭时,直线PQ将四边形EPOQ分成两部分,面积比为1:2.本题考查了一次函数的知识,渗透了分类讨论、数形结合的数学思想,掌握待定系数法求一次函数解析式的一般步骤、根据三角形的面积公式列出解析式、根据三角形的面积关系求得点的坐标是解题的关键.25.(1)y 1=2x ,y 2=0.5x+6;(2)16件【分析】(1)根据题意和函数图象中的数据,可以得到y 1与x 的函数关系式和y 2与x 的函数关系式;(2)根据(1)中函数关系式,令2x-(0.5x+6)=18,求出x 的值,即可解答本题.【详解】解:(1)设y 1与x 的函数关系式y 1=kx ,∵点(4,8)在该函数图象上,∴8=4k ,得k=2,即y 1与x 的函数关系式y 1=2x ,设y 2与x 的函数关系式y 2=ax+b ,∵点(0,6)、(4,8)在该函数图象上,∴648b a b =⎧⎨+=⎩, 解得0.56a b =⎧⎨=⎩, 即y 2与x 的函数关系式y 2=0.5x+6,故答案为:y 1=2x ,y 2=0.5x+6;(2)令2x-(0.5x+6)=18,解得x=16,答:每天的销售量达到16件时,每天的利润达到18万元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)1;(2)m =2【分析】(1)把点P (1, n )代入一次函数 y=−2x+3 即可求出n 的值;(2)由(1)可得P (1,1),由一次函数 y=mx−1 的图像经过点P (1,1),可得m 的值.【详解】(1)一次函数23y x =-+的图像经过点P (1,n ),n =-2+3=1;(2)由n =1,P (2n -1,n ),可得P (1,1),一次函数1y mx =-的图像经过点P (1,1),11m =-,。
一、选择题1.已知A B ,两地相距240千米.早上9点甲车从A 地出发去B 地,20分钟后,乙车从B 地出发去A 地.两车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示,则下列描述不正确的是( )A .甲车的速度是60千米/小时B .乙车的速度是90千米/小时C .甲车与乙车在早上10点相遇D .乙车在12:00到达A 地2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .4.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .5.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( ) A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+6.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .58.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)9.函数2y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④11.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③12.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .经过第一、二、三象限 B .与x 轴交于()1,0- C .与y 轴交于()0,1D .y 随x 的增大而减小二、填空题13.如图1,在中,是边上一动点,设两点之间的距离为两点之间的距离为,表示与的函数关系的图象如图2所示.则线段的长为_____,线段的长为______.14.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.15.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.16.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.17.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.18.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.19.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.20.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.三、解答题21.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长. (2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 24.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm283032343638是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)25.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.26.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】利用图象求出甲的速度为60千米/小时,进而求出乙的速度为90千米/小时,再求出两车相遇的时间,利用两人所用时间相差13小时得出相遇时间是几点及乙车到达A地是几点.【详解】解:∵甲车的速度为601=60(千米/小时),乙车的速度为60113=90(千米/小时),所以①②对;根据题意,甲乙相遇的时间:(240-60×13)÷(90+60)=2215,乙9点20分出发,经过2215小时(88分钟)甲乙相遇,也就是10点48分,所以③错;乙车到达A地的时间:240÷90=83,83+13=3,9+3=12,所以④对故选C.【点睛】本题主要考查了一次函数的综合应用,根据已知利用两车时间差得出代数式是解题的关键.2.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.3.A解析:A根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限, ∴k <0,b >0, ∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限, 故选:B . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.5.C解析:C 【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式. 【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7, ∴c=-7,∴直线l的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.6.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,当k<0,k+1>0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.【详解】解:42313312x y ax y a+=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x ay a⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB=5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32,故点C (0,32), 故选:C .【点睛】 本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.9.B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <, ∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.10.D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键. 11.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A .【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.12.A解析:A【分析】根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答.【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,∴直线y kx b =+的解析式为2(2)123y x x =+-=+,∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确;当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误;∵k=2>0,∴y 随x 的增大而增大,故D 错误,故选:A .【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.二、填空题13.1325【分析】从图2的函数图象得知BD=x的最大值为7即BC=7同时AC=y=13再由图2中(113)知BD=1时AD=13作AE⊥BC于E利用等腰三角形的性质以及勾股定理即可求解【详解】由图2的解析:【分析】从图2的函数图象得知,BD=的最大值为7,即BC=,同时AC=y=,再由图2中(1,)知,BD=时,AD=,作AE⊥BC于E,利用等腰三角形的性质以及勾股定理即可求解.【详解】由图2的函数图象可知,BD=的最大值为7,∴BC=,此时点C、D重合,对应AC=y=,再由图2中(1,)知,BD=时,AD=,如图:作AE⊥BC于E,∵AC=AD=,BD=,BC=,∴DE=CE=DC=(BC- BD)=3,∴AE=,在Rt△ABE中,∠AEB=90,AE,BE= BD + DE =,∴AB=.故答案为:,.【点睛】本题主要考查了动点问题的函数图象,等腰三角形的性质,勾股定理的应用等知识,正确理解D点运动到何处时BD长最大以及点(1,)的意义是关键,同时也考察了学生对函数图象的观察能力.14.x<-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x<-1故答案为:x<-1【点睛】本题考查了一次函数与不等式的关系理解函数解析:x<-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.15.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°,∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3), 设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253.故答案为:y=-23x+253. 【点睛】 本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键.16.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:【分析】依据题意得到三个关系式:a+b=5c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点(15P ,在“勾股一次函数”a b y x c c =+的图象上,把(1)5P ,代入得:a b c c=+,即a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =.故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.17.(或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2 解析:254(或6.25). 【分析】根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可.【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米, ∴父子共用时间20-20÷5=16秒,∴儿子的速度为10016=254米/秒, 故答案为:254. 【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 18.【分析】将不等式写成可以理解为一次函数当时求x 的取值范围由函数图象即可得到结果【详解】解:不等式可以写成即一次函数当时x 的取值范围由函数图象可得故答案是:【点睛】本题考查一次函数与不等式的关系解题的 解析:4x >【分析】将不等式1mx n ->写成1mx n ->,可以理解为一次函数y mx n =-,当1y >时,求x 的取值范围,由函数图象即可得到结果.【详解】解:不等式1mx n ->可以写成1mx n ->,即一次函数y mx n =-,当1y >时,x 的取值范围,由函数图象可得4x >.故答案是:4x >.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用一次函数图象解一元一次不等式的方法.19.【分析】根据中点坐标公式求得C 点坐标作点A 关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键. 20.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.三、解答题21.(1)80m/min ;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解; ()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m .【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)5;(2)1612,55F ⎛⎫- ⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合, OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯,即1153422FG ⨯⨯=⨯⨯,125FG =,在Rt OFG △中,由勾股定理得:165OG ==, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.25.(1)34k =;(2)()918804S x x =+-<<;(3)16,23⎛⎫- ⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭ 【分析】(1)把点E 的坐标()8,0-代入直线6y kx =+,即可求得答案;(2)根据三角形的面积公式列出解析式,根据题意求出自变量x 的取值范围;(3)根据“分得的两个三角形面积之比为1:2”的不确定性,进行分类讨论,再由同高三角形面积之比即为底之比可求得对角线交点的坐标,进而可求得直线HQ 的解析式,进而利用两一次函数解析式求得交点P 的坐标.【详解】解:(1)∵点()8,0E -在直线y kx b =+上∴086k =-+ ∴34k =. (2)∵34k = ∴直线的解析式为:364y x =+ ∵P 点在364y x =+上, ∴设3,4P x x b ⎛⎫+ ⎪⎝⎭∴OPA 以OA 为底的边上的高是364x + ∵点P 在第二象限 ∴336644x x +=+ ∵点A 的坐标为(6,0)-∴6OA = ∴366941824x S x ⎛⎫+ ⎪⎝⎭==+,即9184S x =+∵P 点在第二象限∴自变量x 的取值范围是:80x -<<∴OPA 的面积S 与x 的函数表达式为:()918804S x x =+-<<. (3)根据题意,PQ 是四边形EPOQ 的对角线∵不确定分得的两个三角形的比为1:2还是2:1∴有两种情况①当1121P EQPQO S S =时,1PQ 与x 轴交于1H ,如图:∵8EQ =∴18,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线1H Q 的解析式为324y x =-- ∴324364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴1632x y ⎧=-⎪⎨⎪=⎩ ∴116,23P ⎛⎫-⎪⎝⎭; ②当2212P EQP QO S S =时,2P Q 与x 轴交于2H ,如图:∵8EQ = ∴216,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线2H Q 的解析式为328y x =-- ∴328364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴64923x y ⎧=-⎪⎪⎨⎪=⎪⎩∴2642,93P ⎛⎫- ⎪⎝⎭∴综上所述,当点P 为16,23⎛⎫-⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2.【点睛】 本题考查了一次函数的知识,渗透了分类讨论、数形结合的数学思想,掌握待定系数法求一次函数解析式的一般步骤、根据三角形的面积公式列出解析式、根据三角形的面积关系求得点的坐标是解题的关键.26.(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,则233a b b =+⎧⎨-=⎩,解得:533a b ⎧=⎪⎨⎪=-⎩, ∴直线BC 的表达式为533yx ; (2)在直线3(0)y kx k =-≠中, 令x=0,则y=-3,即直线3(0)y kx k =-≠必经过(0,-3),∵直线3(0)y kx k =-≠与线段AB 没有交点,AC :33y x =--,BC :533y x , 可得k 的取值范围是:-3<k <53且k≠0. 【点睛】本题考查了一次函数表达式,一次函数图象上点的坐标特征,理解直线3(0)y kx k =-≠与线段AB 没有交点是解题的关键.。
人教版八年级下册数学基础训练题:第十九章一次函数(含答案)一、选择题1.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)2.一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A. m<-1B. m>-1C. m>0D. m<03.一次函数的图象经过点A(﹣2,﹣1),且与直线y=2x﹣3平行,则此函数的解析式为()A. y=x+1B. y=2x+3C. y=2x﹣1D. y=﹣2x﹣54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C. y=-2x D. y=2x5.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A. y=25x+15B. y=2.5x+1.5C. y=2.5x+15D. y=25x+1.56.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( )A. x>0B. x<0C. x>2D. x<27.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米8.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A. B. C. D.9.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A. x>﹣2B. x<﹣2C. x>﹣4D. x<﹣410.小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.11.一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A. 9B. 16C. 25D. 3612.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A. x<2B. x<0C. x>0D. x>2二、填空题13.函数y=中,自变量x的取值范围为________ .14.已知,函数y=(k﹣1)x+k2﹣1,当k________ 时,它是一次函数.15.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .16.已知长方形的周长为30cm,一边长为ycm,另一边长为xcm,则y与x的关系式为________,其中变量是________,常量是________.17.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为- ,则输出的结果为 ________18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x(单位:本)之间的函数关系________.19.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为________km.20.如图,已知点A和点B是直线y=x上的两点,A点坐标是(2,).若AB=5,则点B的坐标是 ________.21.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为________.22.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为________ .三、解答题23.一次函数y=kx+b经过点(-4,-2)和点(2,4),求一次函数y=kx+b的解析式。
初中数学八年级下册:《一次函数》单元试卷含答案
一、选择题(共10小题;共50分)
1. 在平面直角坐标系中,点所在的象限是 ( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2. 体育课上,人一组进行足球点球比赛,每人射点球次.已知某一组的进球总数为个,进球情况
记录如下表,其中进个球的有人,进个球的有人.若恰好是两条直线的交点坐标,则这两条直线的解析式是 ( )
C. 与
D. 与
3. 如图,已知在棋盘中建立直角坐标系后,棋子“马”的坐标为,“炮”的坐标为,则棋子“车”的坐标
是 ( )
A. B. C. D.
4. 如图为一次函数的图象,则下列正确的是 ( )
A. ,
B. ,
C. ,
D. ,
5. 对于一次函数,下列结论错误的是 ( )
A. 函数值随自变量的增大而减小
B. 函数的图象不经过第三象限
C. 函数的图象向下平移个单位长度得的图象
D. 函数的图象与轴的交点坐标是
6. 函数中自变量的取值范围是 ( )
A. B.
C. 且
D. 且
7. 一次函数()的图象如图所示,当时,的取值范围是 ( )
A. B. C. D.
8. 均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度随时间变化的
函数图象大致是 ( )
A. B.
C. D.
9. 若实数,满足,则函数是 ( )
A. 正比例函数
B. 一次函数
C. 反比例函数
D. 二次函数
10. 八个边长为的正方形如图摆放在平面直角坐标系中,经过原点的一条直线将这八个正方形分
成面积相等的两部分,则该直线的解析式为 ( )
A. B. C. D.
二、填空题(共10小题;共50分)
11. 如图,点处的一只蚂蚁沿水平方向向右爬行了个单位长度后的坐标为.
12. 如果电影院中 " 排号 "记作,那么表示的意义是.
13. 如图,已知直线与直线相交于点,直线分别交轴于,两点,矩形的顶点,分别在上,
顶点,都在轴上,且点与点重合,那么.
14. 函数的自变量的取值范围是.
15. 已知一次函数,当时,随的增大而增大.
16. 小明放学后步行回家,他离家的路程(米)与步行时间(分钟)的函数图象如图所示,则他步
行回家的平均速度是米/分钟.
17. 下列是关于变量与的八个关系式:① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ .其中不是
的函数的有.(填序号)
18. 已知一次函数的图象经过两点,,则当时,.
19. 在平面直角坐标系中,是坐标原点,将直线绕原点逆时针旋转,再向上平移个单位得到直
线,则直线的解析式为.
20. 一食堂需要购买盒子存放食物,盒子有,两种型号,单个盒子的容量和价格如表.现有升食
物需要存放且要求每个盒子要装满,由于型号盒子正做促销活动:购买三个及三个以上可一次性返还现金元,则购买盒子所需要最少费用为元.
三、解答题(共5小题;共65分)
21. 先阅读以下材料,然后解答问题:材料:将二次函数的图象向左平移个单位,再向下平移个
单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).
解:在抛物线图象上任取两点,,由题意知:点向左平移个单位得到,再向下平移个单位得到;点向左平移个单位得到,再向下平移个单位得到.
设平移后的抛物线的解析式为.则点,在抛物线上.可得解得所以平移后的抛物线的解析式为.
根据以上信息解答下列问题:将直线向右平移个单位,再向上平移个单位,求平移后的直线的解析式.
22. 指出下列数学关系式中的常量和变量.
(1);
(2);
(3)(是常数,且).
23. 求下列各式中自变量的取值范围.
(1);
(2);
(3);
(4).
24. 为了响应国家节能减排的号召,鼓励市民节约用电,我市从 2012 年 7 月 1 日起,居民用电实行
“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;
(1)当用电量是千瓦时时,电费是元;
(2)第二档的用电量范围是;
(3)”基本电价“是元/千瓦时;
(4)小明家 8 月份的电费是元,这个月他家用电多少千瓦时?
25. 小东同学在学习了二次函数图象以后,自己提出了这样一个问题:
探究:函数的图象与性质.
小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:
(1)函数的自变量的取值范围是;
(2)下表是与的几组对应值.
则的值是;
(3)如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):.
答案
第一部分
1. D
2. C
3. D
4. C
5. D
6. D
7. C
8. A
9. B 10. D
第二部分
11.
12. 排号
13.
14.
15.
16.
17. ②④⑦
18.
19.
20.
第三部分
21. 在直线上任取一点,由题意知向右平移个单位,再向上平移个单位得到,设平移后的解析式为,
则在的解析式上,
,
解得,
所以平移后的直线的解析式为.
22. (1)是常量,,是变量.
(2)是常量,,是变量.
(3),是常量,,是变量.
23. (1)为任意实数.
(2).
(3).
(4)且.
24. (1)
(2)
(3)
(4)设直线的解析式为,由图象,得解得
.
时,.
答:这个月他家用电千瓦时.
25. (1)变量的取值范围是;
(2)的值是
(3)
(4)该函数的其他性质
当时,随的增大而减小;
当时,随的增大而减小.(答案不唯一)。