多元函数积分的计算方法技巧
- 格式:doc
- 大小:138.50 KB
- 文档页数:7
多元函数积分计算方法在数学中,多元函数积分是一种重要的计算方法,能够求解多元函数在给定区域上的面积、体积以及相关的物理量。
本文将介绍一些常见的多元函数积分计算方法,帮助读者更好地理解和应用这一数学工具。
一、重积分的定义重积分是单变量函数积分的推广,用于求解多元函数在给定区域上的面积或体积。
设函数f(x,y)在区域D上有定义,D的边界可以用曲线C表示,则重积分的定义为:∬_D▒〖f(x,y)dA=lim(Δx→0,Δy→0)∑▒f(x_i^*,y_j^*)ΔA〗其中,ΔA为区域D中小面积元素,f(x_i^*,y_j^*)为该小面积元素上一点的函数值。
二、二重积分的计算方法1. 矩形区域上的二重积分计算若D为矩形区域,可以采用迭代积分的方法求解二重积分。
先对x 进行积分,再对y进行积分,即:∬_D▒〖f(x,y)dA=∫_(a_y)^(b_y)▒(∫_(a_x)^(b_x)▒f(x,y)dxdy)〗2. 极坐标下的二重积分计算对于极坐标下的积分区域D,可以将二重积分转化为极坐标形式进行计算。
设D在极坐标下的表示为(r,θ),则二重积分的计算公式为:∬_D▒〖f(x,y)dA=∫_(θ_1)^(θ_2)▒(∫_(r_1(θ))^(r_2(θ))▒f(rcosθ,rsinθ)rdθ)〗三、三重积分的计算方法1. 直角坐标系下的三重积分计算若函数f(x,y,z)在空间区域V上有定义,则三重积分的计算公式为:∭_V▒〖f(x,y,z)dV=∫_(a_z)^(b_z)▒(∫_(a_y)^(b_y)▒(∫_(a_x)^(b_x)▒f(x,y,z)dxdydz )〗2. 柱坐标系或球坐标系下的三重积分计算对于柱坐标或球坐标下的积分区域V,可以将三重积分转化为柱坐标或球坐标形式进行计算。
具体转化公式可以根据坐标系关系进行推导,然后套用相应的公式进行计算。
四、应用举例1. 面积计算对于二维平面上的函数f(x,y),可以通过二重积分来计算给定区域D的面积。
2多元函数积分的计算公式多元函数积分是微积分中的重要内容,用于计算多元函数在给定区域上的面积、体积以及质量等问题。
在本文中,我将介绍多元函数积分的定义、计算方法以及一些重要性质。
1.多重积分的定义多重积分是对多元函数在给定区域上的进行求和的过程。
对于二重积分来说,可以表示为:\[ \iint_D f(x,y) dA \]其中,f(x,y)是定义在平面区域D上的函数,dA表示面积元素。
对于三重积分来说,可以表示为:\[ \iiint_V f(x,y,z) dV \]其中,f(x,y,z)是定义在空间区域V上的函数,dV表示体积元素。
2.多重积分的计算方法多重积分的计算方法有两种:直接计算和间接计算。
直接计算是通过将积分区域划分成小的子区域,然后在每个子区域上计算函数值,并将所有结果相加。
间接计算是通过将多重积分转化为一重积分进行计算。
对于二重积分,可以使用极坐标转换将其转化为一重积分。
极坐标转换公式为:\[ x = r\cos(\theta) \]\[ y = r\sin(\theta) \]面积元素dA可以表示为:\[ dA = r dr d\theta \]将这个转换应用于二重积分计算中,可以得到:\[ \iint_D f(x,y) dA = \int_\alpha^\beta\int_{r_1(\theta)}^{r_2(\theta)} f(r\cos(\theta), r\sin(\theta)) r dr d\theta \]其中,\(\alpha\)和\(\beta\)是极角的范围,\(r_1(\theta)\)和\(r_2(\theta)\)是每个极角对应的极径范围。
对于三重积分,可以使用柱面坐标或球面坐标进行转换。
柱面坐标转换公式为:\[ x = r\cos(\theta) \]\[ y = r\sin(\theta) \]\[z=z\]体积元素dV可以表示为:\[ dV = r dr d\theta dz \]将这个转换应用于三重积分计算中,可以得到:\[ \iiint_V f(x,y,z) dV = \int_\alpha^\beta\int_{r_1(\theta)}^{r_2(\theta)} \int_{z_1(r, \theta)}^{z_2(r, \theta)} f(r\cos(\theta), r\sin(\theta), z) r dz dr d\theta \]其中,\(\alpha\)和\(\beta\)是极角的范围,\(r_1(\theta)\)和\(r_2(\theta)\)是每个极角对应的极径范围,\(z_1(r, \theta)\)和\(z_2(r, \theta)\)是每个极径和极角对应的高度范围。
多元函数的积分在数学中,多元函数的积分是一项重要的概念和计算方法。
与一元函数的积分类似,多元函数的积分可以帮助我们求解曲线下的面积、体积等问题,以及解决一些与实际问题相关的计算。
一、二重积分二重积分是多元函数积分中最基础的一种形式。
它的计算方法依赖于重积分的定义以及二重积分的性质。
对于二重积分来说,我们需要将待求的函数转化为极坐标形式、直角坐标形式等,并确定积分区域的范围。
通过分割积分区域成为若干小块,再对每个小块进行积分求和,最后将所有小块的积分结果相加,可以得到二重积分的值。
在实际应用中,二重积分可以用来计算平面图形的面积、求解平面质心等问题。
二、三重积分与二重积分类似,三重积分是多元函数积分中的另一种形式。
三重积分的计算方法也依赖于重积分的定义以及三重积分的性质。
与二重积分不同的是,三重积分需要确定积分区域的范围,并将待求的函数转化为球坐标形式、柱坐标形式等。
同样地,通过分割积分区域成为若干小块,再对每个小块进行积分求和,最后将所有小块的积分结果相加,可以得到三重积分的值。
在实际应用中,三重积分可以用来计算空间图形的体积、质心等问题。
三、重积分的性质重积分具有一些重要的性质,这些性质对于计算积分结果以及简化计算过程都非常有帮助。
其中一些常见的性质包括积分线性性、积分对称性、积分的加法性和积分的估值性等。
积分线性性:对于常数a和b,函数f(x,y)和g(x,y),有∬[D](af(x,y)+bg(x,y))dA = a∬[D]f(x,y)dA + b∬[D]g(x,y)dA。
这个性质使得我们在计算重积分时可以将积分区域分解成若干个子区域进行计算。
积分对称性:如果函数f(x,y)在区域D上关于x轴对称,则有∬[D]f(x,y)dA = 2∬[D1]f(x,y)dA,其中D1是区域D在x轴上方的部分。
类似地,还有关于y轴对称和原点对称的性质。
积分的加法性:对于两个不重叠的区域D1和D2,有∬[D1∪D2]f(x,y)dA = ∬[D1]f(x,y)dA + ∬[D2]f(x,y)dA。
多元函数积分学1、不定积分1)原函数定义定义在某区间I 上的函数()f x ,若对I 的一切x ,均有()()F x f x '=,则称()F x 为()f x 在区间I 上的原函数。
若函数()f x 存在原函数,则()f x 就有无穷多个原函数,可表示为()F x C +。
2)不定积分定义函数()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰。
若()F x 是()f x 的一个原函数,则()()d f x x F x C =+⎰(C 为任意常数)3)不定积分计算:①第一类换元积分法:设()f u 具有原函数()F u ,而()u x ϕ=可导,则有()()()()d d f x x x f u u F x C ϕϕϕ'==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰②第二类换元积分法:设()x t ϕ=在区间[],αβ上单调可导,且()0t ϕ'≠,又设()()f t t ϕϕ'⎡⎤⎣⎦具有原函数()F t ,则有()()()()()1d d f x x f t t t F t c F x Cϕϕϕ-'⎡⎤==+=+⎡⎤⎣⎦⎣⎦⎰⎰式中,()1x ϕ-为()x t ϕ=的反函数。
高 数多元函数积分学知识点速记③分部积分法:设()u x ,()v x 可微,且()() d v x u x ⎰存在,由公式()d d d uv u v v u =+得到分部积分公式d d u v uv v u=-⎰⎰2、定积分1)两点规定:①当a b =时,()d 0b a f x x =⎰;②当a b >时,()()d d b a a b f x x f x x =-⎰⎰2)积分上限函数及其导数①()d xa f x x ⎰为积分上限函数,记作()()d x ax f x x Φ=⎰,经常写成如下形式()()()d xa f t t a x xb Φ=≤≤⎰②积分上限函数的导数()()()d x a x f t t f x '⎡⎤'Φ==⎢⎥⎣⎦⎰()a xb ≤≤③()()()()()()()d g x h x f t t f g x g x f h x h x '⎡⎤''==⋅-⋅⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰3、定积分的应用旋转体的体积:设由曲线()y f x =,直线x a =,x b =以及x 轴围成的平面图形,绕x 轴旋转一周而生成的旋转体的体积,则()2πd b x aV f x x =⎡⎤⎣⎦⎰平行截面面积为已知的立体的体积:设立体由曲面S ,以及平面x a =、x b =所围成,且对于[],a b 上任一点x 作垂直截面,截得的面积()A A x =为x 的连续函数,则()d bc V A x x =⎰4、二重积分1)二元函数(),f x y 在闭区域D 上的二重积分,记作(),d D f x y σ⎰⎰2)(),d f x y σ⎰⎰表示以曲面(),z f x y =为顶,以区域D 为底,以D 的边D界为准线,母线平行于 Oz 轴的柱面围成的曲顶柱体的体积。
多元函数的积分在数学中,多元函数的积分是一个重要的概念和计算方法。
与一元函数的积分不同,多元函数的积分需要考虑多个自变量和相应的积分变量。
一、多元函数的积分定义对于二元函数f(x, y),其在有界闭区域D上的积分可以定义为:∬f(x, y)dA = limΔx,Δy→0 Σf(xi, yj)ΔA其中,Δx和Δy分别表示x和y方向的分割长度,Σ表示对所有的(i, j)求和,xi和yj表示分割后的小区域的任意点,ΔA表示小区域的面积。
对于n元函数f(x1, x2, ..., xn),其在有界闭区域D上的积分可以定义为:∭f(x1, x2, ..., xn)dV = limΔx1,Δx2,...,Δxn→0 Σf(x1i, x2j, ..., xnk)ΔV其中,Δx1, Δx2, ..., Δxn分别表示各个方向的分割长度,Σ表示对所有的(i1, i2, ..., in)求和,x1i, x2j, ..., xnk表示分割后小区域的任意点,ΔV表示小区域的体积。
二、多元函数的积分计算与一元函数的积分类似,对于多元函数的积分计算也需要借助于定积分的性质、微积分的基本定理和换元积分法等方法。
1. 球坐标和柱坐标对于具有某种对称性的多元函数,可以选择适当的坐标系来简化积分计算。
常用的坐标系有球坐标和柱坐标。
球坐标系适用于具有球对称性的问题,对于三元函数可以表示为:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ其中,r代表点到坐标原点的距离,θ表示点与正z轴的夹角,φ表示点在xy平面上与正x轴的夹角。
柱坐标系适用于具有柱对称性的问题,对于三元函数可以表示为:x = rcosθ, y = rsinθ, z = z其中,r代表点到z轴的距离,θ表示点在xy平面上与正x轴的夹角,z表示点在z轴上的坐标。
2. 积分的性质多元函数的积分具有类似于一元函数积分的一些性质,如线性性质、可加性质、保号性质等。
高考数学应试技巧之多元函数微积分在高考数学中,微积分是一个非常重要的考点,而多元函数微积分更是其中难度较大的一部分。
如何在应试中正确地解决多元函数微积分题目,成为了高考数学学习中必须要掌握的技巧之一。
本文将从多角度为大家详细介绍多元函数微积分的应试技巧。
一、掌握多元函数基础知识学习多元函数微积分首先要掌握的是多元函数的基础知识。
这包括多元函数的定义、极限、连续性、偏导数、全微分等知识点。
只有弄清这些概念,才能更好地应对多元函数微积分题目的解题过程。
二、熟悉多元函数的空间几何意义在学习多元函数微积分的过程中,深入理解多元函数的空间几何意义是非常重要的。
例如,掌握多元函数图像的生成方法,可以更好地分析题目,减少出错的概率。
此外,在进行积分运算时,如果能够准确地得到多元函数的空间几何意义,不仅可以提高计算效率,而且可以更好地理解和应用积分运算。
三、掌握多元函数的求导技巧掌握多元函数的求导技巧是应对多元函数微积分题目的基本技能。
在多元函数求导的过程中,需要熟练掌握链式法则、偏导数的基本性质,以及复合函数、隐函数求导等技巧。
只有在掌握了这些求导技巧的基础上,才能在应试中更好地解决多元函数微积分的问题。
四、熟练掌握多元函数的积分技巧在进行高考数学考试中,多元函数的积分是难点之一。
在多元函数的积分过程中,需要熟练掌握重积分的求解方法、积分区域的确定、变量替换、对称性等基本技巧。
只有在掌握了这些技巧的基础上,才能更好地应对高考数学难度较高的多元函数微积分问题。
五、应用多元函数微积分的思维方法除了熟练掌握多元函数微积分的基本知识和技巧之外,合理应用多元函数微积分的思维方法也是应对高考数学考试的一个重要因素。
例如,在解决多元函数微积分题目时,可以通过寻找对称性、选择合适的坐标系等方法来简化题目。
此外,采用反证法、假设法等思维方法也能够帮助学生更好地解决多元函数微积分问题。
总之,在高考数学的学习过程中,掌握多元函数微积分的应试技巧是非常必要的。
10多元函数积分中的三个公式计算及运用在高等数学中,多元函数积分是一个重要的概念,它在应用数学、物理学等领域中都有着广泛的应用。
为了更好地理解和应用多元函数积分,李正元考研高数基础讲义中介绍了十个多元函数积分的基本公式,其中有三个是重要且常用的公式,它们分别是重积分的线性性、变量代换公式和极坐标系下的积分公式。
首先是重积分的线性性。
重积分的线性性是指如果f(x,y)和g(x,y)是定义在闭区域D上的可积函数,c1和c2是常数,那么c1f(x,y)+c2g(x,y)也是定义在D上的可积函数,并且有以下成立的公式:∫∫D [c1f(x, y) + c2g(x, y)]dxdy = c1∫∫D f(x, y)dxdy +c2∫∫D g(x, y)dxdy这个公式的运用非常广泛,在对多元函数进行积分时经常会用到。
其次是变量代换公式。
在计算多元函数积分时,有时可以通过进行变量代换来简化计算。
设有从平面区域D到平面区域D'的可导函数变换x=x(u,v),y=y(u,v),且这个变换是一一对应,那么就有以下变量代换公式:∫∫D' f(x(u, v), y(u, v)),J(u, v),dudv = ∫∫D f(x,y)dxdy其中J(u,v)是变换的雅可比行列式,即J(u,v)=∂(x,y)/∂(u,v)=∂x/∂u*∂y/∂v-∂x/∂v*∂y/∂u。
这个公式在计算复杂的多元函数积分时非常有用,通过适当的变量代换可以将积分区域转化成更简单的形式,从而简化计算过程。
最后是极坐标系下的积分公式。
当积分区域是一个闭圆盘或圆环时,可以使用极坐标系来进行积分计算。
假设f(r,θ)是定义在圆盘或圆环内的连续函数,那么有以下公式成立:∫∫D f(r, θ)rdrdθ = ∫(θ=a to b) ∫(r=0 to R) f(r,θ)rdrdθ其中D表示积分区域,a和b是角度的取值范围,R是极坐标下的积分区域的半径。
多元函数的微积分多元函数微积分指的是对多元函数进行求导和积分的过程。
多元函数是含有多个自变量的函数,通常表示为f(x1, x2, ..., xn)。
在多元函数的微积分中,我们可以将每个自变量分别进行求导,得到偏导数。
偏导数告诉我们函数在一些自变量上的变化率。
此外,我们还可以对多元函数进行积分来计算函数在一定范围内的总量。
一、多元函数的偏导数1.偏导数的定义偏导数是多元函数对一些自变量的求导结果。
记多元函数f(x1,x2, ..., xn),则f对第i个自变量的偏导数定义为:∂f/∂xi = lim(h→0) (f(x1, x2, ..., xi + h, ..., xn) - f(x1,x2, ..., xi, ..., xn)) / h表示在其他自变量保持不变的条件下,f关于xi的变化率。
2.偏导数的计算对于多元函数的偏导数的计算,可以按照和一元函数求导的规则类似的方法进行。
对于每个自变量求导时,将其他自变量视为常数。
例如,对于二元函数f(x,y)=x^2+y^2,我们可以分别对x和y求偏导数。
对x求偏导数时,将y视为常数,得到∂f/∂x=2x。
对y求偏导数时,将x视为常数,得到∂f/∂y=2y。
3.偏导数的性质偏导数具有一些重要的性质。
例如,对于二阶连续可微函数,偏导数的次序可以交换,即:∂^2f/(∂x∂y)=∂^2f/(∂y∂x)这是因为二阶偏导数的定义中,先对x求导后对y求导与先对y求导后对x求导的结果是相等的。
二、多元函数的积分1.多元函数的积分概念2.定积分的计算对于多元函数的定积分,我们需要确定积分的区域或曲面,并进行适当的参数化和积分限的确定。
计算定积分时,可以按照类似于一元函数的积分法进行。
例如,对于二元函数f(x,y),我们可以通过对x或y的积分将其化简为一元函数的积分。
例如,对于三元函数f(x,y,z)=x^2+y^2+z^2,在三维空间中表示一个球体。
我们可以计算球体的体积,即球体上的函数f(x,y,z)在整个球体上的积分。
多元函数分部积分法公式多元函数分部积分法公式是一种用于计算多元函数积分的方法。
通常情况下,多元函数分部积分公式应用于数学和物理学等领域,可以帮助数学家和物理学家准确计算一个多元函数的积分值。
本文将介绍多元函数分部积分法公式的定义和公式,以及如何应用多元函数分部积分法公式计算多元函数的积分值。
一、什么是多元函数分部积分法公式多元函数分部积分法公式又被称为分部积分法,它是一种常见的积分计算方法。
它可以帮助我们准确无误地计算多元函数积分的值。
多元函数分部积分公式可以表示为:∫abf(x)dx=∑nk=1aib(f),其中,a是多元函数f(x)的下限,b是多元函数f(x)的上限,n是多元函数f(x)的积分步数,i是多元函数f(x)积分时,分割点的位置,介于a到b之间。
二、如何计算多元函数分部积分法公式?1、选择积分步数n:积分步数n是积分时的重要准备,它指的是将区间[a,b]等分为n个小段,对每一段区间取固定点代入公式进行计算。
n越大积分精度越高,而且计算量越大。
因此,根据需要结合准确度与计算量灵活选择n值,以保证积分的准确性与可行性。
2、计算每一段小区间的积分值:当选择完积分步数n后,就可以计算每一段小区间的积分值了。
此时,先在每一段小区间中选择一个点,分别代入已定义的f(x)函数,计算每一段小区间的积分值。
三种常用的中心点是:左点、中点和右点,其积分值分别为:ai(fL)、ai(fM)和ai(fR)。
3、利用多元函数分部积分法公式计算总积分值:将n段小区间的积分值相加,便可以得到该区间上多元函数的总积分值,即总分值=∑nk=1aib(f)。
三、总结多元函数分部积分法公式是一种计算多元函数积分的方法,它可以帮助我们准确计算一个多元函数的积分值。
多元函数分部积分公式可以表示为:∫abf(x)dx=∑nk=1aib(f)。
为了计算一个多元函数的总积分值,需要根据积分步数n联合计算每一段小区间的积分值,然后把所有的小区间的积分值加起来便可以求出总积分值。
第10章 多元函数积分的计算方法与技巧
一、二重积分的计算法
1、利用直角坐标计算二重积分
假定积分区域D 可用不等式 a x b x y x ≤≤≤≤ϕϕ12()()表示,
其中ϕ1()x , ϕ2()x 在[,]a b 上连续.
这个先对y , 后对x 的二次积分也常记作
f x y d dx f x y dy D
a
b
x x (,)(,)()
()σϕϕ⎰⎰⎰⎰=12
如果积分区域D 可以用下述不等式
c y
d y x y ≤≤≤≤,()()φφ12
表示,且函数φ1()y ,φ2()y 在[,]c d 上连续,f x y (,)在D 上连续,则
f x y d f x y dx dy dy f x y dx D y y c d
c d y y (,)(,)(,)()()()()σφφφφ⎰⎰⎰⎰⎰⎰=⎡⎣⎢⎢⎤
⎦
⎥⎥=1212 (2)
显然,(2)式是先对x ,后对y 的二次积分.
积分限的确定
几何法.画出积分区域D 的图形(假设的图形如下 )
在],[b a 上任取一点x ,过x 作平行于y 轴的直线,该直线穿过区域D ,与区域D 的边界有两个交点))(,(1x x ϕ与))(,(2x x ϕ,这里的)(1x ϕ、)(2x ϕ就是将x ,看作常数而对y 积分时的下限和上限;又因x 是在区间[,]a b 上任意取的,所以再将x 看作变量而对x 积分时,积分的下限为a 、上限为b .
例1计算xyd D
⎰⎰σ, 其中D 是由抛物线y x 2=及直线y x =-2
所围成的区域.
D y y x y :,-≤≤≤≤+1222
xyd dy xydx x y dy D y y y y σ⎰⎰⎰⎰⎰==⎡⎣⎢⎤
⎦⎥-+-+12
2
212
2
2
212
[]
=+-=-⎰122458
25
12y y y dy () 2.利用极坐标计算二重积分 1、rdrd θ就是极坐标中的面积元素.
x r →cos θ
y r →sin θdxdy rdrd →θ
f x y dxdy
D
(,)⎰⎰f r r rdrd D
(cos ,sin )θθθ⎰⎰
2、极坐标系中的二重积分, 可以化归为二次积分来计算.
αθβϕθϕθ≤≤≤≤12()()r
其中函数ϕθ1(), ϕθ2()在[,]αβ上连续.
则
f r r rdrd d f r r rdr
D
(cos ,sin )(cos ,sin )()
()
θθθθθθα
β
ϕθϕθ⎰⎰⎰⎰=12
注:本题不能利用直角坐标下二重积分计算法来求其精确值. 3、使用极坐标变换计算二重积分的原则
(1)、积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 ); (2)、被积函数表示式用极坐标变量表示较简单( 含()x y 22+α, α为实数 ). 例6计算I dx
dy
x y a x y a a
x
a a x =+⋅-+>⎰⎰
--+-022*******
()
()
解此积分区域为
D x a x y a a x :,022≤≤-≤≤-+- 该区域在极坐标下的表示形式为
D r a :,sin -≤≤≤≤-π
θθ4002
I rdrd r a r
d dr
a r r a d D
a a =-=-=⎡
⎣⎢⎤⎦⎥⎰⎰
⎰⎰
⎰----
θ
θ
θπθθ
π4422
2
4
220
2024
sin sin arcsin
=-=-=
--⎰()θθθππ
πd 4
024
2
1232
二、三重积分的计算 1、积分区域Ω可表示成
a x
b y x y y x z x y z z x y ≤≤≤≤≤≤,()(),(,)(,)1212
则 f x y z dv dx dy
f x y z dz a
b
y x y x z x y z x y (,,)(,,)()()
(,)
(,)Ω
⎰⎰⎰⎰⎰⎰=1212
这就是三重积分的计算公式, 它将三重积分化成先对积分变量z , 次对y ,最后对x 的三次积分.
例1计算xyzdxdydz Ω
⎰⎰⎰, 其中Ω为球面x y z 2221++=及三坐
标面所围成的位于第一卦限的立体.
解 Ω在xoy 面上的投影区域为 D x y x y xy :,,22100+≤≥≥ 确定另一积分变量的变化范围
0122≤≤--z x y
选择一种次序,化三重积分为三次积分
⎰
⎰⎰⎰⎰⎰⎰⎰----Ω--==2
2
22
10
221
10
10
1
0)1(2
1
x y x x dy y x xy dx
xyzdz
dy dx
xdydz
xyzd
dx
x x x x x x dx xy y x xy dy xy y x xy dx
x x ⎰⎰⎰
⎰⎥⎦⎤⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--=--1
0222
32101
0423210
3
31
0)1(81)1(41)1(4
181414
1)2
12121(2
2
48
12462481246224124241cos sin 8
1cos sin 41cos sin 41cos cos sin 81cos sin 41cos sin 4
12
05203
332
02
04232=⋅⋅⋅⋅
-⋅⋅⋅⋅-⋅⋅=--=⎥⎦⎤
⎢⎣⎡--=⎰⎰⎰⎰π
ππ
π
tdt
t tdt t dt t tdt
t t t t t t 2、利用柱面坐标计算三重积分 点
M 的直角坐标与柱面坐标之间有关系式x r y r z z
===⎧⎨⎪⎪
⎩⎪⎪cos sin θθ
体积为dv rdrd dz =θ
这便是柱面坐标系下的体积元素, 并注意到(1)式有
f x y z dv f r r z rdrd dz (,,)(cos ,sin ,)Ω
Ω
⎰⎰⎰⎰⎰⎰=θθθ
3、利用球坐标计算三重积分
直角坐标与球面坐标间的关系为
x r y r z r ===⎧⎨⎪
⎩⎪sin cos sin sin cos ϕθϕθϕ dv r drd d =2sin ϕϕθ
这就是球面坐标系下的体积元素。
⎰⎰⎰⎰⎰⎰Ω
Ω
=θϕϕϕθϕθϕd drd r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2。