多元函数积分学复习
- 格式:pdf
- 大小:265.52 KB
- 文档页数:16
高三数学知识点:多元函数和多元微积分1. 多元函数1.1 定义多元函数是指含有两个或两个上面所述变量的函数。
通常表示为f(x1,x2, ..., xn),其中x1, x2, ..., xn是变量,称为自变量。
1.2 多元函数的图形多元函数的图形是多元函数的图像。
在平面上,我们可以画出二元函数的图像。
对于二元函数f(x, y),我们可以固定一个变量的值,然后画出另一个变量的值随该变量变化的曲线。
这些曲线称为等值线。
1.3 多元函数的偏导数多元函数的偏导数是指对一个变量的导数,而将其他变量视为常数。
对于函数f(x1, x2, ..., xn),其偏导数可以表示为:•∂f/∂x1:表示对x1的偏导数。
•∂f/∂x2:表示对x2的偏导数。
•∂f/∂xn:表示对xn的偏导数。
1.4 多元函数的极值多元函数的极值是指在某个区域内,函数取得最大值或最小值的情况。
通过求偏导数并解方程组,可以找到多元函数的极值。
2. 多元微积分2.1 多元积分多元积分是指对多元函数进行积分。
根据积分变量的不同,可以分为二重积分、三重积分和四重积分等。
2.1.1 二重积分二重积分是指对二元函数在某个区域上进行积分。
其一般形式为:∫∫_D f(x, y) dA其中,D表示积分区域,f(x, y)是被积函数,dA是面积元素。
2.1.2 三重积分三重积分是指对三元函数在某个区域上进行积分。
其一般形式为:∫∫∫_D f(x, y, z) dV其中,D表示积分区域,f(x, y, z)是被积函数,dV是体积元素。
2.1.3 四重积分四重积分是指对四元函数在某个区域上进行积分。
其一般形式为:∫∫∫∫_D f(x, y, z, w) dV其中,D表示积分区域,f(x, y, z, w)是被积函数,dV是体积元素。
2.2 向量微积分向量微积分包括向量的导数和向量的积分。
2.2.1 向量的导数向量的导数是指对向量场的导数。
对于向量场F(x, y, z),其导数可以表示为:∂F/∂x, ∂F/∂y, ∂F/∂z2.2.2 向量的积分向量的积分是指对向量场进行积分。
第九讲:多元函数积分学1. 定义设()f x y ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域12n σσσ∆∆∆,,,,对小区域()12k k n σ∆=,,上任意取一点()k k ξη,都有()01lim nk k k d k f ξησ→=∆∑,存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而1max k k nd d ≤≤=),则称这个极限值为()f x y ,在区域D 上的二重积分,记以()Df x y d σ⎰⎰,这时就称()f x y ,在D 上可积,如果()f x y ,在D 上是有限片上的连续函数,则()f x y ,在D 上是可积的。
2. 几何意义当()f x y ,为闭区域D 上的连续函数,且()0f x y ≥,,则二重积分()Df x y d σ⎰⎰,表示以曲面()z f x y =,为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。
当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()2z f x y =,,下半曲面方程为()1z f x y =,,则封闭曲面S 围成空间区域的体积为()()21Df x y f x y d σ-⎡⎤⎣⎦⎰⎰,, 3. 基本性质 (1)()()() DDkf x y d k f x y d k σσ=⎰⎰⎰⎰,,为常数(2)()()()()DDDf x yg x y d f x y d g x y d σσσ±=±⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰,,,, (3)()()()12DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,,,其中12D D D =。
除公共边界外,1D 与2D 不重叠。
(4)若()()()f x y g x y x y D ≤∈,,,,,则()()DDf x y dg x y d σσ≤⎰⎰⎰⎰,,(5)若()()m f x y M x y D ≤≤∈,,,,则 ()DmS f x y d MS σ≤≤⎰⎰,其中S 为区域D 的面积 (6)()()DDf x y d f x y d σσ≤⎰⎰⎰⎰,,(7)积分中值定理,设(),f x y 在有界闭区域D 上连续,S 为D 的面积,则存在(),D ξη∈,使得()()Df x y d f S σξη=⎰⎰,,我们也把()1Df x y d S σ⎰⎰,称为()f x y ,在D 上的积分平均值。
高中数学知识点多元函数微积分高中数学知识点:多元函数微积分数学是一门充满魅力的学科,是一种日常生活中必不可少的学问。
而在高中数学中,多元函数微积分是一个十分重要的知识点,也是理所当然的。
在本文中,我们将探讨多元函数微积分的相关知识。
一、函数的概念在数学中,函数是指每个自变量对应一个唯一的因变量的规则。
其中,自变量表示不同的变量,而因变量表示任何由自变量产生的结果。
在函数中,自变量和因变量的关系可以用一个方程或者一张图表来表示。
二、多元函数在二元函数中,函数的自变量和因变量是二维的,通常用 (x,y) 表示。
同样的,在多元函数中,函数的自变量和因变量可以是任意维度的向量,而多元函数在图像上可以画出一个三维图像。
三、多元函数的微积分在学习多元函数微积分时,我们需要掌握很多基本概念。
其实,微积分就是计算函数导数和积分的算法。
在多元函数中,导数可以理解为瞬时速度或瞬时变化率。
而在三维空间中,导数也可以表示为切向量的方向。
对于多元函数 f(x,y),我们可以把它的微分表示成df = ∂f/∂x dx + ∂f/∂y dy。
其中,∂f/∂x 和∂f/∂y 是偏导数,分别对应自变量 x 和y。
微分也可以用来表示函数的局部线性逼近。
因此,我们可以通过微分来计算多元函数的斜率和切角。
四、多元函数的求极限在计算多元函数极限时,我们需要用到极限的三个特性:唯一性、保序性和有界性。
此外,我们还需要掌握一些极限的常用公式和技巧。
例如,当两个无穷小的乘积趋近于零时,我们可以使用 L'Hopital 法则来解决。
五、多元函数的最大值和最小值在多元函数中,我们常常需要求解最大值和最小值,这些值对于优化和排课等问题都非常重要。
通常我们可以使用一些基本的极值定理来解决这些问题。
例如,当函数的偏导数等于零时,函数的值最大或最小。
此外,我们还可以使用拉格朗日乘数法求解非约束性最大值和最小值。
六、多元函数应用多元函数在模拟现实问题时有着广泛的应用。
第六章 多元函数积分学一.重积分例1:将⎰⎰=Dd y x f I σ),(用两种积分次序表为二次积分。
(1)D :由曲线1,21,0,8222====+y y x y y x 所围; (2)⎩⎨⎧≤≤-≤≤axy x ax ax D 2220:2例2:交换二次积分⎰⎰xdy y x f dxsin 020),(π的顺序。
例3:计算二次积分⎰⎰xxdy yxdx 2sin21π⎰⎰+2422sinxdy yxdx π例4:计算二次积分+⎰⎰--yxR y dx e dy e 0222⎰⎰---22222y R x RR ydx edy e例5:计算二重积分⎰⎰=Dydxdy I ,其中D 是由直线2,0,2==-=y y x 以及曲线22y y x --=所围成的平面区域。
(答案:24π-)例6:计算二重积分⎰⎰-=Ddxdy x y I 2,其中D 是由直线2,1,1=-==y x x 和x 轴所围成的平面区域。
(答案:352+π) 例7:设)(t f 在),0[+∞上连续,且 +=1)(t f ⎰⎰≤+⎪⎭⎫ ⎝⎛+22242221t y x dxdy y x f 求)(t f (答案:24)(t e t f π=)例8:设闭区域D :.0,22≥≤+x y y x ),(y x f 为D 上的连续函数,且 ---=221),(y x y x f ()⎰⎰Ddudv v u f ,8π求),(y x f (答案:---=221),(y x y x f ⎪⎭⎫ ⎝⎛-32234ππ) 例9:计算二重积分⎰⎰+=Ddxdy y x I 22,其中D 由圆轴及直线x x y x y x ==+,222所围成的平面区域。
(答案:2910) 例10:设D 是xoy 平面上以)1,1(),1,1(),1,1(---为顶点的三角形区域,1D 是D 在第一象限部分,则⎰⎰+Ddxdy y x xy )sin cos (等于)(A ⎰⎰1sin cos 2D ydxdy x )(B ⎰⎰12D xydxdy)(C ⎰⎰+1)sin cos (4D dxdy y x xy 0)(D例11:计算⎰⎰++++++=Ddxdy y x x x y y I 22211ln 1)( 其中}01{22≥≤+=y y x y x D ,),(。
多元函数的积分在数学中,多元函数的积分是一个重要的概念和计算方法。
与一元函数的积分不同,多元函数的积分需要考虑多个自变量和相应的积分变量。
一、多元函数的积分定义对于二元函数f(x, y),其在有界闭区域D上的积分可以定义为:∬f(x, y)dA = limΔx,Δy→0 Σf(xi, yj)ΔA其中,Δx和Δy分别表示x和y方向的分割长度,Σ表示对所有的(i, j)求和,xi和yj表示分割后的小区域的任意点,ΔA表示小区域的面积。
对于n元函数f(x1, x2, ..., xn),其在有界闭区域D上的积分可以定义为:∭f(x1, x2, ..., xn)dV = limΔx1,Δx2,...,Δxn→0 Σf(x1i, x2j, ..., xnk)ΔV其中,Δx1, Δx2, ..., Δxn分别表示各个方向的分割长度,Σ表示对所有的(i1, i2, ..., in)求和,x1i, x2j, ..., xnk表示分割后小区域的任意点,ΔV表示小区域的体积。
二、多元函数的积分计算与一元函数的积分类似,对于多元函数的积分计算也需要借助于定积分的性质、微积分的基本定理和换元积分法等方法。
1. 球坐标和柱坐标对于具有某种对称性的多元函数,可以选择适当的坐标系来简化积分计算。
常用的坐标系有球坐标和柱坐标。
球坐标系适用于具有球对称性的问题,对于三元函数可以表示为:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ其中,r代表点到坐标原点的距离,θ表示点与正z轴的夹角,φ表示点在xy平面上与正x轴的夹角。
柱坐标系适用于具有柱对称性的问题,对于三元函数可以表示为:x = rcosθ, y = rsinθ, z = z其中,r代表点到z轴的距离,θ表示点在xy平面上与正x轴的夹角,z表示点在z轴上的坐标。
2. 积分的性质多元函数的积分具有类似于一元函数积分的一些性质,如线性性质、可加性质、保号性质等。
高中数学知识点多元函数微积分应用在高中数学学习中,多元函数微积分是一个非常重要的知识点。
多元函数微积分可以用来研究多元函数的导数、极值、曲线、曲面、变化率、微分、积分等等,具有广泛的应用。
本文将探讨多元函数微积分在实际中的应用。
一、多元函数的导数和极值多元函数的导数不仅可以用于研究函数的变化率,还可以指导实际生活中的问题。
例如,在物理学中,速度就是位移对时间的导数,加速度就是速度对时间的导数。
利用这些知识,可以研究行人、汽车、火车、飞机等移动物体的速度和加速度问题。
一般来说,多元函数的极值是在优化问题中经常用到的,例如,求解一个开销最小的问题,或者求解一个最大利润的问题。
例如,存在一个工厂需要购买原材料和粉尘,对于这个问题,我们可以建立一个多元函数模型,以此求出最优方案。
这个方案的最小值或者最大值就是整个问题的解。
二、曲线和曲面多元函数也可以用来研究曲线和曲面等几何问题。
例如,在计算机图形学中,平面和立体的图形都是由曲线和曲面组成的。
利用多元函数微积分,可以研究图形的曲率、曲面的法向量等几何问题。
在物理学中,曲率也有着非常重要的应用。
例如,曲率可以用来研究弯曲物体的形态,如桥梁、大棚、玻璃等的形态。
三、微分和积分微分是多元函数微积分中的另一个重要概念。
它的主要作用是确定一个函数的局部变化率和切线方程,进而可以用来解决各种实际问题。
例如,微分可以用来确定一个物体在某个瞬间的位置、速度和加速度。
积分也是多元函数微积分中的一个重要概念。
它可以用来求解面积、体积、质量、重心等问题。
例如,在建筑工程中,如何确定一个建筑物的体积?在机械制造中,如何确定一个机器的质量和重心?这些问题都可以通过积分来求解。
总之,多元函数微积分的应用范围非常广泛,可以用来研究各种实际问题。
在生活中,我们经常遇到需要用到多元函数微积分来解决的问题。
掌握了多元函数微积分的相关知识,对我们的生活和工作都有显著的帮助。
一份好的考研复习资料,会让你的复习力上加力。
中公考研辅导老师为考生准备了【高等数学-多元函数积分学知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。
多元函数积分学综述:多元函数积分学是对一元函数的不定积分与定积分相关知识的推广,主要涉及重积分和曲线、曲面积分的计算与应用.本章在考研数学数学一的考试中所占的比重非常大,一般来说,每次考试平均会出两道大题、一道小题,所占分值在24分左右.本章的主要知识点有:各种积分(二重积分、三重积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分)的定义与性质,各种积分的基本计算方法,联系各种积分的公式(格林公式,高斯公式,斯托克斯公式),以及场论的一些初级的知识.考生复习的时候要注意:1.定积分是所有积分的基础,计算其它积分本质上也是在计算定积分,而所有积分定义本质上也都是和定积分一致的.2.具体地来说,计算二重积分等价于计算两次定积分,计算三重积分等价于计算三次定积分.对于重积分,考生主要要掌握各种坐标的定限方法和适用范围.3.而对弧长和对坐标的曲线积分的计算本质上也都是定积分的计算.其中,考试对对弧长的曲线积分要求较低,只需掌握计算公式即可.而对对坐标的曲线积分,除了要掌握计算公式,还需要理解它和对弧长的曲线积分之间的关系,更重要的还需要掌握格林公式以及由它所引申出的积分与路径无关的条件以及二元函数的全微分等知识点.这是本章的第一个重点.4.然后,对面积的曲面积分和对坐标的曲面积分的计算本质上是二重积分的计算.其中考试对对面积的曲面积分要求较低,掌握计算公式即可.对坐标的曲面积分这一块考点较多:首先要掌握基本的计算公式和两类曲面积分之间的关系,然后还需要重点掌握高斯公式以及斯托克斯公式的应用.这是本章的另一个重点.本章常考的题型有:1.二重积分的计算,2.三重积分的计算;3.对弧长的曲线积分的计算;4.极对坐标的曲线积分的计算,5.格林公式的应用,6.对积分与路径无关的条件的考查,7.二元函数的全微分,8.对面积的曲面积分的计算,9.对坐标的曲面积分的计算,10.高斯公式的应用,11.斯托克斯公式的应用,12.综合应用,13.场论初步.常考题型一:二重积分的定义与性质常考题型一:二重积分的性质1.【2005—3 4分】 设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(, 其中}1),{(22≤+=y x y x D ,则( )()A 123I I I >>. ()B 321I I I >>. ()C 312I I I >>. ()D 213I I I >>.常考题型二:二重积分的计算1.交换积分次序2.【2004-1 4分】设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于( )()A11()dx f xy dy -⎰⎰()B 22()dy f xy dx ⎰⎰()C 2sin 20(sin cos )d f r dr πθθθθ⎰⎰()D 2sin 20(sin cos )d f r rdr πθθθθ⎰⎰3.【2007-2 4分】设函数(,)f x y 连续,则二重积分1sin 2d (,)d xx f x y y ππ⎰⎰等于( )()A 10arcsin d (,)d yy f x y x ππ+⎰⎰()B 10arcsin d (,)d yy f x y x ππ-⎰⎰()C 1arcsin 02d (,)d yy f x y x ππ+⎰⎰()D 1arcsin 02d (,)d yy f x y x ππ-⎰⎰4.【2009-1 4分】设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰()B ()241,xxdx f x y dy -⎰⎰()C ()2411,ydy f x y dx-⎰⎰()D ()221,ydy f x y dx ⎰⎰5.【2004-1 4分】设()f x 为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于()()A ()22f ()B ()2f ()C ()2f -()D 06.【2001-1 3分】交换二次积分的积分次序:()0112,ydy f x y dx --=⎰⎰.7.【2002—3 4分】交换积分次序:()()111422104,,yydy f x y dx dy f x y dx +=⎰⎰⎰8.【2014—3 4分】二次积分2211()________.x y yedy e dx x-=⎰⎰ 【小结】:交换积分次序的一般步骤:根据现有的积分次序画出积分区域;选择另一种次序确定上下限、写出新的累次积分,如果有必要,可以分类讨论.2.直接利用直角坐标计算二重积分9.【1999-3】设(,)f x y 连续,且(,)(,)Df x y xy f u v dudv =+⎰⎰,其中D 是由20,,1y y x x ===所围成的区域,则(,)f x y 等于 ( )(A)xy (B)2xy (C)18xy +(D)1xy + 10.【2003-4】设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.11.【2005-1 9分】计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .12.【2008-1 11分】求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤13.【2011-1 11分】已知函数(,)f x y 具有二阶连续偏导数,且(1,)0,(,1)0f y f x ==,(,)Df x y dxdy a=⎰⎰,其中{(,)|01,01}D x y x y =≤≤≤≤计算二重积分(,)xy DI xyf x y dxdy ''=⎰⎰14.【1998—3 7分】计算二重积分Dydxdy ⎰⎰,其中D 是由直线2,0,2x y y =-==以及曲线x =.15.【2001—3 6分】求二重积分()22121x y Dy xe dxdy +⎡⎤+⎢⎥⎣⎦⎰⎰的值,其中D 是由直线,1y x y ==-,1x =围成的平面区域.16.【2006—3 7分】计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.17.【2012—3 10分】计算二重积分x De xydxdy ⎰⎰,其中D为由曲线y =与y =所围区域。
多元函数积分学总结多元函数积分学是一元函数积分学的拓展与延伸,包括二重积分、三重积分、曲线积分、曲面积分。
❖ 几何意义:曲顶柱体的体积❖ 性质:线性性质、可加性、单调性、估值性质、中值定理 ❖ 计算方式:x 型、y 型、极坐标(22y x +)❖ 常见计算类型:① 选择积分顺序:能积分、少分块② 交换积分顺序:确定积分区域→交换积分顺序→开始积分③ 利用对称性简化计算:要兼备被积函数和积分区域两个方面,不可误用。
④ 极坐标系下的二重积分的定限:极点在积分区域内(特殊:与x 轴相切、与y 轴相切)、极点不在积分区域内⑤ 其他:利用几何意义、含绝对值时先去绝对值、分段函数、概率积分 ❖ 了解“积不出来函数”:dx x ⎰)cos(2、dx e x ⎰-2、dx x ⎰ln 1、dx xx⎰sin ❖ 概率积分例题展示 证明22π=⎰∞+-dx ex证:令=)(x f 2x e-① 易证)()(x f x f -=⇒)(x f 为偶函数⇒212=⎰+∞-dx exdx ex2⎰+∞∞--(奇偶对称性、轮换对称性、周期性→简化计算) ② 已知dx e x ⎰-2为“积不出来函数”,所以改变我们所求目标函数dx e x2⎰+∞∞--的形式令=w dx ex2⎰+∞-412=w •dx e x 2⎰+∞∞--41=dxdx e x x⎰⎰+∞∞-+-+∞∞-)(22(了解“积不出来函数”,增强目标意识,适当转化目标函数形式)③ 令其中一个x 变成y ,构造22y x + 2w 41=dxdy e y x⎰⎰+∞∞-+-+∞∞-)(22④ 将θcos r x =,θsin r y =带入上一步的2w 易得),0(+∞∈r ,)2,0(π∈θ 2w =θdrd e r r ⎰⎰-+∞•π20241=⎰⎰+∞-•π2002θd dr er r2021212dr e r •=⎰+∞-π2021212lim dr e br b •=⎰-+∞→π)1(21212lim --=-+∞→b b e ππ41==⇒w 2π 即220π=⎰∞+-dx e x成立(极坐标系⇔直角坐标系,选择合适的积分次序将二重积分⇔二次积分,了解广义定积分)(此类积分为概率积分 bdt e bdx et bxπ211022⎰⎰∞+-∞+-==)。