2018年高考数学常见题型解法归纳反馈训练第03讲函数的值域(最值)的常见求法(2)
- 格式:doc
- 大小:4.79 MB
- 文档页数:18
函数的值域与最值【考纲说明】1.理解值域和最值的区别与联系,掌握求函数值域和最值的基本方法; 2.通过函数最值求参数的范围,同时解决恒成立问题;【知识梳理】2.函数的值域1、函数值域的概念在函数y=f (x )中,与自变量x 的值对应的y 值叫做函数值。
函数值的集合叫做函数的值域。
2、确定函数值域的原则(1)当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;(2)当函数y=f (x )用图像给出时,函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合; (3)当函数y=f (x )用解析式给出时,函数的值域由函数的定义域及其解析式唯一确定; (4)当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定; 3、常见函数的值域(1)一次函数y=kx+b (k ≠0)的值域为R ;(2)二次函数y=ax 2+bx+c (a ≠0),当a>0时值域为]44(0);44[022ab ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时 (3)反比例函数y=xk(x ≠0)的值域为{}R y y y ∈≠且,0| (4)指数函数)10(≠>=a a a y x且的值域为),0(+∞。
(5)对数函数)10(log ≠>=a a x y a 且的值域为R ;(6)正弦函数x y sin =,余弦函数x y cos =的值域都是]1,1[-。
(7)正切函数),2(tan Z k k x x y ∈≠=∏+∏其中,cot x y =),(Z k k x ∈≠π的值域为R 。
3.函数的最值1、函数的最值一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: (1)①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。
那么,称M 是函数y =f (x )的最大值。
记作()max 0y f x =一、①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。
考点十二:导数与函数的极值与最值【考纲要求】(1)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 【命题规律】利用导数研究函数的极值与最值是高考的热点问题,近2年在高考中大批量的出现,常常会考查利用导数研究含参函数的单调性,极值综合考查,有时出现在做题过程中.预计2018年的高考将会在大题中考查利用导数研究函数的极值与最值,命题形式会更加灵活、新颖. 【典型高考试题变式】 (一)函数的极值的意义例1.【2017全国2卷(理)】若2x =-是函数()()21`1e x f x x ax -=+-的极值点,则()f x 的极小值为( ).A.1-B.32e -- C.35e - D.1 【答案】A【方法技巧归纳】对于可导函数,导数为0的点不一定是极值点.函数)(x f y =在0x x =处取极值的充要条件应为(1))('0=x f ,(2)在x x =左右两侧的导数值的符号相反.从解题的规范性和正确性角度出发,求类似问题最后都要进行检验.【变式1】【改编例题的问法,辨别极值与零点的不同】【2015陕西卷理科】对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .1-是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值 D .点(2,8)在曲线()y f x =上 【答案】A【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b'=+,因为1是()f x 的极值点,3是()f x 的极值,所以()()1013f f '=⎧⎪⎨=⎪⎩,即203a b a b c +=⎧⎨++=⎩,解得:23b a c a =-⎧⎨=+⎩,因为点()2,8在曲线()y f x =上,所以428a b c ++=,即()42238a a a +⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .【变式2】【改变例题的问法,通过极值问题求参数的范围】【2014全国2卷理科】设函数()3sin xf x m π=.若存在()f x 的极值点x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A.()(),66,-∞-⋃∞B.()(),44,-∞-⋃∞C.()(),22,-∞-⋃∞ D.()(),11,-∞-⋃∞【答案】C(二)求函数的极值例2.【2017全国2卷理】已知函数()2ln f x ax ax x x=--,且()0f x(1)求a ; (2)证明:()f x 存在唯一的极大值点x ,且()220e 2f x --<<.【答案】(1)1a =;(2)答案见解析. 【解析】(1)因为()()ln 0f x x ax a x =--,0x >,所以ln 0ax a x --.令()ln g x ax a x=--,则()10g =,()11ax g x a x x -'=-=,当0a 时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <;当0a >时,令()0g x '=,得1x a =.当10x a <<时,()0g x '<,()g x 单调递减;当1x a >时,()0g x '>,()g x 单调递增.若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单递调递减,()110g g a ⎛⎫<= ⎪⎝⎭; 若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调递增,()110g g a ⎛⎫<= ⎪⎝⎭; 若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭,()0g x ≥.综上,1a =. (2)()2ln f x x x x x=--,()22ln f x x x'=--,0x >.令()22ln h x x x=--,则()1212x h x x x -'=-=,0x >.令()0h x '=得12x =,当102x <<时,()0h x '<,()h x 单调递减;当12x >时,()0h x '>,()h x 单调递增.所以()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭.因为()22e2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭,, 所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点. 设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,,因为()f x '在102⎛⎫⎪⎝⎭,上单调递减,所以当00x x <<时,()0f x '>,()f x 单调增;当012x x <<时,()0f x '<,()f x 单调递减.因此,0x 是()f x 的极大值点.因为,()f x '在12⎛⎫+∞ ⎪⎝⎭,上单调增,所以当212x x <<时,()0f x '<,()f x 单调递减,当2x x >时,()f x 单调递增,因此2x 是()f x 的极小值点.所以()f x 有唯一的极大值点0x .由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()24220e e e e f x f ---->=+>.因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014f x <.因此,()201e 4f x -<<.即()220e 2f x --<<.【方法技巧归纳】求函数极值的步骤:①求函数的定义域;②求出函数的导函数)('x f ;③解方程0)('=x f ,求出x 的值;④判定在定义域内导函数为0的点两侧的单调性,并求出在该点的原函数值;⑤先增后减位极大值点,先减后增为极小值点,两侧单调性相同,则该点不是极值点.【变式1】【改变例题的问法,通过极值求参数范围】【2017江苏卷】已知函数()()3210,f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:²3b a >; (3)若()f x ,()f x ' 这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)2239a b a =+,定义域为(3,)+∞;(2)答案见解析;(3)(]36,.【解析】(1)由32()1f x x ax bx =+++,得222()32333a a f x x ax b x b ⎛⎫'=++=++- ⎪⎝⎭.当3ax =-时,()f x '有极小值23a b-. 因为()f x '的极值点是()f x 的零点.所以331032793a a a ab f ⎛⎫-=-+-+= ⎪⎝⎭,又0a >,故2239a b a =+. 因为()f x 有极值,故()=0f x '有实根,从而()23127039a b a a -=-,即3a .3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根213=3a a b x ---,223=3a a b x -+-.列表如下x1(,)x -∞1x12(,)x x2x2(,)x +∞()f x ' + 0– 0+ ()f x极大值极小值故()f x 的极值点是12,x x.从而3a >,因此2239a b a =+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而()()32321211122211f x f x x ax bx x ax bx +=+++++++=()()()()2222121122121212323223333x x x ax b x ax b a x x b x x ++++++++++=346420279a ab ab --+=.记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以()213=9h a a a -+,3a >. 因为()223=09h a a a '--<,于是()h a 在(3,)+∞上单调递减.因为()76=2h -,于是()()6h a h ,故6a .因此a 的取值范围为(]36,.【变式2】【改编例题条件和问题,求解含参函数的极值】【2017山东理】已知函数()22cos f x x x=+,()()e cos sin 22x g x x x x =-+-,其中e 2.71828=是自然对数的底数.(1)求曲线()y f x =在点()(),f ππ处的切线方程;(2)令()()()()h x g x af x a =-∈R ,讨论()h x 的单调性并判断有无极值,有极值时求出极值.【答案】(1)222y x =π-π-;(2)当0a 时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增, 函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【解析】(1)由题意()22f π=π-,又()22sin f x x x'=-,所以()2f ππ'=,因此曲线()y f x =在点()(),f ππ处的切线方程为()()222y x -π-=π-π,即222y x =π-π-. (2)由题意得2()e (cos sin 22)(2cos )x h x x x x a x x =-+--+, 因为()()()()e cos sin 22e sin cos 222sin x x h x x x x x x a x x '=-+-+--+--=()()2e sin 2sin x x x a x x ---()()2e sin x a x x =--,令()sin m x x x=-,则()1cos 0m x x '=-,所以()m x 在R 上单调递增.因为(0)0m =,所以当0x >时,()0m x >,当0x <时,()0m x <.(i )当0a 时,e xa -0>当0x <时,()0h x '<,()h x 单调递减, 当0x >时,()0h x '>,()h x 单调递增,所以 当0x =时()h x 取得极小值,极小值是()021h a =--;(ii )当0a >时,()()()ln 2e e sin x ah x x x '=--由()0h x '=得 1ln x a =,2=0x①当01a <<时,ln 0a <, 当(),ln x a ∈-∞时,ln e e 0x a -<,()0h x '>,()h x 单调递增;当()ln ,0x a ∈时,ln e e 0x a ->,()0h x '<,()h x 单调递减; 当()0,x ∈+∞时,ln e e 0x a ->,()0h x '>,()h x 单调递增.所以 当ln x a =时()h x 取得极大值.极大值为()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,当0x =时()h x 取到极小值,极小值是()021h a =--;②当1a =时,ln 0a =, 所以当(),x ∈-∞+∞时,()0h x ',函数()h x 在(),-∞+∞上单调递增,无极值;③当1a >时,ln 0a >所以 当(),0x ∈-∞时,ln e e 0x a -<,()0h x '>,()h x 单调递增;当()0,ln x a ∈时,ln e e 0x a -<,()0h x '<,()h x 单调递减; 当()ln ,x a ∈+∞时,ln e e 0x a ->,()0h x '>,()h x 单调递增;所以 当0x =时()h x 取得极大值,极大值是()021h a =--;当ln x a =时()h x 取得极小值.极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.综上所述:当0a 时,()h x 在(),0-∞上单调递减,在()0,+∞上单调递增,函数()h x 有极小值,极小值是()021h a =--;当01a <<时,函数()h x 在(),ln a -∞和()0,ln a 和()0,+∞上单调递增,在()ln ,0a 上单调递减,函数()h x 有极大值,也有极小值,极大值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦,极小值是()021h a =--;当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值;当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增,在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是()021h a =--;极小值是()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦.【变式3】【根据函数在某处取得极值求参数范围】【2016山东文】设()()2ln 21f x x x ax a x =-+-,a ∈R.(1)令()()'g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 的取值范围.【答案】(1)当0≤a 时,函数()g x 单调递增区间为()0,+∞;当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)12a >.(2)由(1)知,()'10f =.①当0≤a 时, ()'f x 单调递增所以当()0,1x ∈时,()'0f x <,()f x 单调递减.当()1,x ∈+∞时,()'0f x >,()f x 单调递增.所以()f x 在1x =处取得极小值,不合题意.②当102a <<时,112a >,由(1)知()'f x 在10,2a ⎛⎫ ⎪⎝⎭内单调递增,可得当()0,1x ∈时,()'0f x <,11,2x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >, 所以()f x 在()0,1内单调递减,在11,2a ⎛⎫⎪⎝⎭内单调递增,所以()f x 在1x =处取得极小值,不合题意.③当12a =时,即112a =时,()'f x 在()0,1内单调递增,在()1,+∞内单调递减, 所以当()0,x ∈+∞时,()'0f x ,()f x 单调递减,不合题意.④当12a >时,即1012a << ,当1,12x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >,()f x 单调递增,当()1,x ∈+∞时,()'0f x <,()f x 单调递减,所以()f x 在1x =处取得极大值,合题意.综上可知,实数a 的取值范围为12a >.【变式4】【根据极值点的关系证明等式】【2016天津文】设函数b ax x x f --=3)(,x ∈R ,其中,a b ∈R . (1)求)(x f 的单调区间;(2)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ;(3)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于41.【答案】答案见解析【解析】(1)由3()f x x ax b =--,可得2()3f x x a '=-,下面分两种情况讨论: ①当0a时,有2()30f x x a'=-恒成立,所以()f x 在R 上单调递增.②当0a >时,令()0f x '=,解得3x =或3x =-.当x 变化时,()f x ',()f x 的变化情况如表所示.所以()f x 的单调递减区间为⎛ ⎝⎭,单调递增区间为,⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭.(3)证明:设()g x 在区间[1,1]-上的最大值为M ,max{,}x y 表示x ,y 两数的最大值,下面分三种情况讨论:①当3a 时,3311,33a a --<由()1知()f x 在区间[]1,1-上单调递减,所以()f x 在区间[]1,1-上的取值范围为[](1),(1)f f -,因此()(){}{}max 1,1max 1,1M f f a b a b =-=---+-={}max 1,1a b a b -+--1,01,0a b b a b b -+⎧=⎨--<⎩,所以1 2.M a b=-+②当334a <时,23332311a a aa-<-<<,由(1)和(2) 知233(1)a a f f f ⎛--= ⎝⎭⎝⎭,233(1)a a f f f ⎛⎛= ⎝⎭⎝⎭,所以()f x 在区间[1,1]-上的取值范围为33,33a a f f ⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以33max ,33a a M f f ⎧⎫⎛⎫⎛⎫⎪⎪=-= ⎪ ⎪⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭22max 3399a a a b a b ⎧⎫=⎨⎬⎩⎭2222331max 333||39999444a a a a b a b a b ⎧⎫=⨯⨯⨯=⎨⎬⎩⎭. ③当304a <<时,23332311a a a a -<<<<<,由(1)和(2)知,(1),f f f ⎛-<= ⎝⎭⎝⎭(1)f f f ⎛>= ⎝⎭⎝⎭, 所以()f x 在区间[]1,1-上的取值范围为()()1,1f f -⎡⎤⎣⎦, 因此()(){}=max 1,1M f f -={}max 1,1a b a b ---+-={}1max 1,114a b a b a b ---+=-+>.综上所述,当0a >时,()g x 在区间[]1,1-上的最大值不小于14.(三)求不含参函数的最值 例3.【2017北京卷理】已知函数()e cos x f x x x=-.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)求函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)1y =;(2)()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为(0)1f =,最小值为ππ22f ⎛⎫=-⎪⎝⎭. 【解析】(1)因为()e cos x f x x x =-,所以()e (cos sin )1xf x x x '=--,(0)0f '=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(2)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x xh x x x x x x '=---=-. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为(0)1f =,最小值为ππ22f ⎛⎫=-⎪⎝⎭. 【方法技巧归纳】在],[b a 上连续的函数)(x f 在],[b a 上必有最大值与最小值的步骤:①讨论单调区间;②判断极值;③极值与闭区间端点的函数值比较,最大的为最大值,最小的是最小值.【变式1】【在给定区间上求函数的最值】【2018河北石家庄二中八月模考】已知函数()()21xf x xe x=-+.(Ⅰ)当[]1,2x∈-时,求()f x的最大值与最小值;(Ⅱ)讨论方程()1f x ax=-的实根的个数.【答案】(1)最小值是()2ln21--,最大值是229e-;(2) 1a<-时,方程()1f x ax=-有1个实根;1a>-时,方程()1f x ax=-有3个实根.【解析】试题分析:(1)()()()12xf x x e=+-',明确函数的单调性,求出极值与端点值,比较后得最值;(2)方程()1f x ax=-的实根的个数即()2xg x e x a=---的图象与x轴的交点个数,分类讨论函数()g x的单调性,借助极值与0的关系确定交点个数. 试题解析:(Ⅰ)因为()()21xf x xe x=-+,所以()()()()()12112x xf x x e x x e=+-+=+-',令()0f x'=得121,ln2x x=-=,()(),f x f x'的变化如下表:() f x在[]1,2-上的最小值是()2ln21--,因为2211 290,0,29e ee e->---,所以()f x在[]1,2-上的最大值是229e-.(ⅰ)当10a -->时,即1a <-时, ()0g x =没有实根,方程()1f x ax =-有1个实根;(ⅱ)当10a --=时,即1a =-时, ()0g x =有1个实根为零,方程()1f x ax =-有1个实根;(ⅲ)当10a --<时,即1a >-时,()0g x =有2不等于零的实根,方程()1f x ax =-有3个实根.综上可得, 1a <-时,方程()1f x ax =-有1个实根; 1a >-时,方程()1f x ax =-有3个实根.求含参函数的最值例4.【2016全国2卷理】(1)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20;xx x -++>(2) 证明:当[0,1)a ∈ 时,函数()2e =(0)x ax a g x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】答案见解析【解析】(1)证明:由已知得,函数的定义域为由已知得, 2x ≠-.因为()2e 2xx f x x -=+,所以()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭.因为当x ∈()()22-∞--+∞,,时,()0f x '>,所以()f x 在()()22,-∞--+∞,和上单调递增, 所以当0x >时,()2e 0=12xx f x ->-+,所以()2e 20x x x -++>.(2)由已知得,()()()24e2e xxa x x ax a g x x ----'=()4e 2e 2=xxx x ax a x -++=()322e 2x x x a x x -⎛⎫+⋅+⎪+⎝⎭,[)01a ∈,.解法一:记()2e 2xx h x a x -=++,因为()()01020h a h a =-<=,,所以由(1)知()h x 在[)02,上存在唯一零点.记零点为0x ,即()00h x =,则()g x 在()00x ,上单调递减,在()02x ,上单调递增. 故0x 为()g x 的极小值,此时极小值为()0g x .因为0002e 02x x a x -+=+,所以[)(]00002e 0022x x a x x -=-∈⇒∈+,1,. 所以()()()000000000220002e e 1e 12e =2x x x x x x a x x x x x x ⎛⎫---+ ⎪-++⎝⎭==+g. 记()000e 2x P x x =+,,则()()()()00002200e +2e 1=e 0+2+2x xx x x P x x x -+'=>,所以()0P x 在(]002x ∈,上单调递增,所以()201e 24P x ⎛⎤∈ ⎥⎝⎦,.解法二:由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解,使得2e 2tt a t -⋅=-+,(]02t ∈,. 当(0,)x t ∈时,()0g x '<,()g x 单调递减;当(,)x t ∈+∞时,()0g x '>,()g x 单调递增..()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+.记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,所以()k t 单调递增,所以()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,. 【方法技巧归纳】超越函数(指数函数、对数函数、三角函数)的最值一般都是利用导函数求单调性或极值得到的.函数在区间上的最大(小)值,若不是区间端点值就是极大(小)值. 【变式1】【由最大值存在的不等关系求参数的取值范围】【2015全国2卷文】已知函数()()ln 1f x x a x =+-.(1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【答案】(Ⅰ)0a ≤, ()f x 在()0,+∞是单调递增; 0a >, ()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a⎛⎫+∞ ⎪⎝⎭单调递减;(Ⅱ)()0,1.【解析】试题分析:(Ⅰ)由()1f x ax'=-,可分0a≤, 0a>两种情况来讨论;(II)由(I)知当0a≤时()f x在()0,+∞无最大值,当0a>时()f x最大值为1ln 1.f a aa⎛⎫=-+-⎪⎝⎭因此122ln10f a a aa⎛⎫>-⇔+-<⎪⎝⎭.令()ln1g a a a=+-,则()g a在()0,+∞是增函数,当01a<<时, ()0g a<,当1a>时()0g a>,因此a的取值范围是()0,1.试题解析:(Ⅰ)()f x的定义域为()0,+∞,()1f x ax'=-,若0a≤,则()0f x'>,()f x在()0,+∞是单调递增;若0a>,则当10,xa⎛⎫∈ ⎪⎝⎭时()0f x'>,当1,xa⎛⎫∈+∞⎪⎝⎭时()0f x'<,所以()f x在10,a⎛⎫⎪⎝⎭单调递增,在1,a⎛⎫+∞⎪⎝⎭单调递减.【变式2】【求函数取得最值时自变量的取值】【2014安徽卷理】设函数23()1(1)f x a x x x=++--,其中0a>.(1)讨论()f x在其定义域上的单调性;(2)当[0,1]x∈时,求()f x取得最大值和最小值时的x的值.【答案】(1)()f x在1(,)x-∞和2(,)x+∞内单调递减,在12(,)x x内单调递增;(2)所以当01a<<时,()f x在1x=处取得最小值;当1a=时,()f x在x=和1x=处同时取得最小只;当14a<<时,()f x在x=处取得最小值.【解析】试题分析:(1)对原函数进行求导,2'()123f x a x x =+--,令'()0f x =,解得1212143143,,33a ax x x x --+-++==<,当1x x <或2x x >时'()0f x <;从而得出,当12x x x <<时,'()0f x >.故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增.(2)依据第(1)题,对a 进行讨论,①当4a ≥时,21x ≥,由(1)知,()f x 在[0,1]上单调递增,所以()f x 在0x =和1x =处分别取得最小值和最大值.②当04a <<时,21x <.由(1)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减,因此()f x 在21433ax x -++==处取得最大值.又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =和1x =处同时取得最小只;当14a <<时,()f x 在0x =处取得最小值.(1)()f x 的定义域为R ,2'()123f x a x x =+--.令'()0f x =,得1212143143,,33a ax x x x --+-++==<,所以12'()3()()f x x x x x =---.当1x x <或2x x >时'()0f x <;当12x x x <<时,'()0f x >.故()f x 在1(,)x -∞和2(,)x +∞内单调递减,在12(,)x x 内单调递增. 因为0a >,所以120,0x x <>.①当4a ≥时,21x ≥,由(1)知,()f x 在[0,1]上单调递增,所以()f x 在0x =和1x =处分别取得最小值和最大值.②当04a <<时,21x <.由(1)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减,因此()f x 在21433ax x -++==处取得最大值.又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =和1x =处同时取得最小只;当14a <<时,()f x 在0x =处取得最小值.【数学思想】 分类讨论思想1.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,这种思想在简化研究对象,发展思维方面起着重要作用,因此,有关分类讨论的思想的数学命题在高考试题中占有重要地位. 所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.2.分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的. 【处理导数的极值与最值问题注意点】对参数的讨论要做到不重不漏.至于如何分类的思想是将导函数零点之间的大小以及区间端点值的大小进行比较,将区间端区限定不动,变动零点位置. 【典例试题演练】1.【2018广东广州珠海区高三检测(一)理】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是( )A. 10,2⎛⎫ ⎪⎝⎭ B.()0,1 C. (),0-∞ D. 1,2⎛⎫-∞ ⎪⎝⎭ 【答案】A2.【2018海南八校联盟开学考试理】已知函数()213ln 2f x x x a x⎛⎫=-+- ⎪⎝⎭在区间()1,3上有最大值,则实数a 的取值范围是( )A.1,52⎛⎫-⎪⎝⎭B.111,22⎛⎫-⎪⎝⎭ C.111,22⎛⎫⎪⎝⎭ D.1,52⎛⎫⎪⎝⎭【答案】B【解析】因为()3122f x x ax'=-+-,所以由题设()3122f x x ax'=-+-在()1,3只有一个零点且单调递减,则问题转化为()()10{30ff><,即11112{11222aaa+>⇒-<<-<,应选答案B。
第04讲:函数值域(最值)的求法(判别式法、基本不等式法、单调性法、数形结合法和导数法(判别式法、基本不等式法、单调性法、数形结合法和导数法))【考纲要求】1、了解构成函数的要素,会求一些简单函数的值域。
2、理解函数的最大值、最小值及其几何意义。
【基础知识】一、函数值域的定义函数值的集合叫做函数的值域。
二、函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域,都要考虑定义域,函数的问题必须遵循“定义域优先”的原则。
3、反比例函数()0ky k x=≠的值域为{}0y R y ∈≠.4、指数函数()01xy a a a =>≠且的值域为{}0y y >.5、对数函数()log 01a y x a a =>≠且的值域为R.6、幂函数3y x =的值域为R ,幂函数12y x ==[0,)+∞。
7、正弦函数sin y x =、余弦函数cos y x =的值域为[]1,1−,正切函数tan y x =的值域为R ,余切函数cot y x =的值域为R.四、求函数的值域常用的方法求函数的值域常用的方法有观察法、分离常数法、配方法、反函数法、换元法、判别式法、基本不等式法、单调性法、数形结合法和导数法等。
五、函数的值域一定要用集合或区间来表示。
六、函数的值域和函数的最值实际上是同一范畴的问题,所以求函数值域的方法适用于求函数的最值。
【方法讲评】方法六判别式法使用情景形如22dx ex fy ax bx c++=++的函数。
解题步骤一般先将函数化成方程,再利用判别式来求函数的值域。
例1求函数3274222++−+=x x x x y 的值域。
032)(2≠++=x x x f 即R x ∈此时方程有实根即△0≥,△[].2,29[0)73)(2(4)]2(22−∈⇒≥+−−−=y y y y 当2y =时,方程化为7=0,显然不能成立,所以 2.y ≠将29,2−==y y 分别代入检验得2=y 不符合方程,所以)2,29[−∈y 。
2018年高考数学热点复习函数最值与值域的巧解考纲要求:1、考查求函数单调性和最值的基本方法;求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.2、会求一些简单函数的定义域和值域. 基础知识回顾: 函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件①对于任意x ∈I ,都有f (x )≤M ;①对于任意x ∈I ,都有f (x )≥m ;②存在x 0∈I ,使得f (x 0)=M②存在x 0∈I ,使得f (x 0)=m . 结论M 为最大值m 为最小值应用举例:招数一:换元法与配方法【例1】【2017山东省枣庄八中高三月考】函数f (x )=log 2x ·2log (2)x 的最小值为______. 【答案】-14【例2】【2017浙江省宁波市高三入学考试】求函数y =x -1-2x 的值域。
【答案】{y |y ≤12}.【解析】令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是{y |y ≤12}.【例3】函数2sin 4sin 5y x x =-+的值域为()A.[]1,+∞B .()1,+∞C .[]2,10D .[]1,10【答案】C招数二:图像法【例4】.【2017届山西省实验中学高三3月联考】设函数()21,1,{2,01,x cos x f x x x π+>=<≤函数()1(0),g x x a x x=++>若存在唯一的0x ,使得()()(){}min ,h x f x g x =的最小值为()0h x ,则实数a 的取值范围为()A .2a <-B .2a ≤-C .1a <-D .1a ≤-【答案】A【解析】作出函数()21,1,{2,01,x cos x f x x x π+>=<≤的图象,可得()f x 的最小值为0,最大值为2;()11(0)22g x x a x x a a x x=++>≥⋅+=+, 当且仅当1x =取得最小值2a +,由存在唯一的0x ,使得()()(){}min ,h x f x g x =的值 为()0h x ,可得20a +<,解得2a <-,故选A .【例5】【2017福建省福州市高三模拟考试】设函数g (x )=x 2-2(x ∈R ),⎩⎨⎧≥-<++=)(,)()(,4)()(x g x x x g x g x x x g x f ,则f (x )的值域是( ) A .]0,49[-∪(1,+∞)B .[0,+∞)C .),49[+∞-D .]0,49[-∪(2,+∞)【答案】C【解析】由x <g (x )可得x <-1或x >2,由x ≥g (x ),即-1≤x ≤2时,∴⎪⎩⎪⎨⎧-∈--+∞--∞∈++=]2,1[,2),2()1,(,2)(22x x x x x x x f Y ,如图,由f (x )得图像可得:当x <-1或x>2时,f (x )>2;当-1≤x ≤2时,)21(f <f (x )≤f (2)⇔49-≤f (x )≤0,所以f (x )的域为]0,49[-∪(2,+∞),故选D .招数三:基本不等式法【例6】【2017浙江省金华、丽水、衢州市十二校联考】设{},min ,,y x yx y x x y≥⎧=⎨<⎩,若定义域为R 的函数()f x ,()g x 满足22()()8xf xg x x +=+,则()(){}min ,f x g x 的最大值为__________.【答案】8. 【解析】设()(){}min ,f x g x m =,∴2()2()()()8m f x xm f x g x m m g x x ≤⎧⇒≤+⇒≤⎨≤+⎩,显然,当m 取到最大值时,0x >,∴21288882x x x x x x=≤=++⋅,∴28m ≤,当且仅当()()80f xg x x x x =⎧⎪⎪=⎨⎪>⎪⎩时等号成立,即m 的最大值是28,故填:28.【名师点睛】一是在使用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件,如“同向不等式”才可相加、“同向且两边同正的不等式”才可相乘. 【例7】【2017河北省武安一中高三月考】求函数13log log 3-+=x x y 的值域. 【答案】(-∞,-3]∪[1,+∞).招数四:单调性法【例8】设2x ≥,则函数()()251x x y x ++=+的最小值是______.【答案】283【解析】令1,x t +=[)45,3,y t t t=++∈+∞该函数是[)3,+∞上的增函数,则min 283y =. f (x )=lnx -x 在区间(0,e ]上的最大值为( )A .1-eB .-1C .-eD .0【答案B【解析】因为f ′(x )=1x -1=1-xx,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e ]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e ],所以当x =1时,f (x )取得最大值ln 1-1=-1.【例10】【2017山东烟台市高三摸底考试】已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2),且当x >1时,f (x )<0.若f (3)=-1,求f (x )在[2,9]上的最小值. 【答案】-2.【解析】任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.【例11】【2017贵州省贵阳市一中高三月考】已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.【答案】(1)略;(2)a =25.招数五:导数法【例12】函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0【答案】A【解析】因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,所以-1,1为函数的极值点.又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,所以在区间[-3,2]上f (x )max =1,f (x )min =-19.又由题设知在区间[-3,2]上f (x )max -f (x )min ≤t ,从而t ≥20,所以t 的最小值是20.【例13】【三湘名校教育联盟.2017届高三第三次大联考】已知函数()()33f x ax a x =+-在[]1,1-上的最大值为3,则实数a 的取值范围是()A .3,32⎡⎤-⎢⎥⎣⎦B .3,122⎡⎤-⎢⎥⎣⎦C .[]3,3-D .[]3,12-【答案】B【解析】()()33f x ax a x=+-在[]1,1-上的最大值为3()3f x⇔≤对[]1,1x∈-恒成立且取到等号,因为()13f=,所以只需考虑()3f x≤对[]1,1x∈-恒成立,()()()()()333333113f x ax a x a x x x ax x≤⇔+-≤⇔-≤-⇔+≥-,()()110x x+=即0,1x=-时,()3f x≤恒成立;()()210x x+>即01x<<时,()()3131ax x ax x-+≥-⇔≥+,()23311124x xx--=+⎛⎫+-⎪⎝⎭在01x<<时单调递增,()33,12x x-⎛⎫∈-∞-⎪+⎝⎭,所以32a≥-;点晴:本题主要考查函数导数与不等式,恒成立问题.本题的关键是()13f=,所以()()33f x ax a x=+-在[]1,1-上的最大值为3()3f x⇔≤对[]1,1x∈-恒成立,利用变量分离,分()10x x+=,()10x x+>,()10x x+<三种情况讨论,然后根据()31x x-+在不同情况下对应的值域求得a的取值范围,最后取交集即可.方法、规律归纳:1、函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.2、函数的值域是由其对应关系和定义域共同决定的.常用的求解方法有:(1)基本不等式法,此时要注意其应用的条件;(2)配方法,主要适用于可化为二次函数的函数,此时要特别注意自变量的范围;(3)图象法,对于容易画出图形的函数最值问题可借助图象直观求出; (4)换元法,用换元法时一定要注意新变元的范围;(5)单调性法,要注意函数的单调性对函数最值的影响,特别是闭区间上的函数的最值问题;(6)导数法求函数f (x )在[a ,b ]上的最大值和最小值3步骤①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 实战演练:1.【2017届安徽省池州市东至县高三12月联考】在锐角中,,则的最小值为__________.【答案】8【点睛】本题的综合性比较强,三角函数的恒等变形和函数求最值的问题相结合,是解三角形的问题中用的比较多的一个公式,这样帮助我们消元,同时还要根据公式变形为正切关系,这样统一了角,统一了三角函数名称,才能转化为函数关系求最值.2.【重庆市2017届高三4月调研测试】设函数()22log ,12{142,1333x x f x x x x ⎛⎫-≤- ⎪⎝⎭=-++>-,若()f x 在区间[],4m 的值域为[]1,2-,则实数m 的取值范围为__________. 【答案】[]8,1--【解析】由题意,可以考虑采用数形结合法,作出函数()f x 的图象,当1x ≤-时,函数()2log2x f x ⎛⎫=- ⎪⎝⎭单调递减,且最小值为()11f -=-,则令2log 22x ⎛⎫-= ⎪⎝⎭,解得8x =-,当1x >-时,函数()2142333f x x x =-++在()12-,上单调递增,在[)2+∞,上单调递减,则最大值为2,且()2423f =<,()113f -=,综上得所求实数m 的取值为[]81--,.点睛:此题主要考查对数函数、二次函数、分段函数的值域,以及函数单调性、最值、数形结合法等有关方面的知识,属于中高档题型,也是高频考点.用数形结合的方法解决解析几何问题时,一方面要发挥图形的直观、形象的作用;另一方面则要注意画图的准确性,完整性和对图形观察的细致,并注意结合数学运算来完成.3.【河南省息县第一高级中学2017届高三下学期第一次适应性测试】已知函数()()()22cos 1sin 14445x x f x x x ππ⎡⎤⎡⎤--+-⎢⎥⎢⎥⎣⎦⎣⎦=++(40x -≤≤),则()f x 的最大值为__________. 【答案】22+4.【四川省遂宁市2017届高三三诊】函数()21f x x x =+-的值域是____ 【答案】[)2,+∞【解析】因为函数2,1y x y x ==-在区间[)1,+∞上都是单调递增函数,所以函数()21f x x x =+-区间[)1,+∞上也是单调递增函数,()()12f x f ≥=,即函数()21f x x x =+-的值域是[)2,+∞,应填答案[)2,+∞。
2018年高考数学常见题型解法归纳反馈训练第03讲函数的值域(最值)的常见求法(2)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学常见题型解法归纳反馈训练第03讲函数的值域(最值)的常见求法(2))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学常见题型解法归纳反馈训练第03讲函数的值域(最值)的常见求法(2)的全部内容。
第03讲函数的值域(最值)的常见求法(2)【知识要点】一、函数值域的定义函数值的集合叫做函数的值域。
二、函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域,都要考虑定义域,函数的问题必须遵循“定义域优先”的原则。
三、常见函数的值域1、一次函数的值域为。
2、二次函数,当时的值域为,时的值域为。
3、反比例函数的值域为.4、指数函数的值域为.5、对数函数的值域为.6、幂函数的值域为,幂函数的值域为。
7、正弦函数、余弦函数的值域为,正切函数的值域为。
四、求函数的值域常用的方法求函数的值域常用的方法有观察法、分离常数法、配方法、反函数法、换元法、判别式法、基本不等式法、单调性法、数形结合法、导数法、绝对值不等式法和柯西不等式法等.其中最常用的有“三数(函数、数形结合、导数)”和“三不(基本不等式、绝对值不等式、柯西不等式)”。
五、函数的值域一定要用集合或区间来表示.六、函数的值域、取值范围和函数的最值实际上是同一范畴的问题,所以求函数值域的方法适用于求函数的最值和取值范围等.【方法讲评】方法六判别式法使用情景形如的函数。
解题步骤一般先将函数化成二次方程,再利用判别式来求函数的值域。
一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域.例1:求函数)+=的值域.y-3x32(点拨:根据算术平方根的性质,先求出)-的值域.32(x解:由算术平方根的性质,知)2(x-≥3。
∴函数的值域为)3-≥0,故3+)2(x3,3[+∞ .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2:求函数y=(x+1)/(x+2)的值域.点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域.点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
第03讲函数的值域(最值)的常见求法(2)
【知识要点】
一、函数值域的定义
函数值的集合叫做函数的值域.
二、函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域,都要考虑定义域,函数的问题必须遵循“定义域优先”的原则.
三、常见函数的值域
1、一次函数的值域为.
2、二次函数,当时的值域为,时
的值域为
.
3、反比例函数的值域为.
4、指数函数的值域为.
5、对数函数的值域为.
6、幂函数的值域为,幂函数的值域为.
7、正弦函数、余弦函数的值域为,正切函数的值
域为.
四、求函数的值域常用的方法
求函数的值域常用的方法有观察法、分离常数法、配方法、反函数法、换元法、判别式法、基本不等
式法、单调性法、数形结合法、导数法、绝对值不等式法和柯西不等式法等.其中最常用的有“三数(函数、数形结合、导数)”和“三不(基本不等式、绝对值不等式、柯西不等式)”.
五、函数的值域一定要用集合或区间来表示.
六、函数的值域、取值范围和函数的最值实际上是同一范畴的问题,所以求函数值域的
方法适用于求函数的最值和取值范围等.
【方法讲评】
形如
【例1】求函数的值域.
【点评】(1)分子、分母中含有二次项的函数类型,此函数经过变形后可以化为
的形式,再利用判别式加以判断.(2)函数经过变形后可以化为
的形式后,要注意对是否为零进行分类讨论,因为它不一定是一元二次方
程.(3)判别式法解出值域后一定要将端点值(本题是)代回方程检验,把不满足题意的舍去.
【反馈检测1】求函数的值域.
【例2】已知,求函数的最小值.
【解析】.=
当且仅当,即时,上式等号成立.
因为在定义域内,所以最小值为.
【点评】(1)本题不能直接使用基本不等式,本题在利用基本不等式前,要对函数化简,要用到分离函数的方法对函数进行化简,再使用基本不等式.(2)很多函数在使用基本不等式之前都要进行化简和配凑,所以要注意观察函数的结构,再进行变形,再使用基本不等式.(3)利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.
【例3】已知,求函数的最大值.
【点评】(1)基本不等式有二元基本不等式(和
三元不等式.(2)基本不等式不仅适用于一般函数,也适用三角函数和其它所有函数,只要满足条件,就可以利用“一正二定三相等”来分析解答.
【反馈检测2 】已知,,且,则的最小值为.
【反馈检测3】【2017浙江,17】已知αR,函数在区间[1,4]上的最大值是5,
则的取值范围是___________.
【例 4】求函数的值域.
【点评】(1)本题先利用复合函数的单调性确定了函数的单调区间,从而得到函数的最大值和最小值,得到函数的值域.(2)判定函数的单调性常用的有定义法、图像法、复合函数分析法和导数法,注意灵活使用.
【例5】求函数的值域.
【解析】令,
则在上都是增函数,所以在上是增函数
当时,
当时,
故所求函数的值域为。
【点评】(1)如果能确定函数的单调性时,可以使用函数的单调性求函数的值域.(2)本题中利用了这样一个性质:增(减)函数+增(减)函数=增(减)函数.(3)本题,
都是增函数,利用到了复合函数的单调性,所以要对函数单调性的判定方法比较熟练,才能做到游刃有余.
【反馈检测4】求函数的值域.
【例6】求函数的值域.
【点评】(1)画函数的图像,要先化简解析式,再画出函数的图像.(2)本题也可以利用重要的绝对值不等式得到函数的最值,,所以函数的最小值为5.(3)对于绝对值函数,一般利用零点讨论法把函数化成分段函数,再作图.
【例7】如果函数定义在区间上,求的最小值.
图1
如图2所示,若顶点横坐标在区间上时,有,即.当
时,函数取得最小值.
图2
如图3所示,若顶点横坐标在区间右侧时,有,即.当
时,函数取得最小值
图3
综上讨论,
【点评】二次函数在闭区间上的最值问题,是一种较典型的问题.如果对称轴和区间的位置关系不能确定,常利用分类讨论和数形结合分析解答.
【例8】求函数的值域.
因为直线和圆相切,所以
所以函数的值域为
【点评】(1)对于某些具有明显几何意义的函数,我们可以利用数形结合的方法求该函数的值域.先找到函数对应的形态特征,再求该函数的值域.(2)由于对应着两点之间的斜率(差之比对应直线的斜率),所以本题可以利用斜率分析解答.
【例9】设是上的偶函数,对任意,都有且当
时,内关于的方程
恰有3个不同的实数根,则的取值范围是()
A.(1,2)B.C.D.
若在区间内关于的方程恰有3个不同的实数解
所以恰有3个不同的实数解.
则解得:<a<2. 故选D
【点评】(1) 本题涉及到函数的奇偶性、周期性和零点问题,利用数形结合再好不过
了. 所以要先根据已知条件作出函数的图像,再作出函数的图像,数形结合分析解答. (2)对于函数的问题,大家要比较敏感,随时想到利用函数的图像来分析.
【例10】点为抛物线:上一动点,定点,则与到轴的距离之和的最小值为()
A.9
B.10
C.8
D.5
【解析】如图所示,焦点过点作垂直于准线交轴与点,到轴的距离
,当三点共线时,取最小值,
,所以与到轴的距离之和的最小值.
【点评】圆锥曲线中,涉及到焦半径时,要想到圆锥曲线的定义,把问题转化,优化解题.
【例11】已知x,y满足约束条件
(1)求目标函数的最大值和最小值;
(2)若目标函数取得最大值的最优解有无穷多个,求的值;
(3)求的取值范围.
【解析】(1)作出不等式组表示的可行域如图:
作直线:,并平行移动使它过可行域内的点,此时有最大值;过可行域内的点,此时有最小值,
解,得.解,得.解,得
.
∴,.
(2)一般情况下,当取得最大值时,直线所经过的点都是唯一的,但若直线平行于边界直线,即直线平行于直线时,线段上的任意一点均使取得最大值,此时满足条件的点即最优解,有无数个.
又,∴.
【点评】线性规划的问题,就是数形结合研究问题的典型.线性规划解答问题的一般步
骤是(1)根据题意,设出变量;(2)列出线性约束条件;(3)确定线性目标函数
;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系;(6)观察图形,找到直线在可行域上使取得欲求最值的位置,以确定最优解,给出答案.
【反馈检测5】若点的坐标为(3,2),为抛物线的焦点,点是抛物线上的一动点,则取得最小值时,点的坐标是 .
【例12】如图,圆锥的底面直径,母线长,点在母
线上,且,有一只蚂蚁沿圆锥的侧面从点到达点,则这只蚂蚁爬行的最短距离是()
A. B.
C. D.
【点评】(1)由于蚂蚁在沿着曲面爬行,所以蚂蚁走过的路线时曲线,要直接求,比较困难,怎么办?我们这时可以把曲面展开,变成平面,再利用解三角形的知识来分析解答,问题迎刃而解. (2)本题利用了转化化归的思想,把空间的问题化成平面的问题,问题迎刃而解.
【反馈检测6】如图,圆锥的底面圆直径为2,母线长为4,若小虫从点开始绕着圆锥表面爬行一圈到的中点,则小虫爬行的最短距离为______.
【例12】已知函数,
(1)当时,求函数在处的切线方程;
(2)求在区间上的最小值.
【解析】(1)当时,又
故切线的斜率为所以切线方程为:
即
(2)函数的定义域为当x变化时,的变化情况如下表:
【点评】对于结构较复杂或高次的函数,一般利用导数法来研究函数的值域.先利用导数研究函数的单调性,再利用该函数的单调性画出函数的草图分析函数的值域.
【例13】两县城和相距20,现计划在两县城外以为直径的半圆弧上选
择一点建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城和
城的总影响度为城与城的影响度之和,记点到城的距离为,建在处的
垃圾处理厂对城和城的总影响度为,统计调查表明:垃圾处理厂对城的影响度与所选地点到城的距离的平方成反比,比例系数为4;对城的影响度与所选地点到城的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城和城的总影响度为0.065.
(1)将表示成的函数;
(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由.
【解析】(1)如图,由题意知,,
其中当时,,所以.
所以表示成的函数为
【点评】对于应用题,先要建立函数的模型,通过函数的模型,把一个实际问题转化成一个数学问题,再利用导数来研究函数的最值,最后再回到实际问题中去.
【反馈检测7】已知函数,求函数在上的最大值.
高中数学常见题型解法归纳及反馈检测第03讲:函数值域(最值)的常见求法(2)(判别式法、基本不等式法、单调性法、数形结合法和导数法)
参考答案
【反馈检测1答案】
【反馈检测2答案】
【反馈检测2详细解析】
【反馈检测3答案】
【反馈检测3详细解析】,分类讨论:
①当时,,函数的最大值,舍去;
②当时,,此时命题成立;
③当时,,则:
或,解得:或
综上可得,实数的取值范围是.
【反馈检测4答案】
【反馈检测6详细解析】由题意知底面圆的直径,故底面周长等于.
设圆锥的侧面展开后的扇形圆心角为,
根据底面周长等于展开后扇形的弧长得解得,所以展开图中
,
根据勾股定理求得=,所以小虫爬行的最短距离为
【反馈检测7答案】当时,的最大值为,当时,的最大值为,当时,的最大值为
【反馈检测7详细解析】,
∴.
③当时,即时,在上是增函数,∴
综上所述,当时,的最大值为,当时,的最大值为
,
当时,的最大值为.。