陕西省渭南市韩城市司马迁中学2020届高三第五次周考数学(理)试卷
- 格式:doc
- 大小:294.50 KB
- 文档页数:7
高考数学三模试卷理科考后试卷讲解和试卷分析有差距呀!怎么办?苦学加巧学呗!!!还能怎样!为了胜利,拼了吧!!!不拼搏一把,不知自己能那么优秀!!!试卷讲解开始啦!!一、选择题(本大题共12小题,共60分)1已知集合{|A x y==和集合22{log(1)}B y y x==+,则A B=U()A.[1,)-+∞ B.(0,1] C.[1,0]- D.[0,1]本题考查仔细审题能力和最基础的集合运算,要知道本体再求什么!是求A BU!!!解答:[{11}[1,1],{0}0,)A x xB y y=-≤≤=-=≥=+∞,[1,)A B=-+∞U选A 2.欧拉公式cos sinixe x i x=+(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”, 复数341ieπ表示的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限本题考查套公式能力和复数除法,复数对应的点的坐标解答:34112233122cos sin44i ieπππ-====--+,对应点⎛⎝⎭在第三象限。
选C3.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )高考要求的能力水平你们考后显现出的能力水平A.01B.02C.07 D .04本题考察随机数表使用方法!08(12个); 02 (第2个); 14(第3个) ; 07(第4个);02 (重复了不要); 01(第5个); 04(第6个) 选 D.4.有6个座位连成一排,现有4人就坐,则恰有两人相邻的不同坐法有( ) A. 36种 B. 48种 C .72种 D .96种考察排列组合问题的通用解法,优先特殊元素排列法!---“定死一个看一个”只有三类做法 1. aa-a-a 2. a-aa-a 3.a-a-aa (a 代表人,-代表空座位) 计算得 44372A =5.已知G 是△ABC 的重心,若GC ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ ,x ,y ∈R ,则 x +y = ( ) A. 1 B . -1 C.13 D. 13- 考察重心性质和响亮基底表示: 解:如图GC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AG ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=−13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,所以x −y =−16. 某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点 为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .2 5 B. 2 C. 217 D. 3本题考查三视图还原直观图:本题还原后的直观图为:弧线AB 最短侧面展开图:ABCGBA B4257.古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物 线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图 直线2x =交抛物线24y x =于,A B 两点,点,A B 在y 轴上的射影分别为C ,D ,从长方形ABCD 中任取一点,则该点位于阴影部分的概率为( )A.12 B . 13C.23 D. 25考察最基本的面积比例和简单的几何概型解:由题意知:直线和抛物线所包围的弓形面积是△OAB 面积的三分之四,而△OAB 面积是矩形ABCD 面积的二分之一,所以弓形面积是矩形ABCD 面积的三分之二。
渭南市2020年高三教学质量检测(Ⅰ)数学试题(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的 四个选项中,选出符合题目要求的一项.1.设全集U =R, 集合A ={x |0<x <2}, B={-3,-1,1,3}, 则集合(C U A )∩B = A. {-3, -1} B. {-3,-1,3} C. {1,3} D. {-1,1}2.已知i 为虚数单位,若11a bi i=+-(a ,b ∈R),则22a b += A. 2 B. 4 C.14 D. 123.下列函数中,既是偶函数,又在区间(0,1]上单调递增的是 A. 1y x =B. |sin |y x =C. tan y x =D. ||1()2x y = 4.设数列{n a }是正项等比数列, n S 为其前n 项和,已知241a a =,37S =,则公比q = A.13 B. 3 C. 12D. 2 5.函数3()1x x f x e =+的图像大致是6.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是 A. 若m ⊥α, m ⊥n , 则n ∥α B.若m ⊥α, n ∥β,且α∥β,则m ⊥n .C. 若m α, n α,且m ∥β,n ∥β,则α∥βD. 若直线m ,n 与平面α所成角相等,则m ∥n 7. 执行下图所示的程序框图,输出S 的值为A. 5B. 6C. 8D. 138. 2010~2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动车及物联网等新机遇,连接器行业增长呈现加速状态,根据该折线图有如下结论: ①每年市场规模量逐年增加; ②增长最快的一年为2013~2014; ③这8年的增长率约为40%, ④2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳,其中正确的个数为A. 1B. 2C. 3D. 49.已知F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的左、右焦点,过点F 2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点P , 若点P 在以线段F 1F 2为直径的圆外,则双曲线离心率的取值范围是A. (1,) C. (1,2) D. (2,+∞)10.唐代诗人李颀的诗《古从军行》开关两句说:”白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个数学问题”将军饮马”, 即将军在观望烽为之后从脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为22x y +≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =4,假定将军只要达军营的在区域即回到军营,即”将军饮马”的最短总路程为1 B.1 D.11.设函数()2sin(2)3f x x π=-的图像为C , 下面结论正确的是A. 函数f (x )的最小正周期是2π.B.函数f (x )在区间(12π,2π)上是递增的;C.图像C 关于点(76π,0)对称; D. 图像C 由函数()sin 2g x x =的图像向左平移23π个单位得到 12.已知函数ln ,1()1,12x x f x xx ≥⎧⎪=⎨-<⎪⎩,若()[()1]F x f f x m =++ (m 为常数)有两个零点x 1,x 2,则x 1·x 2的取值范围是 A. (-∞,,+∞) C. (-∞,4-2ln2] D. [4-2ln2,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{a n }的前n 项和(1)2n S n n =++,其中n ∈N*, 则a n = 14.设D 为△ABC 所在平面内的一点, 若3AD BD =,CD CA CB λμ=+,则μλ= 15.从8(x 的展开式各项中随机选两项,则这两项均是有理项的概率为 16.在三棱锥P -ABC 中,平面P AB ⊥平面ABC , △ABC 是边长为6的等边三角形,△P AB 是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的体积为三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.(一)必考题: 共60分 17. (本题满分12分)如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,∠BCD =135°, P A ⊥平面ABCD ,AB =AC =P A =2,E ,F ,M 分别为线段BC ,AD ,PD 的中点. (1)求证: 直线EF ⊥平面P AC ;(2)求平面MEF 与平面PBC 所成二面角的正弦值.18. (本题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且B 是A ,C 的等差中项.(1)若b a =3, 求边c 的值; (2)设t =sinAsinC, 求t 的取值范围.19. (本题满分12分)2019年某地区数学竞赛试行改革: 在高二年级一学年中举行5次全区竞赛,学生有2次成绩达全区前20名即可进入省队培训,不用参加剩余的竞赛,而每个学生最多也只能参加5次竞赛.规定: 若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛,假设某学生每次成绩达全区前20名的概率都是13,每次竞赛成绩达全区前 20名与否互相独立. (1)求该学生进入省队的概率.(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为X ,求X 的分布列及X 的数学期望. 20. (本题满分12分) 已知函数()ln f x x =,21()2g x x bx =- (b 为常数) (1)若b =1, 求函数H (x )=f (x )-g (x)图像在x =1处的切线方程;(2)若b ≥2, 对任意x 1,x 2∈[1,2], 且x 1≠x 2, 都有|f (x 1)-f (x 2)|>|g (x 1)-g (x 2)|成立,求实数b 的值.21. (本题满分12分)已知椭圆C : 22221x y a b+=(a >b >0)的一个焦点与抛物线24y x =的焦点相同,F 1,F 2为C 的左、右焦点,M 为C 上任意一点, 12MF F S 最大值为1.(1) 求椭圆C 的方程;(2)不过点F 2的直线l : y =kx +m (m ≠0)交椭圆C 于A ,B 两点. ①若212k =,且2AOB S ∆=,求m 的值.②若x 轴上任意一点到直线AF 2与BF 2距离相等,求证: 直线l 过定点,并求出该定点的坐标.(二)选考题: 共10分.考生在第22,23两题中任选一题做答,如果多做,则按所做的第一题记分,答时用2B 铅笔在答题卡上把目的题号涂黑. 22. (本题满分10分)在直角坐标系中xoy 中, 直线l的参数方程为3x ty =⎧⎪⎨=⎪⎩(t 为参数),曲线C 1的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以该直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθθ=-. (1)分别求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)设直线l 交曲线C 1于O ,A 两点,交曲线C 2于O ,B 两点,求|AB |的长.23. (本题满分10分)已知a >0,b >0,c >0, 函数f (x )=|a -x |+|x +b |+c . (1)当a =b =c =2时, 求不等式f (x )<10的解集; (2)若函数f (x )的最小值为1, 证明: a 2+b 2+c 2≥13.。
陕西省渭南市2020年高考数学模拟试卷(理科)(5月份)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知集合M={},P={},则M P=()A . x=3,y=-1B . (3,-1)C . {3,-1}D . {(3,-1)}2. (2分)(2018·佛山模拟) 若复数满足,则()A . 1B .C . 2D . 33. (2分)(2017·揭阳模拟) 若 =(cos20°,sin20°), =(cos10°,sin190°),则• =()A .B .C . cos10°D .4. (2分) (2016高三下·习水期中) 老师带甲乙丙丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考的好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中()两人说对了.A . 甲丙B . 乙丁C . 丙丁D . 乙丙5. (2分)函数y=cos2x+sinx﹣1的值域为()A .B . [0, ]C . [﹣2, ]D . [﹣1, ]6. (2分) (2017高一上·龙海期末) 三个数60.7 , 0.76 , log0.76的大小顺序是()A . 0.76<log0.76<60.7B . log0.76<0.76<60.7C . log0.76<60.7<0.76D . 0.76<60.7<log0.767. (2分)执行如图所示的程序框图,输出的S值为()A . 4B . 8C . 16D . 648. (2分) (2016高一下·台州期末) 若钝角三角形的三边长和面积都是整数,则称这样的三角形为“钝角整数三角形”,下列选项中能构成一个“钝角整数三角形”三边长的是()A . 2,3,4B . 2,4,5C . 5,5,6D . 4,13,159. (2分)(2012·新课标卷理) 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A . 6B . 9C . 12D . 1810. (2分)在长方体ABCD﹣A1B1C1D1中,AB=,BC=AA1=1,点P为对角线AC1上的动点,点Q为底面ABCD 上的动点(点P,Q可以重合),则B1P+PQ的最小值为()A .B .C .D . 211. (2分)(2017·泉州模拟) 已知以O为中心的双曲线C的一个焦点为F,P为C上一点,M为PF的中点,若△OMF为等腰直角三角形,则C的离心率等于()A .B .C .D .12. (2分) (2017高三上·漳州开学考) 6个人排成一排,其中甲、乙不相邻的排法种数是()A . 288B . 480C . 600D . 640二、填空题 (共4题;共4分)13. (1分) (2016高二下·九江期末) 设x,y满足约束条件,则目标函数z=2x﹣3y的最小值是________.14. (1分) (2020高三上·黄浦期末) 已知为第二象限的角, ,则 ________.15. (1分) (2015高二下·赣州期中) 已知函数f(x)=x•sinx,有下列四个结论:①函数f(x)的图象关于y轴对称;②存在常数T>0,对任意的实数x,恒有f(x+T)=f(x);③对于任意给定的正数M,都存在实数x0 ,使得|f(x0)|≥M;④函数f(x)在[0,π]上的最大值是.其中正确结论的序号是________(请把所有正确结论的序号都填上).16. (1分) (2019高二上·德惠期中) 已知F1 , F2分别是椭圆的左、右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M、N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为________ .三、解答题 (共7题;共50分)17. (10分) (2016高一下·舒城期中) 等比数列{an}中,已知a1=2,a4=16(1)求数列{an}的通项公式;(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.18. (5分) (2017高二下·蕲春期中) 如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.参考数据: yi=9.32, tiyi=40.17, =0.55,≈2.646.参考公式:相关系数r= =回归方程 = + t中斜率和截距的最小二乘估计公式分别为: = , = ﹣ t.19. (5分)(2017·晋中模拟) 如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE= ,BC= ,四棱锥F﹣ABED的体积为2,点F在平面ABED内的正投影为G,且G在AE上,点M是在线段CF上,且CM= CF.(Ⅰ)证明:直线GM∥平面DEF;(Ⅱ)求二面角M﹣AB﹣F的余弦值.20. (5分)(2019·延安模拟) 已知两直线方程与,点在上运动,点在上运动,且线段的长为定值 .(Ⅰ)求线段的中点的轨迹方程;(Ⅱ)设直线与点的轨迹相交于,两点,为坐标原点,若,求原点的直线的距离的取值范围.21. (10分) (2017高二下·定西期中) 设函数f(x)= x3﹣ x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间.22. (10分)在直角坐标系xoy中,已知曲线C1:(θ为参数).以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xoy取相同的单位长度,建立极坐标系.已知直线l的极坐标方程为ρ(2cosθ﹣sinθ)=6.(1)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的,2倍后得到曲线C2,试写出曲线C2的参数方程和直线l的直角坐标方程;(2)求曲线C2上求一点P,使P到直线l的距离最大,并求出此最大值.23. (5分)(2019·大庆模拟) 已知函数 .(Ⅰ)当时,点在函数的图象上运动,直线与函数的图象不相交,求点到直线距离的最小值;(Ⅱ)讨论函数零点的个数,并说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共50分) 17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、23-1、。
2020年陕西省西安市高考第五次模拟考试(理科)数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1若,则=()A﹣1 B1 C﹣3 D32设集合A={x|x>a2},B={x|x<3a﹣2},若A∩B=∅,则实数a的取值范围为()A(1,2)B(﹣∞,1)∪(2,+∞)C[1,2] D(﹣∞,1]∪[2,+∞)3若曲线y=sin(4x+φ)(0<φ<2π)关于点对称,则φ=()A B C D4若x>0,y<0,则下列不等式一定成立的是()A2x﹣2y>x2BC2y﹣2x>x2D5如图,AB是圆O的一条直径,C,D是半圆弧的两个三等分点,则=()A B C D617世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形)例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,根据这些信息,可得sin234°=()A B C D7若函数,在(﹣∞,a]上的最大值为4,则a的取值范围为()A[0,17] B(﹣∞,17] C[1,17] D[1,+∞)8如图,圆C的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆C经过点A(2,15),则圆C的半径为()A B8 C D109函数f(x)=(3x+3﹣x)•lg|x|的图象大致为()A BC D102019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为()A20.5元B21元C21.5元D22元11在正方体ABCD﹣A1B1C1D1中,E,F,G分别为AA1,BC,C1D1的中点,现有下面三个结论:①△EFG为正三角形;②异面直线A1G与C1F所成角为60°;③AC∥平面EFG其中所有正确结论的编号是()A①B②③C①②D①③12函数在区间[﹣3,2)∪(2,3]上的零点个数为()A2 B3 C4 D5二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13随着互联网的发展,网购早已融人人们的日常生活网购的苹果在运输过程中容易出现碰伤,假设在运输中每箱苹果出现碰伤的概率为0.7,每箱苹果在运输中互不影响,则网购2箱苹果恰有1箱在运输中出现碰伤的概率为14设a,b,c分别为△ABC内角A,B,C的对边已知a sin A=2b cos A cos C+2c cos A cos B,则tan A=15以椭圆在x轴上的顶点和焦点分别为焦点和顶点的双曲线方程为;该双曲线的渐近线方程为16已知直线y=a与双曲线的一条渐近线交于点P,双曲线C的左、右顶点分别为A1,A2|,若,则双曲线C的离心率为三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17(12分)在公差为d的等差数列{a n}中,a1d=6,a1∈N,d∈N,且a1>d (1)求{a n}的通项公式;(2)若a1,a4,a13成等比数列,求数列的前n项和S n18(12分)如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为菱形,D为AB的中点,△ABC为等腰直角三角形,,,且AB=B1C(1)证明:CD⊥平面ABB1A1(2)求CD与平面A1BC所成角的正弦值19(12分)为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图记综合评分为80分及以上的产品为一等品(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望20(12分)已知椭圆的长轴长为,焦距为2,抛物线M:y2=2px(p>0)的准线经过C的左焦点F(1)求C与M的方程;(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值21(12分)已知函数(1)讨论f(x)的单调性(2)试问是否存在a∈(﹣∞,e],使得,对x∈[1,+∞)恒成立?若存在,求a的取值范围;若不存在,请说明理由(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22(10分)在直角坐标系xOy中,曲线C的参数方程为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线M的极坐标方程为(1)求曲线C的极坐标方程;(2)已知β为锐角,直线l:θ=β(ρ∈R)与曲线C的交点为A(异于极点),l与曲线M的交点为B,若,求l的直角坐标方程23已知a,b,c为正数,且满足a+b+c=3(1)证明:(2)证明:9ab+bc+4ac≥12abc参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1若,则=()A﹣1 B1 C﹣3 D3【分析】利用复数代数形式的乘除运算化简,进一步求出,作和得答案【解答】解:∵=,∴,则=故选:B【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题2设集合A={x|x>a2},B={x|x<3a﹣2},若A∩B=∅,则实数a的取值范围为()A(1,2)B(﹣∞,1)∪(2,+∞)C[1,2] D(﹣∞,1]∪[2,+∞)【分析】根据A∩B=∅即可得出a2≥3a﹣2,求出a的取值范围即可【解答】解:∵A∩B=∅,∴a2≥3a﹣2,解得a≤1或a≥2,∴实数a的取值范围为(﹣∞,1]∪[2,+∞)故选:D【点评】考查交集的定义及运算,描述法的定义,空集的定义3若曲线y=sin(4x+φ)(0<φ<2π)关于点对称,则φ=()A B C D【分析】由题意利用正弦函数的图象的对称性,求出φ的值【解答】解:∵曲线y=sin(4x+φ)(0<φ<2π)关于点对称,∴4•+φ=π或 4•+φ 2=π,求得φ=或φ=,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题4若x>0,y<0,则下列不等式一定成立的是()A2x﹣2y>x2BC2y﹣2x>x2D【分析】由已知可得2x﹣2y>0,,则答案可求【解答】解:∵x>0,y<0,∴2x>2y,∴2x﹣2y>0,∵x>0,∴,则2x﹣2y>故选:B【点评】本题考查指数、对数函数与不等式的交汇,考查逻辑推理能力,是基础题5如图,AB是圆O的一条直径,C,D是半圆弧的两个三等分点,则=()A B C D【分析】根据条件可得出CD∥AB,AB=2CD,从而得出【解答】解:∵C,D是半圆弧的两个三等分点,∴CD∥AB,且AB=2CD,∴故选:D【点评】考查向量减法和数乘的几何意义,以及向量的数乘运算617世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形)例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,根据这些信息,可得sin234°=()A B C D【分析】由已知求得∠ACB=72°,可得cos72°的值,再由二倍角的余弦及三角函数的诱导公式求解sin234°【解答】解:由图可知,∠ACB=72°,且cos72°=∴cos144°=则sin234°=sin(144°+90°)=cos144°=故选:C【点评】本题考查三角函数的恒等变换,考查解读信息与应用信息的能力,是中档题7若函数,在(﹣∞,a]上的最大值为4,则a的取值范围为()A[0,17] B(﹣∞,17] C[1,17] D[1,+∞)【分析】利用分段函数的单调性,结合已知条件求解即可【解答】解:函数,x∈(﹣∞,1]时,函数是增函数;x∈(1,+∞)函数是增函数,因为f(1)=4,f(17)=4,所以a的取值范围为:[1,17]故选:C【点评】本题考查分段函数的应用,函数的单调性以及函数的最值的求法,是基本知识的考查8如图,圆C的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆C经过点A(2,15),则圆C的半径为()A B8 C D10【分析】由题意利用直线和圆相切的性质,先求出圆心的坐标,从而求得半径【解答】解:∵圆C经过点(2,1)和点(2,15),故圆心在直线y=8上又过点(2,1)的圆的切线为y﹣1=﹣(x﹣2),即x+y﹣3=0,故圆心在直线y﹣1=x ﹣2上,即圆心在直线x﹣y﹣1=0上由可得圆心为(9,8),故圆的半径为=7,故选:A【点评】本题主要考查直线和圆相切的性质,圆的标准方程,属于基础题9函数f(x)=(3x+3﹣x)•lg|x|的图象大致为()A BC D【分析】根据条件平时函数的奇偶性,结合函数值的符号是否对应,利用排除法进行判断即可【解答】解:函数的定义域为{x|x≠0},f(﹣x)=(3x+3﹣x)•lg|x|=f(x),则函数f(x)为偶函数,图象关于y轴对称,排除B,当x>1时,f(x)>0,排除A,当0<x<1时,f(x)<0,排除C,故选:D【点评】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系,以及函数值的对应性,利用排除法是解决本题的关键102019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为()A20.5元B21元C21.5元D22元【分析】由排列组合中的相邻问题捆绑法运算可得解【解答】解:由排列组合中的相邻问题捆绑法可得:照片的总数为=144,则每名老党员需要支付的照片费为=21,故选:B【点评】本题考查了排列组合的应用,考查应用意识与解决实际问题的能力,属中档题11在正方体ABCD﹣A1B1C1D1中,E,F,G分别为AA1,BC,C1D1的中点,现有下面三个结论:①△EFG为正三角形;②异面直线A1G与C1F所成角为60°;③AC∥平面EFG其中所有正确结论的编号是()A①B②③C①②D①③【分析】画出图形,判断三角形的形状即可判断①的正误;判断三角形的形状即可判断②的正误;利用直线与平面平行的判断定理即可判断③的正误;【解答】解:设正方体的棱长为:2,①由题意可知EG=EF=GF=,所以△EFG为正三角形;所以①正确;②取AC的中点H,连接GH,A1H,可知GH∥C1F,∠A1GH就是异面直线A1G与C1F所成角,三角形A1GH是等腰三角形,A1G≠A1H=GH,所以异面直线A1G与C1F所成角不是60°;所以②不正确;③△EGF是正六边形EKFMGN所在平面内的三角形,AC∥KF,可知AC∥平面EFG所以③正确;故选:D【点评】本题考查了命题的真假判断与应用,空间直线与直线,直线与平面的位置关系的综合应用,属难题12函数在区间[﹣3,2)∪(2,3]上的零点个数为()A2 B3 C4 D5【分析】将函数化简为(x2﹣2x)e x=,转换成两函数g (x)=(x2﹣2x)e x,h(x)=相交的个数即为零点个数,利用g(x)的导函数,分类讨论x范围,判断其单调性和函数的最值,数形结合可知两函数的交点的个数,可得答案;【解答】解:求函数在区间[﹣3,2)∪(2,3]上的零点,令函数=0,化简得(x2﹣2x)e x=,设g(x)=(x2﹣2x)e x,h(x)=,则g′(x)=(x2﹣2)e x当﹣3≤x<﹣时,g′(x)>0,当﹣<x<时,g′(x)<0,当<x≤3时,g′(x)>0所以g(x)的极小值为g()=(2﹣2)<h(),极大值为g(﹣)=(2+2)>h(﹣),又g(﹣3)=>=h(﹣3),g(3)>h(3),且h(x)在[﹣3,﹣),(﹣,0)上单调递增,在(0,),(,3]上单调递减,结合这两个函数的图象:可知这两个函数的图象共有4个交点,从而f(x)在区间[﹣3,2)∪(2,3]上的零点个数为4个零点;故选:C【点评】本题考查导数的综合应用,考查化归与转化的数学思想,属于难题二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13随着互联网的发展,网购早已融人人们的日常生活网购的苹果在运输过程中容易出现碰伤,假设在运输中每箱苹果出现碰伤的概率为0.7,每箱苹果在运输中互不影响,则网购2箱苹果恰有1箱在运输中出现碰伤的概率为0.42【分析】由题意利用相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k次的概率公式,求得结果【解答】解:在运输中每箱苹果出现碰伤的概率为0.7,每箱苹果在运输中互不影响,则网购2箱苹果恰有1箱在运输中出现碰伤的概率为•0.7•(1﹣0.7)=0.42,故答案为:0.42【点评】本题主要考查相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k 次的概率公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题14设a,b,c分别为△ABC内角A,B,C的对边已知a sin A=2b cos A cos C+2c cos A cos B,则tan A= 2【分析】由正弦定理,两角和的正弦函数公式,同角三角函数基本关系式化简已知即可求解【解答】解:因为a sin A=2b cos A cos C+2c cos A cos B,所以sin2A=2cos A(sin B cos C+sin C cos B)=2cos A sin(B+C)=2sin A cos A,又sin A>0,所以sin A=2cos A,即tan A=2故答案为:2【点评】本题主要考查了正弦定理在解三角形中的应用,考查了运算运算求解能力,属于基础题15以椭圆在x轴上的顶点和焦点分别为焦点和顶点的双曲线方程为x2=1 ;该双曲线的渐近线方程为y=±2x【分析】求得椭圆的焦点和顶点坐标,设双曲线的方程为(a,b>0),可得a,c,进而得到b的值,可得双曲线的方程然后求解渐近线方程【解答】解:椭圆在x轴上的顶点(,0)和焦点(±1,0),设双曲线的方程为(a,b>0),可得a=1,c=,b=2,可得x2﹣=1双曲线的渐近线方程为:y=±2x故答案为:x2﹣=1;y=±2x【点评】本题考查双曲线的方程的求法,注意运用椭圆的方程和性质,考查运算能力,属于基础题16已知直线y=a与双曲线的一条渐近线交于点P,双曲线C的左、右顶点分别为A1,A2|,若,则双曲线C的离心率为或【分析】设出双曲线的焦点,利用一条渐近线方程可得P的坐标,结合已知条件列出方程,然后求解离心率【解答】解:双曲线的一条渐近线:y=,则P(,a),因为,所以,可得,所以,从而e==,然后双曲线的渐近线为:y=﹣,则p(﹣,a),同理可得e=故答案为:或【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17(12分)在公差为d的等差数列{a n}中,a1d=6,a1∈N,d∈N,且a1>d (1)求{a n}的通项公式;(2)若a1,a4,a13成等比数列,求数列的前n项和S n【分析】(1)由题意可得a1=3,d=2或a1=6,d=1,再由等差数列的通项公式可得所求;(2)运用等比数列的中项性质和等差数列的通项公式,解方程即可得到所求a n,求得==(﹣),再由数列的裂项相消求和可得所求和【解答】解:(1)公差为d的等差数列{a n}中,a1d=6,a1∈N,d∈N,且a1>d,可得a1=3,d=2或a1=6,d=1,则a n=3+2(n﹣1)=2n+1;或a n=6+n﹣1=n+5,n∈N*;(2)a1,a4,a13成等比数列,可得a1a13=a42,即a1(a1+12d)=(a1+3d)2,化为d=0或2a1=3d,由(1)可得a1=3,d=2,则a n=2n+1,==(﹣),可得前n项和S n=(﹣+﹣+…+﹣)=(﹣)=【点评】本题考查等差数列的通项公式和数列的裂项相消求和,以及分类讨论思想和方程思想,考查运算能力,属于基础题18(12分)如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为菱形,D为AB的中点,△ABC为等腰直角三角形,,,且AB=B1C(1)证明:CD⊥平面ABB1A1(2)求CD与平面A1BC所成角的正弦值【分析】(1)推导出CD⊥AB,连结B1D,设AB=2a,推导出CD⊥B1D,由此能证明CD⊥平面ABB1A1(2)以D为坐标原点,建立空间直角坐标系D﹣xyz,利用向量法能求出CD与平面A1BC 所成角的正弦值【解答】解:(1)证明:∵D为AB的中点,AC=BC,∴CD⊥AB,连结B1D,设AB=2a,∵四边形ABB1A1是菱形,D为AB中点,∠ABB1=,∴B1D=,又△ABC为等腰直角三角形,,∴CD=a,∴=B1C2,∴CD⊥B1D,∵AB∩B1D=D,∴CD⊥平面ABB1A1(2)解:以D为坐标原点,建立如图所示的空间直角坐标系D﹣xyz,设AB=2a,则D(0,0,0),A1(0,2a,a),B(0,﹣a,0),C(a,0,0),∴=(0,3a,),=(0,a,0),=(﹣a,0,0),设平面A1BC的法向量=(x,y,z),则,取y=1,得=(﹣1,1,﹣),设CD与平面A1BC所成角为θ,则sinθ===∴CD与平面A1BC所成角的正弦值为【点评】本题考查线面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算求解能力,是中档题19(12分)为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图记综合评分为80分及以上的产品为一等品(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望【分析】(1)由频率分布直方图的性质,列出方程,能求出a,由频率分布直方图能求出综合评分的中位数(2)设所抽取的产品为一等品的个数为X,则X~B(3,),由此能求出X的分布列和所抽取的产品为一等品的数学期望E(X)【解答】解:(1)由(0.005+0.010+0.025+a+0.020)×10=1,解得a=0.040,令中位数为x,则(0.005+0.010+0.025)×10+0.040×(x﹣80)=0.5,解得x=82.5,∴综合评分的中位数为82.5(2)由(1)与频率分布直方图知:一等品的频率为(0.040+0.020)×10=0.6,设所抽取的产品为一等品的个数为X,则X~B(3,),∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==∴X的分布列为:X 0 1 2 3P所抽取的产品为一等品的数学期望E(X)=3×=【点评】本题考查概率、中位数、离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、二项分布的性质等基础知识,考查运算求解能力,是中档题20(12分)已知椭圆的长轴长为,焦距为2,抛物线M:y2=2px(p>0)的准线经过C的左焦点F(1)求C与M的方程;(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值【分析】(1)由题意可得a,c的值,运用b2=a2﹣c2,求得b,可得椭圆C的方程,由M的准线经过点F,求得p,即可得解M的方程;(2)设直线l的方程为y=kx+1,可得y2﹣y+1=0,设P(x1,y1),Q(x2,y2),可得y1+y2=,y1y2=,又由,可得y D=,可得D,E的坐标,计算k DE即可得证【解答】解:(1)由题意,可得2a=2,2c=2,所以a=,c=1,所以b==1,所以C的方程为+y2=1,所以F(﹣1,0),由于M的准线经过点F,所以﹣=﹣1,所以p=2,故M的方程为y2=4x(2)证明:由题意可知,l的斜率存在,故设直线l的方程为y=kx+1,由,可得y2﹣y+1=0,设P(x1,y1),Q(x2,y2),则△=1﹣k>0,即k<1,且k≠0,y1+y2=,y1y2=,又直线FP的方程为y=(x+1),由,得y2﹣+4=0,所以y1y D=4,所以y D=,从而D的坐标为(,),同理可得E的坐标为(,),所以k DE===1为定值【点评】本题考查椭圆的方程的求法,注意运用椭圆的顶点和焦点坐标,考查直线与椭圆方程联立,运用韦达定理,以及直线的斜率公式的运用,考查化简整理的运算能力,属于中档题21(12分)已知函数(1)讨论f(x)的单调性(2)试问是否存在a∈(﹣∞,e],使得,对x∈[1,+∞)恒成立?若存在,求a的取值范围;若不存在,请说明理由【分析】(1)先求导,再根据导数和函数单调性的关系,分类讨论即可求出,(2)假设存在a∈(﹣∞,e],使得f(x)>3+sin对x∈[1,+∞)恒成立,对a分类讨论,利用单调性即可得出a的取值范围【解答】解:(1)f′(x)=xlnx﹣alnx+a﹣x=(x﹣a)(lnx﹣1),x∈(0,+∞),①当a≤0时,由f′(x)>0,解得x>e,由f′(x)<0,解得0<x<e,∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,②0<a<e时,令f′(x)=0,解得x=a,或x=e,由f′(x)>0,解得0<x<a,或x>e,由f′(x)<0,解得a<x<e,∴f(x)在(a,e)上单调递减,在(0,a),(e,+∞)上单调递增,③当a=e时,f′(x)≥0恒成立,f(x)在(0,+∞)上单调递增,④当a>e时,由f′(x)>0,解得0<x<e,或x>a,由f′(x)<0,解得e<x<a,∴f(x)在(e,a)上单调递减,在(0,e),(a,+∞)上单调递增(2)假设存在a∈(﹣∞,e],使得f(x)>3+sin对x∈[1,+∞)恒成立,则f(1)=2a﹣>3+sin,即8a﹣sin﹣15>0,设g(x)=8x﹣sin﹣15,则g′(x)=8﹣cos>0,则g(x)单调递增,∵g(2)=0,∴a>2,当a=e时,f(x)在[1,+∞)上单调递增,∴f(x)min=f(1),∴a>2,从而a=e满足题意,当2<a<e时,f(x)在(a,e)上单调递减,在[1,a),(e,+∞)上单调递增,∴,∴,(*),设h(x)=4ex﹣sin﹣e2﹣12,则h′(x)=4e﹣cos>0,则h(x)单调递增,∵h(2)=8e﹣e2﹣13>0,∴h(x)的零点小于2,从而不等式组(*)的解集为(2,+∞),∴2<a<e,综上,存在a∈(﹣∞,e],使得,对x∈[1,+∞)恒成立,且a 的取值范围为(2,e]【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于难题(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22(10分)在直角坐标系xOy中,曲线C的参数方程为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线M的极坐标方程为(1)求曲线C的极坐标方程;(2)已知β为锐角,直线l:θ=β(ρ∈R)与曲线C的交点为A(异于极点),l与曲线M的交点为B,若,求l的直角坐标方程【分析】(1)直接利用转换关系式的应用求出结果(2)利用极径的应用建立等量关系进一步求出直线的方程【解答】解:(1)曲线C的参数方程为,转换为直角坐标方程为x2+(y﹣2)2=4转换为极坐标方程为ρ=4sinθ(2)曲线M的极坐标方程为所以将θ=β代入,由于曲线C的极坐标方程ρ=4sinθ,所以|OA|=4sin θ,所以|OA||OB|=,所以tanβ=2,所以直线l的方程为y=2x【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的恒等变换,主要考查学生的运算能力和转换能力,属于基础题型23已知a,b,c为正数,且满足a+b+c=3(1)证明:(2)证明:9ab+bc+4ac≥12abc【分析】(1)根据基本不等式,借助综合法即可证明,(2)方法一:利用分析法,根据基本不等式即可证明,方法一:利用分析法,根据柯西不等式即可证明【解答】证明:(1)∵a,b,c为正数,∴a+b≥2,a+c≥2,b+c≥2,∴2(a+b+c)≥2+2+2,当且仅当a=b=c=1时取等号,∴(2)方法一:要证9ab+bc+4ac≥12abc,只需证++≥12,即证(++)(a+b+c)≥36,即证1+4+9++++++≥36,即证+++++≥22,因为+≥2=4,+≥2=6,+≥2=12,∴+++++≥22,当且仅当a=,b=1,c=取等号,从而9ab+bc+4ac≥12abc方法二:要证9ab+bc+4ac≥12abc,只需证++≥12,即证(++)(a+b+c)≥36,根据柯西不等式可得(++)(a+b+c)≥(×+×+×)2=(1+2+3)2=36,当且仅当a=,b=1,c=取等号从而9ab+bc+4ac≥12abc【点评】本题考查了不等式的证明,考查了转化思想,属于中档题。
陕西省师大附中2020届高三第五次模拟考试数学理试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷 (选择题,共60分)一、选择题:本大题共12小题 每小题5分,共60分 在每小题给出的四个选项中,只有一项是符合题目要求的 1.集合},3{2R x x y x A ∈-==,},1{2R x x y y B ∈-==,则A B I =A.{(2,1),(2,1)}B.{13}z z ≤≤C.{13}z z -≤≤D.{03}z z ≤≤ 2. 函数y =8sin4x cos4x 的最小正周期是A.2πB.4πC. π4D. π23. 3(1-i )2=A. 32iB.-32i C.i D.-i 4. 下列函数中,在其定义域内既是奇函数又是减函数的是A.3 ,y x x R =-∈B. sin ,y x x R =∈C. ,y x x R =∈D. x 1() ,2y x R =∈5. 若9987.0)3(=Φ,则标准正态总体在区间(—3,3)内取值的概率为A .0.9987B .0.9974C .0.9944D .0.84136. 已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖7. =---+++∞→12)12(31lim2n n n n Λ A. 21 B.2 C.23 D. 328.若双曲线)0,0(12222>>=-b a b y a x 的离心率为2,则双曲线12222=-ax b y 的离心率为A .223 B .2 C .2 D .332 9. 设10<<<a b ,则下列不等式中成立的是A .12<<ab aB .0log log 2121<<a bC .12<<b ab D .222<<a b10.设P 为ABC ∆所在平面内一点,且025=--AC AB AP ,则PAB ∆的面积与ABC ∆的面积之比为A .15 B .25 C .14 D .53 11. 从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A .12 B .35C 3.012. 已知)(x f 为定义在),(+∞-∞上的可导函数,且)()(x f x f '<对于R x ∈恒成立,则A. )0()2(2f e f ⋅>, )0()2009(2009f ef ⋅> B. )0()2(2f e f ⋅<, )0()2009(2009f e f ⋅> C. )0()2(2f e f ⋅>, )0()2009(2009f ef ⋅<D.)0()2(2f e f ⋅<, )0()2009(2009f ef ⋅<第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分 把答案填在题中横线上 13.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则11()()42x yz =⋅的最小值为________.14. 表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为 . 15. 二项式6(x x+的展开式中的常数项为________.(结果用数值作答). 16. 如果一个函数的图象关于直线0x y -=对称,则称此函数为自反函数. 使得函数23x byx a+=-为自反函数的一组..实数,a b的取值为________三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤17.(本题满分12分)已知函数()2sin()184f x xππ=++.(Ⅰ)在所给的坐标纸上作出函数(),[2,14]y f x x=∈-的图象(不要求写出作图过程).(Ⅱ)令)()()(xfxfxg-+=,x R∈.求函数)(xgy=的图象与x轴交点的横坐标.18. (本题满分12分) 按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).该校高2020级一班50名学生在上学期参加活动的次数统计如图所示.(I)求该班学生参加活动的人均次数x;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率P.(III)从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.(要求:答案用最简分数表示)19.(本题满分12分)如图所示,在矩形ABCD中,22==ABAD,点E是AD的中点,将DEC∆沿CE折起到ECD'∆的位置,使二面角BECD--'是直二面角.(Ⅰ)证明:DCBE'⊥;(Ⅱ)求二面角EBCD--'的正切值.21. (本题满分12分)已知椭圆Γ的中心在原点,焦点在x轴上,它的一个顶点B恰好是1 2 3510152025参加人数活动次数抛物线y =41x 2的焦点,离心率等于22.直线l 与椭圆Γ交于N M ,两点. (Ⅰ)求椭圆Γ的方程;(Ⅱ) 椭圆Γ的右焦点F 是否可以为BMN ∆的垂心?若可以,求出直线l 的方程;若不可以,请说明理由.21.(本题满分12分)设函数a t at t f -+=221)(的定义域为]2,2[,记函数)(t f 的最大值为)(a g .(Ⅰ)求)(a g 的解析式;(Ⅱ)已知1()()g a g a>,试求实数a 的取值范围.22. (本题满分14分)已知正项数列{}n a 满足对一切*∈N n ,有233231n n S a a a =+++Λ,其中n n a a a S +++=Λ21. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 求证: 当*N n ∈时, 3ln )11ln(<+nn a a .数学答题纸理科一、选择题:(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案13. , 14. . 15. . 16. .三、解答题:(本大题共6小题,共74分)17.(Ⅰ)(Ⅱ)18. (Ⅰ)(Ⅱ)19. (Ⅰ)(Ⅱ)20. (Ⅰ)(Ⅱ)21. (I)(II)22. (Ⅰ)(Ⅱ)陕西省师大附中2020届高三第五次模拟考试数学理答案题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C A A B D A D D A B A二.填空题13.161.; 14.2π; 15. 15; 16. 2a=,b可以填写任意实数三、解答题17.(Ⅰ)(Ⅱ)1)48sin(21)48sin(2)()()(++-+++=-+=ππππxxxfxfxg28cos222)48sin(2)48sin(2+=+--+=xxxπππππ由028cos22)(=+=xxgπ得228cos-=xπ,从而πππkx2438+±=,即Zkkx∈±=,616.所以,函数)(xgy=与x轴交点的横坐标为Zkk∈±,616. 12分18.由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.(I)该班学生参加活动的人均次数为x=1023501155020325251==⨯+⨯+⨯. 3分(II)从该班中任选两名学生,他们参加活动次数恰好相等的概率为492025022022525=++=CCCCP. 6分(III)从该班中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A,“这两人中一人参加2次活动,另一人参加3次活动”为事件B,“这两人中一人参加1次活动,另一人参加3次活动”为事件C.易知4925)()()1(25012012525012515=+=+==C C C C C C B P A P P ξ; 8分 494)()2(25012015====C C C C P P ξ. 10分 ξ的分布列:ξ12P49204925 494 ξ的数学期望:49492491490=⨯+⨯+⨯=ξE . 12分19.(Ⅰ)∵AD=2AB=2,E 是AD 的中点,∴△BAE ,△CDE 是等腰直角三角形, 易知,∠BEC=90°,即BE ⊥EC又∵平面D ′EC ⊥平面BEC ,面D ′EC ∩面BEC=EC , ∴BE ⊥面D ′EC ,又CD ′⊂面D ′EC ,∴BE ⊥CD ′ 6分 (Ⅱ)法一:设M 是线段EC 的中点,过M 作MF ⊥BC 垂足为F ,连接D ′M ,D ′F ,则D ′M ⊥EC ∵平面D ′EC ⊥平面BEC ,∴D ′M ⊥平面EBC , ∴MF 是D ′F 在平面BEC 上的射影,由三垂线定理得:D ′F ⊥BC ,∴∠D ′FM 是二面D ′—BC —E 的平面角.在Rt △D ′MF 中,2121,2221===='AB MF EC M D 。
2025届陕西省韩城市司马迁中学高考仿真卷数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a ⊂α,b ⊂β,a //β,b //α,则“a //b “是“α//β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.△ABC 的内角A ,B ,C 的对边分别为,,a b c ,已知3,1,30a b B ===,则A 为( )A .60B .120C .60或150D .60或1203.已知{}n a 为等比数列,583a a +=-,4918a a =-,则211a a +=( ) A .9B .-9C .212D .214-4.已知函数22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩,则((1))f f -=( )A .2B .3C .4D .55.执行下面的程序框图,如果输入1995m =,228n =,则计算机输出的数是( )A .58B .57C .56D .556.已知函数()ln f x x ax b =++的图象在点(1,)a b +处的切线方程是32y x =-,则a b -=( ) A .2B .3C .-2D .-37.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )变量x123A .0.9B .0.85C .0.75D .0.58.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( )A .14B .4C .5D .159.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-=C .4230x y +-=D .2430x y -+=10.5()(2)x y x y +-的展开式中33x y 的系数为( ) A .-30B .-40C .40D .5011.已知函数21()log 1||f x x ⎛⎫=+⎪⎝⎭(lg )3f x >的解集为( )A .1,1010⎛⎫⎪⎝⎭B .1,(10,)10⎛⎫-∞⋃+∞ ⎪⎝⎭C .(1,10)D .1,1(1,10)10⎛⎫⋃ ⎪⎝⎭12.设m ,n 是空间两条不同的直线,α,β是空间两个不同的平面,给出下列四个命题: ①若//m α,//n β,//αβ,则//m n ; ②若αβ⊥,m β⊥,m α⊄,则//m α; ③若m n ⊥,m α⊥,//αβ,则//n β; ④若αβ⊥,l αβ=,//m α,m l ⊥,则m β⊥.其中正确的是( )A .①②B .②③C .②④D .③④二、填空题:本题共4小题,每小题5分,共20分。
数学理科试卷一.选择题:本大题共12小题,每小题5分,共60分.1.已知集合A={1,2,3},B={x|(x +1)(x -2)<0,x ∈Z},则A ∪B=( ) A.{1} B.{1,2} C.{0,1,2,3} D.{-1,0,1,2,3}2.设11a b >>>-,则下列不等式中恒成立的是( ) A.ba11< B.ba 11> C.2a b > D.22a b > 3.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,=(1,-2),=(2,1),则·=( ) A.2 B.3C.4D.54.在等差数列{a n }中,a 2+a 4=p ,a 3+a 5=q ,则它的前6项的和S 6等于( )A.45(p +q) B.2(p +q) C.p +q D.23(p +q) 5.函数()f x =(x -x1)cos x(-π≤x ≤π且x ≠0)的图象可能为( )6.在ABC △中,若B b A a cos cos =,则ABC △的形状是( ).A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等边三角形7.设p:实数x,y 满足(x -1)2+(y -1)2≤2,q:实数x,y 满足⎪⎩⎪⎨⎧≤-≥-≥111y x y x y ,则p 是q 的( ) 条件.A.必要不充分B.充分不必要C.充要D.既不充分也不必要8.若函数y=Asin(ωx +ϕ)(ω>0)的部分图像如图,则ω=( )A.5B.4C.3D.29.设α,β是两个不同的平面, l , m 是两条不同的直线,且l ⊂α, m ⊂β( )A.若l ⊥β,则α⊥βB.若α⊥β,则l ⊥mC.若l ∥β,则α∥βD.若α∥β,则l ∥m10.把函数y=cos(2x +34π)的图象按=(ϕ,0)(ϕ>0)平移后图象关于y 轴对称,则ϕ的最小值为( )A.6π B.3πC.32π D.34π11.在x ∈(31,3)上恒有|log a x |<1成立,则实数a 的取值范围是( ) A.a ≥3 B.0<a ≤31 C.a ≥3或0<a ≤31D.a ≥3或0<a <3112.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A.[-5,-3]B.[-6,-89] C.[-6,-2] D.[-4,-3]二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a =(x -1,2),b =(2,1),若a ⊥b ,则x=______. 14.正数a ,b 满足ab=a +b +3,则ab 的最小值为______. 15.设221)(+=xx f ,利用课本中推导等差数列前n 项和公式的方法,可求得)6()5()0()4()5(f f f f f ++⋅⋅⋅++⋅⋅⋅+-+-的值是________________.16.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1·a 2·…·a n 的最大值为_____.三、解答题:本大题6小题,共70分.17.(本小题共12分) 已知函数21()cos sin cos 2222x x x f x =--. (1)求函数()f x 的最小正周期和值域; (2)若32()10f α=,求sin 2α的值.18.(本小题共12分)在⊿ABC 中,D 是BC 上的点,AD 平分∠BAC ,⊿ABD 的面积是⊿ADC 的2倍. (1)求CB∠∠sin sin ; (2)若AD=1,DC=22,求BD 和AC 的长.19. (本小题共12分) 等差数列中,,.(1)求数列的通项公式;(2)设,求的值;(3)设22-⋅=n a n n c ,求10321c c c c ++++Λ的值.20. (本小题共12分 )如图,四棱锥P-ABCD 中,PA ⊥底面ABCD,AD ∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点. (1)证明:MN ∥平面PAB.(2)求直线AN 与平面PMN 所成角的正弦值.21. (本小题共12分 )已知函数ƒ(x)=(x +1)lnx -a(x -1).(1)当a=4时,求曲线y=ƒ(x)在(1, ƒ(1))处的切线方程; (2)若当x ∈(1,+∞)时, ƒ(x)>0,求a 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号。
2020届高中毕业生五月质量检测理科数学 2020.5.25 本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自已的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足,i i i z +=++12,则复数z= A .2+i B .1 +2i C .3 +i D .3-2i2.已知集合⎭⎬⎫⎩⎨⎧≤+-=031x x x A ,{}2<=x x B ,则A∩B= A .{}12<<-x x B .{}23<<-x x C .{}12≤<-x x D .{}12≤≤-x x3.设等比数列{}n a 的前n 项和为n S ,21=a ,02432=++a a a ,则5S =A .2B .0C . -2D . -44.若某几何体的三视图如下,则该几何体的体积为A .2B .4C .24D .D .34 5.在某项测量中,测量结果ξ服从正态分布)0)(,1(2>σσN ,若ξ在(0,2)内取值的概率为0.8,则ξ在),0(+∞内取值的概率为A .0.9B .0.1C .0.5D .0.46.已知函数)22)(3cos()(πϕπϕ<<-+=x x f 图象关于直线185π=x 对称,则函数f (x )在区间[0,π]上零点个数为A .1B .2C .3D .47.已知向量,是互相垂直的单位向量,向量满足1=⋅,1=⋅=A .2B .5C .3D .78.已知等差数列{}n a 满足:82521=+a a ,则21a a +的最大值为 A .2 C .4 B .3 D .59.已知直线21-=x y PQ :与y 轴交于P 点,与曲线)0(:2≥=y x y C 交于M Q ,成为线段PQ 上一点,过M 作直线t x =交C 于点N ,则△MNP 面积取到最大值时,t 的值为A .161B .41C .1D .45 10.已知函数)(1)(1R a eax e x f x ∈--=-的图象与x 轴有唯一的公共点,则实数a 的取值范围为 A .{}0≤a a B .⎭⎬⎫⎩⎨⎧=≤e a a a 10,或 C .{}e a a a =≤,或0 D .{}10=≤a a a ,或 11.已知A ,B 分别为双曲线1322=-Γy x :实轴的左右两个端点,过双曲线Γ的左焦点F 作直线PQ 交双曲线于P ,Q 两点(点P ,Q 异于A ,B ) ,则直线AP ,BQ 的斜率之比BQ AP k k :=A .31-B .3-C .32-D .23- 12.在四棱锥ABCD P -中,2=PA ,7===PD PC PB ,7==AD AB ,2==CD BC ,则四棱锥ABCD P -的体积为A .32B .3C .5D .3二、填空题:本题共4小题,每小题5分,共20分13.函数ln 1x y x =+在点P (1,0)处的切线方程为 . 14.一种药在病人血液中的量保持1500 mg 以上才有疗效;而低于500 mg 病人就有危险。
理科数学 试卷
一、选择题(每题5分,共60分) 1.已知两个集合{})
2ln(|2
++-==
x x
y x A ,{}012|≤+=x x B ,则=B A I ( )
A. ⎪⎭⎫⎢⎣⎡-221,
B. ⎥⎦
⎤ ⎝
⎛
--211, C. ),1(e - D. ()e ,2 2. 已知R a ∈,若复数i
i
a z +-=12为纯虚数,则=a ( ) A.
13 B. 13 C. 2 D. 8
3 .已知直线m 、n ,平面α、β,给出下列命题:
①若,m n αβ⊥⊥,且m n ⊥,则αβ⊥ ②若//,//m n αβ,且//m n ,则//αβ ③若,//m n αβ⊥,且m n ⊥,则αβ⊥ ④若,//m n αβ⊥,且//m n ,则//αβ 其中正确的命题是( )
A.①③
B.②④
C.③④ D .①
4.如果实数,,x y 满足条件⎪⎪⎩
⎪
⎪⎨⎧--≥-≥+≤112221x y x y x y ,则y x z -=4的最大值为( )
A .5
B . 3
C .2
D .9-
5.已知双曲线)0,0(122
22>>=-b a b
y a x 的焦点到渐近线的距离为2,且离心率为3,则该
双曲线的实轴的长为( ) A .
2 B .
3 C .22 D .32
6.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问
题中,这位公公的长儿的年龄为( ) A .23岁
B 35岁
C .32岁
D .38岁
7.如图为中国传统智力玩具鲁班锁,起源于中国古代建筑中首创的榫卯结构, 这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方
体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经︒90榫卯起来.现有一鲁班锁的正四棱柱的底面正方形的边长为4,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表面积的最小值为π200,则正四棱柱的高为( ) A.62 B. 302 C . 512 D. 10
8. 1
()1
x x f x e x -=+
+的部分图象大致是( ) A. B. C. D.
9.已知将函数()cos()(0,0)2
f x x π
ωϕωϕ=+><<
向右平移
12
π
个单位长度后, 所得图象关于y 轴对称,且2
(0)2
f =
,则当ω取最小值时,函数()f x 的解析式为( ) A
.
()cos(5)
4
f x x π
=+ B.
()sin(9)
4
f x x π
=- C.
()cos(3)4
f x x π
=+
D.1()cos()3
4
f x x π
=+
10 .若π
πe c b a 2
log ,3log ,32===,则c b a ,,的大小关系为( )
A. b a c >>
B. c a b >>
C. c b a >>
D. a c b >>
11. N 为圆223x y +=上的一个动点,平面内动点00(,)M x y 满足03y ≥且60OMN ∠=o (O 为坐标原点),则动点M 运动的区域面积为( ) A.
433π+ B. 4233π- C.233π+ D. 8233
π- 12.已知函数()f x 是定义在
[]-100,100上的偶函数,且(+2)=(2)f x f x -,当[]
0,2x ∈
时,
x e x x f )2()(-=,若方程 []2()()10f x mf x -+=有300个不同的实数根,
则实数m 的取值范围为( )
A.
251-<<-
-m e e B.251-<≤--m e e C. 225-<<-m D. 21
-<≤--m e
e
二、填空题(每题5分,共20分)
13.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为618.0,这一数值也可以表示为
ο18sin 2=m ,若42=+n m ,则
=+ο
63
sin n
m _________. 14.若直线+1=00,0)ax by a b +>>(把圆
22
4++1=16x y +()()分成面积相等的两部分, 则
122
a b
+取得最小值时,b 的值为_________. 15. 已知向量满足,3||,22||)2019sin ,2019(cos ==+︒︒=,
,
则,a b r r
的夹角余弦值等于_______.
16. 已知椭圆22
2
2:1(0)x y C a b a b
+=>>的左、右焦点分别为1F ,2F ,椭圆C 外一点P 满足2
12PF F F ⊥,且212||||PF F F =,线段1PF ,2PF 分别交椭圆C 于点A ,B ;若
1||||PA AF =,
则
22|||
|
BF PF =________________. 三、解答题(共70分) 17. (12分)
已知数列}{
n a 和}{n b ,}{n a 前n 项和为n S ,且2n
S n n =+,}{n b 是各项均为正数的
等比数列,且3125b =
,12331+25
b b b +=. (1)求数列}{
n a 和}{
n b 的通项公式; (2)求数列{}4n n a b -的前n 项和n T .
18. (12分)
在直三棱柱ABC A 1B 1C 1中,△ABC 为正三角形,点D 在棱BC 上,且CD =3BD ,点E ,F 分别为棱AB ,BB 1的中点. (1)证明:A 1C ∥平面DEF ;
(2)若A 1C ⊥EF ,求直线A 1C 1与平面DEF 所成的角的正弦值.
19 .(12分)
在ABC ∆中,C B AC AB C BC sin 3cos ,2cos 2==-.
(1)求B 和C ;
(2)若4=AB ,D 是BC 边上一点,且△ABD 的面积为3,求sin∠ADC .
20.(12分)
已知椭圆22
22:1(0)x y C a b a b
+=>>的左、右焦点分别为12F F 、,
椭圆C 的离心率为
12,且椭圆C 过点3(1,)2
-. (1)求椭圆C 的标准方程;
(2)若直线l 过椭圆C 的左顶点M ,且与椭圆C 的另一个交点为N ,直线2NF 与椭圆C 的另一个交点为P ,若1PF MN ⊥,求直线l 的方程.
21.(12分) 已知
x e x f m x -=+)(在1=x 处的切线是x 轴
(1)求)(x f 的单调区间;
(2)若1≥x 时,0)1(ln (≥+--x x m x f )恒成立,求实数m 的取值范围.
22.(10分)[选修4—4:坐标系与参数方程] 在平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x y α
α
=⎧⎨=⎩ (α为参数),将曲线1
C 上每一
倍,纵坐标不变,得到曲线2C ,以坐标原点O 为极点,x 轴
的正半
轴为极轴建立极坐标系,射线:l θϕ=与曲线2C 交于点P ,将射线l 绕极点逆时针方向旋转
2π
交曲线2C 于点Q .
(1)求曲线2C 的参数方程; (2)求POQ ∆面积的最大值.
23. (10分)[选修4-5:不等式选讲]
已知函数
b x a x x f -++=32()
(1)当0,1==b a 时,求不等式
13)(+≥x x f 的解集;
(2)若,0,0>>b a 且函数)(x f 的最小值为2,求b a +3的值.
1--6. BCDACB 7---12. BDCBBA 13. 22 14.21 15.3
1
- 16.42
17. (1)1
51,2-⎪
⎭
⎫
⎝⎛==n n n b n a (2))5
11(5)1(n n n n T -
-+= 18. (1)略 (2)66 19.(1)6
,6π
π==C B (2)772
19. (1)
13
422=+y x (2))2(126)2(126+-=+=x y x y 或者 20.(1)()()增,减,∞+∞-11, (2)1-≥m
22.(1)为参数)αα
α(sin cos 2⎩⎨⎧==y x (2)22
23(1).⎪⎭
⎫⎢⎣⎡+∞-⋃⎥⎦⎤ ⎝⎛-∞-,2123, (2)3。