2014-2015学年山东省德州一中高三(上)10月月考数学试卷(理科)
- 格式:doc
- 大小:282.00 KB
- 文档页数:15
高三期中考试数学试题(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150 分,(120 分钟)第Ⅰ卷(共60分)一、选择题:本大题12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2、复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数z为()A.2+ i B.2i-C.5+i D.5-i3、在△ABC中,cosA=-13,则tanA=____A.2B.-2C.D.-4、已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A. 138B. 135C. 95D. 235、已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6、在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为()A.(-14,0)B.(0,14)C.(14,12)D.(12,34)7、函数f(x)=4cosx−2x e的图象可能是()A.B.C.D.8、在△ABC 中,∠ABC =4π,AB=,BC =3,则sin ∠BAC=( ) A. B. C. D9、在四边形ABCD 中,AB =(1,2),BD =(-4,2),则该四边形的面积为( )A.B.2 C. 5 D. 1010、设函数f (x )= 122(1)1()x x log x x -⎧≤⎨-⎩>1则满足f (x )≤2的x 的取值范围是( ) A .[-1,2] B .[0,2] C .[1,+∞) D .[0,+∞)11、已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k=1,2),则( )A .当k=1时,f (x )在x=1处取得极小值B .当k=1时,f (x )在x=1处取得极大值C .当k=2时,f (x )在x=1处取得极小值D .当k=2时,f (x )在x=1处取得极大值12、定义域为R 的偶函数f (x )满足对∀x ∈R ,有f (x+2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y=f (x )-log a (|x|+1)在(0,+∞)上至多三个零点,则a 的取值范围是( )A.(,1) B .( ,1)∪(1,+∞) C .(0)1)第Ⅱ卷(共90分) 二、填空题:本大题共四小题,每小题4分,共16分,把答案填写在答题纸相应位置。
山东省德州一中2014-2015学年高二上学期10月月考数学(理)试题2014.10一、选择题(每小题5分,共50分)1ABC ∆中,2=a ,6=b ,3π=B ,则A sin 的值是( )A .21 B .22 C .23D .21或232.已知1,c b a ,,,4成等比数列,则实数b 为( )A .4B .2-C .2±D .23.在等差数列}{n a 中,若1202963=++a a a ,则11S 等于( )A .330B .340C .360D .3804.在△ABC 中,角A,B,C 的对应边分别为c b a ,,若222a cb +-=,则角B 的值为( )A .6πB .3πC .6π或56πD .3π或23π5.在ABC ∆中,已知C B A sin cos sin 2=,那么ABC∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 6.1+与1-的等比中项是( )A .1B .1-C .1±D .127. 已知}{n a 是等差数列,551554==S a ,,则过点),4(),,3(43a Q a P 的直线斜率为( )A .4 B.14C .-4 D .-148. △ABC 中,已知︒===60,2,B b x a ,如果△ABC 有两组解,则x 的取值范围( )A .2>xB .2<xC .3342<<x D . 3342≤<x 9.已知各项均为正数的等比数列}{n a 的首项31=a ,前三项的和为21,则543a a a ++=( )A .33B .72C .189D . 8410.已知数列}{n a 满足⎪⎩⎪⎨⎧<≤-<≤=+)121(12)210(21n n n nn a a a a a ,若751=a ,则2014a 的值为( )A .76B .75C .73D .71二、填空题(本大题共5小题,每小题5分,共25分) 11. 在△ABC 中,若∠A ∠B ∠C=123,则=c b a ::.12.在等比数列{}n a 中,若101,a a 是方程06232=--x x 的两根则47a a ⋅=______13.在ABC ∆中,已知2=a ,︒=120A ,则=++BA ba sin sin . 14.已知数列{}n a 的前n 项和n n S 23+=,求n a =_______。
2014-2015学年山东省德州市跃华学校高三(上)10月月考数学试卷(理科)一、选择题(50分)1.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]2.设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2] C.(2,+∞)D.[2,+∞)3.已知全集为R,集合,则A∩∁R B=()A.{x|x≤0} B.{x|2≤x≤4} C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}4.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.95.命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<06.已知函数f(x)是奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.27.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣18.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]9.函数f(x)=ln(x2+1)的图象大致是()A. B.C.D.10.设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0二、填空题(25分)11.集合{﹣1,0,1}共有个真子集.12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x﹣1)的定义域为.13.定义域为R的四个函数①y=x3②y=2x③y=x2+1④y=2sinx中,奇函数有(写出正确的序号)14.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)≥x 的解集用区间表示为.15.已知函数f(x)=(a≠1).若f(x)在区间(0,1]上是减函数,则实数a的取值范围是.三、解答题(共6小题,满分75分)16.(1)求函数的单调区间.(2)已知函数f(x)=,若f(2﹣a2)>f(a),求实数a的取值范围.17.已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.18.已知c>0,且c≠1,设p:函数y=c x在R上单调递减;q:函数f(x)=x2﹣2cx+1在(,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.19.设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.20.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f(x1•x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明;(3)如果f(4)=1,f(3x+1)+f(2x﹣6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.21.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)证明:函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.2014-2015学年山东省德州市跃华学校高三(上)10月月考数学试卷(理科)参考答案与试题解析一、选择题(50分)1.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]考点:交集及其运算;其他不等式的解法.专题:不等式的解法及应用.分析:求出集合A中其他不等式的解集,确定出A,找出A与B的公共部分即可求出交集.解答:解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选D点评:此题考查了交集及其运算,以及其他不等式的解法,熟练掌握交集的定义是解本题的关键.2.设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A.(﹣∞,2)B.(﹣∞,2] C.(2,+∞)D.[2,+∞)考点:集合关系中的参数取值问题;并集及其运算;一元二次不等式的解法.专题:不等式的解法及应用;集合.分析:当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a 的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.解答:解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立,∴a<1;综上,a的取值范围是(﹣∞,2].故选B.点评:此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.3.已知全集为R,集合,则A∩∁R B=()A.{x|x≤0} B.{x|2≤x≤4} C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}考点:其他不等式的解法;交、并、补集的混合运算.专题:计算题;不等式的解法及应用.分析:利用指数函数的性质可求得集合A,通过解一元二次不等式可求得集合B,从而可求得A∩C R B.解答:解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C.点评:本题考查指数函数的性质与元二次不等式,考查交、并、补集的混合运算,属于中档题.4.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1 B.3 C.5 D.9考点:集合中元素个数的最值.专题:集合.分析:依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.解答:解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.点评:本题考查集合中元素个数的最值,理解题意是关键,考查分析运算能力,属于中档题.5.命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0考点:命题的否定;全称命题.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题,写出命题的否定命题即可.解答:解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.6.已知函数f(x)是奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由奇函数定义得,f(﹣1)=﹣f(1),根据x>0的解析式,求出f(1),从而得到f(﹣1).解答:解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),f(﹣1)=﹣f(1),又当x>0时,f(x)=x2+,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选:A.点评:本题考查函数的奇偶性及运用,主要是奇函数的定义及运用,解题时要注意自变量的范围,正确应用解析式求函数值,本题属于基础题.7.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1考点:函数解析式的求解及常用方法;函数的图象与图象变化.专题:函数的性质及应用.分析:首先求出与函数y=e x的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.解答:解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.点评:本题考查了函数解析式的求解与常用方法,考查了函数图象的对称变换和平移变换,函数图象的平移遵循“左加右减,上加下减”的原则,是基础题.8.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]考点:其他不等式的解法.专题:压轴题;不等式的解法及应用.分析:由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.解答:解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D点评:本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.9.函数f(x)=ln(x2+1)的图象大致是()A. B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.解答:解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A点评:对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.10.设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数的值;不等关系与不等式.专题:函数的性质及应用.分析:先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b 的取值范围即可.解答:解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x﹣2在R上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a<1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=,g(b)=0,∴.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选A.点评:熟练掌握函数的单调性、函数零点的判定定理是解题的关键.二、填空题(25分)11.集合{﹣1,0,1}共有7 个真子集.考点:子集与真子集.专题:规律型.分析:根据集合元素个数与集合真子集之间的关系即可得到结论.解答:解:∵集合{﹣1,0,1}含有3个元素,∴集合的真子集个数为23﹣1=8﹣1=7,故答案为:7.点评:本题主要考查集合关系的应用,含有n个元素的集合,其子集个数为2n,真子集的公式为2n﹣1个.12.已知函数f(x)的定义域为(﹣1,0),则函数f(2x﹣1)的定义域为.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据复合函数定义域的关系即可求出函数的定义域.解答:解:∵函数f(x)的定义域为(﹣1,0),∴由﹣1<2x﹣1<0,即,即函数的定义域为(0,),故答案为:(0,).点评:本题主要考查函数定义域的求法,要求熟练掌握复合函数定义域的求法.13.定义域为R的四个函数①y=x3②y=2x③y=x2+1④y=2sinx中,奇函数有①④(写出正确的序号)考点:函数奇偶性的判断.专题:函数的性质及应用.分析:分别判断每个函数的奇偶性,即可得到结论.解答:解:①y=x3是奇函数,满足条件.②y=2x为非奇非偶函数,不满条件.③y=x2+1为偶函数,不满足条件.④y=2sinx为奇函数,满足条件.故是奇函数的为①④,故答案为:①④点评:本题主要考查函数奇偶性的断,要求熟练掌握常见函数的奇偶性的性质.14.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)≥x 的解集用区间表示为[﹣5,0]∪[5,+∞).考点:二次函数的性质.专题:函数的性质及应用.分析:根据函数的奇偶性求出函数f(x)的表达式,然后解不等式即可.解答:解:∵f(x)是定义在R上的奇函数,∴f(0)=0.设x<0,则﹣x>0,∵当x>0时,f(x)=x2﹣4x,∴f(﹣x)=x2+4x,又f(﹣x)=x2+4x=﹣f(x),∴f(x)=﹣x2﹣4x,x<0.当x>0时,由f(x)≥x得x2﹣4x≥x,即x2﹣5x≥0,解得x≥5或x≤0(舍去),此时x ≥5.当x=0时,f(0)≥0成立.当x<0时,由f(x)≥x得﹣x2﹣4x≥x,即x2+5x≤0,解得﹣5≤x≤0(舍去),此时﹣5≤x<0.综上﹣5≤x≤0或x≥5.故答案为:[﹣5,0]∪[5,+∞).点评:本题主要考查不等式的解法,利用函数的奇偶性求出函数f(x)的表达式是解决本题的关键.15.已知函数f(x)=(a≠1).若f(x)在区间(0,1]上是减函数,则实数a的取值范围是(﹣∞,0)∪(1,3] .考点:函数单调性的性质.专题:导数的综合应用.分析:求f′(x)=,根据f(x)在区间(0,1]上是减函数便得到f′(x)<0,这样可求得a的一个范围,再根据3﹣ax≥0在(0,1]上恒成立可得到a≤3,所以和前一个a的范围求交集即可得到a的取值范围.解答:解:f′(x)=;若f(x)在区间(0,1]上是减函数,则f′(x)<0;即,解得a<0,或a>1;又3﹣ax≥0,即a≤,在(0,1]上恒成立,在(0,1]上的最小值是3,∴a≤3;∴实数a的取值范围是(﹣∞,0)∪(1,3].故答案为:(﹣∞,0)∪(1,3].点评:考查函数单调性和函数导数符号的关系,解分式不等式,不要漏了a还需满足3﹣ax≥0在(0,1]上恒成立.三、解答题(共6小题,满分75分)16.(1)求函数的单调区间.(2)已知函数f(x)=,若f(2﹣a2)>f(a),求实数a的取值范围.考点:函数单调性的性质;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)令t=x2﹣3x>0,求得函数的定义域为(﹣∞,0)∪(3,+∞),且y=,本题即求二次函数t在(﹣∞,0)∪(3,+∞)上的单调区间.再利用二次函数的性质可得t的增区间和减区间,即可求得函数y的减区间和增区间.(2)由题意可得函数f(x)在R上是增函数,要使f(2﹣a2)>f(a),只要2﹣a2 >a即可,由此求得a的范围.解答:(1)解:令t=x2﹣3x>0,求得x<0,或 x>3,函数的定义域为(﹣∞,0)∪(3,+∞),且y=,故本题即求二次函数t在(﹣∞,0)∪(3,+∞)上的单调区间.利用二次函数的性质可得t的增区间为(3,+∞),减区间为(﹣∞,0),故函数y的减区间为(3,+∞),增区间为(﹣∞,0).(2)由题意可得函数f(x)=在R上是增函数,要使f(2﹣a2)>f(a),只要2﹣a2 >a 即可,解得﹣2<a<1,即a的范围为(﹣2,1).点评:本题主要考查函数的单调性的判断,复合函数的单调性,利用函数的单调性解不等式,属于中档题.17.已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.考点:必要条件、充分条件与充要条件的判断;一元二次不等式的解法;绝对值不等式的解法.分析:思路一:“按题索骥”﹣﹣解不等式,求否命题,再根据充要条件的集合表示进行求解;思路二:本题也可以根据四种命题间的关系进行等价转换,然后再根据充要条件的集合表示进行求解.解答:解:解法一:由p:|1﹣|≤2,解得﹣2≤x≤10,∴“非p”:A={x|x>10或x<﹣2}、(3分)由q:x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)∴“非q”:B={x|x>1+m或x<1﹣m,m>0=(6分)由“非p”是“非q”的必要而不充分条件可知:B⊆A.解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.(12分)解法二:由“非p”是“非q”的必要而不充分条件.即“非q”⇒“非p”,但“非p”“非q”,可以等价转换为它的逆否命题:“p⇒q,但q p”.即p是q的充分而不必要条件.由|1﹣|≤2,解得﹣2≤x≤10,∴p={x|﹣2≤x≤10}由x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)∴q={x|1﹣m≤x≤1+m,m>0}由p是q的充分而不必要条件可知:p⊆q⇔解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.点评:本题考查了绝对值不等式与一元二次不等式的解法,又考了命题间的关系的理解;两个知识点的简单结合构成了一道难度不太大但是要么得分不高,要么因为这道题导致整张卷子答不完,所以对于此类问题要平时加强计算能力的培养.18.已知c>0,且c≠1,设p:函数y=c x在R上单调递减;q:函数f(x)=x2﹣2cx+1在(,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.考点:复合命题的真假.专题:计算题;函数的性质及应用.分析:由函数y=c x在R上单调递减,知p:0<c<1,¬p:c>1;由f(x)=x2﹣2cx+1在(,+∞)上为增函数,知q:0<c≤,¬q:c>且c≠1.由“p或q”为真,“p且q”为假,知p真q假,或p假q真,由此能求出实数c的取值范围.解答:解∵函数y=c x在R上单调递减,∴0<c<1.(2分)即p:0<c<1,∵c>0且c≠1,∴¬p:c>1.(3分)又∵f(x)=x2﹣2cx+1在(,+∞)上为增函数,∴c≤.即q:0<c≤,∵c>0且c≠1,∴¬q:c>且c≠1.(5分)又∵“p或q”为真,“p且q”为假,∴p真q假,或p假q真.(6分)①当p真,q假时,{c|0<c<1}∩{c|c>,且c≠1}={c|}.(8分)②当p假,q真时,{c|c>1}∩{c|0<c}=∅.[(10分)]综上所述,实数c的取值范围是{c|}.(12分)点评:本题考查复合命题的真假判断及应用,解题时要认真审题,注意指数函数和二次函数的性质的灵活运用.19.设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.考点:利用导数研究函数的单调性;函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.解答:解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.点评:本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.20.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f(x1•x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明;(3)如果f(4)=1,f(3x+1)+f(2x﹣6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.考点:奇偶性与单调性的综合.专题:计算题;证明题;转化思想.分析:(1)赋值,令x1=x2=1,有f(1×1)=f(1)+f(1),由此可解得f(1)的值;(2)方法同(1)赋值求出f(﹣1)=0,再令x1=﹣1,x2=x,有f(﹣x)=f(﹣1)+f(x)构造出f(﹣x)与f(x)的方程研究其间的关系.得出奇偶性,解答本题时注意做题格式,先判断后证明;(3)由题设条件f(4)=1与函数的恒等式,将f(3x+1)+f(2x﹣6)≤3转化为f[(3x+1)(2x﹣6)]≤f(64),再由f(x)在(0,+∞)上是增函数与f(x)是偶函数的性质将此抽象不等式转化为一元二次不等式,求解x的范围.解答:(1)解:令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)证明:令x1=x2=﹣1,有f[(﹣1)×(﹣1)]=f(﹣1)+f(﹣1).解得f(﹣1)=0.令x1=﹣1,x2=x,有f(﹣x)=f(﹣1)+f(x),∴f(﹣x)=f(x).∴f(x)为偶函数.(3)解:f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.∴f(3x+1)+f(2x﹣6)≤3即f[(3x+1)(2x﹣6)]≤f(64).(*)∵f(x)在(0,+∞)上是增函数,∴(*)等价于不等式组或或或解得3<x≤5或﹣≤x<﹣或﹣<x<3.∴x的取值范围为{x|﹣≤x<﹣或﹣<x<3且x≠0或3<x≤5}.点评:本题考点是奇偶性与单调性的综合,解答本题易出现如下思维障碍:(1)无从下手,不知如何脱掉“f”.解决办法:利用函数的单调性.(2)无法得到另一个不等式.解决办法:关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.21.已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)证明:函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.考点:奇偶性与单调性的综合;函数奇偶性的性质.专题:函数的性质及应用.分析:(1)利用奇函数定义f(x)=﹣f(x)中的特殊值求a,b的值;(2)按按取点,作差,变形,判断的过程来即可.(3)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.解答:解:(1)因为f(x)是奇函数,函数的定义域为R,∴f(x)=0,即=0,解得:b=1,f(﹣1)=﹣f(1),即=﹣,解得:a=2证明:(2)由(1)得:f(x)=,设x1<x2,则f(x1)﹣f(x2)=﹣=,∵y=2x在实数集上是增函数且函数值恒大于0,故>0,>0,>0.即f(x1)﹣f(x2)>0.∴f(x)在R上是单调减函数;(3)由(2)知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0,等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式△=4+12k<0⇒k<﹣.所以k的取值范围是k<﹣.点评:本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.。
山东省德州市第一中学2015届高三数学10月月考试卷 理(含解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.已知集合A {}3,2,1,0=,集合 {|||2}B x N x =∈≤ ,则AB =( )A .{}3B .{}2,1,0C .{}2,1 D .{}3,2,1,0 【答案】B【解析】试题分析:因为{|||2}B x N x =∈≤{}2,1,0,1,2--= ,A {}3,2,1,0=, 所以AB {}2,1,0=.考点:集合的交集.2.若0()3f x '=-,则000()()lim h f x h f x h h→+--=( )A .3-B .6-C .9-D .12-【答案】B 【解析】 试题分析:由题意可得:000()()limh f x h f x h h→+--=()()()()()622lim 2lim 0'000000-==+-+=+-+→→x f h h x f h x f h h x f h x f h h . 考点:导数的定义及应用.3.函数)ln()(2x x x f -=的定义域为( )A.)1,0(B.]1,0[C.),1()0,(+∞-∞D.),1[]0,(+∞-∞ 【答案】C 【解析】试题分析:因为)ln()(2x x x f -=,所以0102<>⇒>-x x x x 或,所以函数)ln()(2x x x f -=的定义域为),1()0,(+∞-∞ .考点:函数的定义域.4.已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A.1 B.2 C.3 D.-1 【答案】A 【解析】试题分析:由题意可得:()[]()10115111=⇒=-⇒==-=-a a a f g f a .考点:幂函数方程求解.5.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A.3-B.1-C.1D.3 【答案】C 【解析】试题分析:因为1)()(23++=-x x x g x f ,所以()()111=---g f ,又因为)(),(x g x f 分别是定义在R 上的偶函数和奇函数, 所以()()111=+g f . 考点:函数奇偶性的应用.6.已知集合A {}4,1,0,2=,B ={k |k R ∈,22k A -∈,2k A -∉},则集合B 中所有元素之和为( )A .2B .-2C .0D 【答案】B 【解析】试题分析:当2222-=⇒=-k k 或2=k ,又因为A k ∉-2,所以2-=k 符合题意;当2,2022-==⇒=-k k k ,A k ∉-2,所以2,2-==k k 符合题意;当3,3122-==⇒=-k k k ,A k ∉-2,所以3,3-==k k 符合题意;当6,6422-==⇒=-k k k ,A k ∉-2,所以6,6-==k k 符合题意;所以{}6,6,3,3,2,2,2----=B ,所以集合B 中所有元素之和为-2. 考点:元素与集合的关系. 7.曲线1x y xe-=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1【答案】C 【解析】试题分析:由1x y xe-=可得:11'--+=x x xe ey ,所以2|001'=+==e e y x ,所以曲线1x y xe-=在点()1,1处切线的斜率2=k . 考点:导数的几何意义. 8..若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.13-C.13D.1 【答案】B【解析】 试题分析:令()dx x f m ⎰=1,则()()m x dx x f xx f 22212+=+=⎰,所以()()()()m m dx x dx m x dx dx x f x dx x f m 2312221021021010210+=+=+=⎪⎭⎫ ⎝⎛+==⎰⎰⎰⎰⎰, 所以()313110-=⇒-=⎰dx x f m考点:定积分的应用. 9.下列四个图中,函数=y 10111n x x ++的图象可能是( )A B C D【答案】C 【解析】试题分析:因为xx y ln 10=是奇函数,所以向左平移一个单位可得:11ln 10++=x x y ,所以11ln 10++=x x y 的图像关于()0,1-中心对称,故排除A,D当2-<x 时,0<y 恒成立,所以应选C 考点:函数的图像.10.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32 B .34 C .38D .916【答案】D【解析】试题分析:由图像可得:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+++==+-+-0210248001d c b d c b d d c b , 所以()2232'--=x x x f ,由题意可得:21,x x 是函数d cx bx x x f +++=23)(的两个极值点,故21,x x 是方程()0'=x f 的根,所以32,322121-==+x x x x ,则()9162212212221=-+=+x x x x x x . 考点:利用导数研究函数极值.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题(题型注释)11.物体运动方程为23t S =-,则2t =时瞬时速度为 【答案】4ln 2 【解析】试题分析:由题意可得:2ln 2't s =,所以当2t =时瞬时速度为2ln 42ln 2|22'===t s考点:导数的几何意义. 12.已知()f x =2lg()1a x+-是奇函数,则实数a 的值是 【答案】1- 【解析】试题分析:因为()⎪⎭⎫⎝⎛+-=a x x f 12lg ,所以对于定义域内的所有x 的有()()x f x f -=-,即:⇒-+-=+++⇒⎪⎭⎫⎝⎛-+-=⎪⎭⎫ ⎝⎛+++⇒⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛++ax a x x ax a ax a x x ax a a x a x 211221lg 12lg 12lg 12lg()()111221222222-=⇒⎪⎩⎪⎨⎧==+⇒-+=-a a a x a a x考点:奇函数性质的应用.13.如图所示,已知抛物线拱形的底边弦长为a ,拱高为b ,其面积为____________.【答案】23ab 【解析】试题分析:建立如图所示的坐标系:所以设抛物线的方程为224x a b y -=所以函数与x 轴围成的部分的面积为3|34)4(22322222ab x a b dx x a b s aa a a =⎪⎭⎫ ⎝⎛-=-=--⎰,所以阴影部分的面积为323abab ab =-.考点:定积分的应用.14.不等式632(2)(2)x x x x -+>+-的解集为____________. 【答案】{}|12x x x <->或 【解析】试题分析:原不等式等价于623(2)(2).x x x x +>+++设3()f x x x =+,则()f x 在R 上单调增.所以,原不等式等价于22()(2)212f x f x x x x x >+⇔>+⇔<->或 所以原不等式的解集为:{}|12x x x <->或. 考点:解不等式.15.已知()f x 为R 上增函数,且对任意x R ∈,都有()34xf f x ⎡⎤-=⎣⎦,则(2)f =____________.【答案】10【解析】试题分析:令()3xt f x =-,则()4f t =且()3xf x t =+,所以()341tf t t t =+=⇒=,所以()13xf x =+,所以()221310f =+=.考点:函数单调性的应用. 评卷人 得分三、解答题(题型注释)16.已知函数()f x 的定义域为(2,2)-,函数()(1)(32)g x f x f x =-+-(1)求函数()g x 的定义域;(2)若()f x 是奇函数,且在定义域上单调递减,求不等式()0g x ≤的解集.【答案】(1)15(,)22;(2)1,22⎛⎤ ⎥⎝⎦.【解析】试题分析:(1)由题意可得:1321215232222x x x x -⎧--⎧⎪⇒⎨⎨--⎩⎪⎩<<<<<<<<,解此不等式组即可得出函数()g x 的定义域15(,)22;(2)由不等式()0g x ≤可得(1)(32)f x f x -+-根据单调性得2121223222123x x x x x --⎧⎪--⇒⎨⎪--⎩<<<<<≤≥进而可得不等式()0g x ≤的解集. 试题解析:(1)由题意可知:1321215232222x x x x -⎧--⎧⎪⇒⎨⎨--⎩⎪⎩<<<<<<<<,解得1522x << 3分∴函数()g x 的定义域为15(,)224分(2)由()0g x ≤得(1)(32)f x f x -+-≤0, ∴(1)(32)f x f x -≤-- 又∵()f x 是奇函数, ∴(1)(23)f x f x -≤- 8分又∵()f x 在(2,2)-上单调递减,∴2121223222123x x x x x --⎧⎪--⇒⎨⎪--⎩<<<<<≤≥ 11分∴()0g x ≤的解集为1,22⎛⎤ ⎥⎝⎦考点:函数的定义域、奇偶性、单调性的应用.17.已知曲线 32y x x =+- 在点 0P 处的切线 1l 平行直线410x y --=,且点 0P 在第三象限.(1)求0P 的坐标;(2)若直线 1l l ⊥ , 且 l 也过切点0P ,求直线 l的方程.【答案】(1)(1,4)--;(2)4170x y ++=. 【解析】试题分析:(1)根据曲线方程求出导数,因为已知直线410x y --=的斜率为4,根据切线与已知直线平行得到斜率都为4,所以令导数等于4得到关于x 的方程,求出方程的解,即为0p 的横坐标,又因为切点在第三象限,所以即可写出满足条件的切点坐标;(2)直线1l 的斜率为4,根据垂直两直线的斜率之积等于1-,可得直线l 的斜率为14-,又由(1)可知切点的坐标,即可写出直线l 的方程.试题解析:由32y x x =+-,得231y x '=+, 2分 由1l 平行直线410x y --=得2314x +=,解之得1x =±.当1x =时,0y =; 当1x =-时,4y =-. 4分 又∵点0P 在第三象限,∴切点0P 的坐标为(1,4)-- 6分 (2)∵直线1l l ⊥, 1l 的斜率为4, ∴直线l 的斜率为14-, 8分 ∵l 过切点0P ,点0P 的坐标为 (-1,-4) ∴直线l 的方程为14(1)4y x +=-+11分 即4170x y ++= 12分 考点:利用导数研究曲线方程.18.若实数0x 满足00()f x x =,则称0x x =为()f x 的不动点.已知函数3()3f x x bx =++, 其中b 为常数.(1)求函数()f x 的单调递增区间;(2)若存在一个实数0x ,使得0x x =既是()f x 的不动点,又是()f x 的极值点.求实数b 的值;【答案】(1)当0b ≥时,()f x 的单调递增区间为(,)-∞+∞,当0b <时,()f x 的单调递增区间为(,-∞,)+∞;(2)3b =-. 【解析】试题分析:(1)首先求出函数的导函数2()3f x x b '=+,然后根据b 的取值范围讨论导数的正负进而得出函数的单调区间;(2)由题意可得:203000303x b x bx x ⎧+=⎨++=⎩,解方程组可得3b =-.试题解析:(1)因3()3f x x bx =++,故2()3f x x b '=+. 1分 当0b ≥时,显然()f x 在R 上单增; 3分当0b <时,由知x >x <分 所以,当0b ≥时,()f x 的单调递增区间为(,)-∞+∞;当0b <时,()f x的单调递增区间为(,-∞,)+∞ 6分(2)由条件知203000303x b x bx x ⎧+=⎨++=⎩,于是300230x x +-=, 8分即2000(1)(223)0x x x -++=,解得01x = 11分从而3b =-. 12分 考点:函数性质的综合应用.19.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120)12800080y x x x =-+<≤,已知甲、乙两地相距100千米(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 【答案】(1)17.5;(2)以80千米/小时的速度匀速行驶时耗油最少,最少为11.25升. 【解析】试题分析:利用基本不等式解决实际问题时,应先仔细阅读题目信息,理解题意,明确其中的数量关系,并引入变量,依题意列出相应的函数关系式,然后利用基本不等式求解;(2)在求所列函数的最值时,若用基本不等式时,等号取不到时,可利用函数的单调性求解;(3)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.试题解析:(1)当40x =时,汽车从甲地到乙地行驶了1002.540=小时, 2分 要耗油313(40408) 2.517.512800080⨯-⨯+⨯= 4分答当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升 5分(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时,设油耗为()h x 升, 依题意得313100()(8)12800080h x x x x =-+⋅218001512804x x =+- (0120x <≤) 7分方法一则332280080()640640x x h x x x-'=-= (0120x <≤) 8分 令()0h x '=,解得80x =,列表得所以当80x =时,()h x 有最小值(80)11.25h =. 11分 方法二 2180015()12804h x x x =+-214004001512804x x x =++- 8分154≥-=11.25 10分 当且仅当214004001280x x x==时成立,此时可解得80x = 11分 答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. 12分考点:基本不等式及函数模型的应用. 20.已知函数()ln f x x =(0)x ≠,函数1()()(0)()g x af x x f x '=+≠' (1)当0x ≠时,求函数()y g x =的表达式;(2)若0a >,函数()y g x =在(0,)+∞上的最小值是2 ,求a 的值;(3)在(2)的条件下,求直线2736y x =+与函数()y g x =的图象所围成图形的面积. 【答案】(1)()a y g x x x ==+;(2)1a =;(3)2ln 23ln 247-+.【解析】试题分析:(1)对x 的取值分类讨论,化简绝对值求出()'fx 得到0x >和0x <导函数相等,代入到()g x 即可;(2)根据基本不等式得到()g x 的最小值即可求出a ;(3)根据(2)知()1g x x x=+,首先联立直线与函数解析式求出交点,利用定积分求出直线与函数图像围成的区域的面积即可.试题解析:(1)∵()ln f x x =,∴当0x >时,()ln f x x =,1()f x x'=当0x <时,()ln()f x x =-,11()(1)f x x x'=⋅-=-. ∴当0x ≠时,函数()a y g x x x==+. 4分 (2)∵由(1)知当0x >时,()a g x x x =+, ∴当0,0a x >>时, ()≥g xx =时取等号.∴函数()y g x =在(0,)+∞上的最小值是∴依题意得2=∴1a =. 8分 (3)由27361y x y x x ⎧=+⎪⎪⎨⎪=+⎪⎩解得2121322,51326x x y y ⎧==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩ ∴直线2736y x =+与函数()y g x =的图象所围成图形的面积 232271()()36S x x dx x ⎡⎤=+-+⎢⎥⎣⎦⎰=2ln 23ln 247-+ 13分 考点:导数及函数单调性、定积分的应用.21.设关于x 的方程210x mx --=有两个实根,,αβαβ<,函数()221x m f x x -=+. (1)求()()f f ααββ+的值;(2)判断()f x 在区间(),αβ的单调性,并加以证明;(3)若,λμ均为正实数,证明:f f λαμβμαλβαβλμλμ⎛⎫⎛⎫++-<- ⎪ ⎪++⎝⎭⎝⎭【答案】(1)()f αα+()2f ββ=;(2)单调递增;(3)见解析.【解析】试题分析:(1)因为,αβ是方程的210x mx --=的两个实根,利用韦达定理即可得到()f x的解析式,求出()(),f f αβ进而即可求出()()f f ααββ+的值;(2)利用导数及二次函数的图像来讨论导数的正负,即可判断函数的单调性;(3)首先求出,λαμβμαλβλμλμ++++的取值范围,然后根据函数的单调性判断出函数值的取值范围,把两个函数值相减即可得到要证的结论.试题解析:(1)∵,αβ是方程210x mx --=的两个根, ∴m αβ+=,1αβ=-, 1分∴()221mf ααα-=+,又m αβ=+,∴()222()1f ααβαβααααβ-+-==+-1α=,3分 即()1f αα=,同理可得()1f ββ=∴()f αα+()2f ββ= 4分(2)∵()2222(1)(1)x mx f x x --'=-+, 6分将m αβ=+代入整理的()222()()(1)x x f x x αβ--'=-+ 7分又()(),,0x f x αβ'∈>,∴()f x 在区间(),αβ的单调递增; 8分(3)∵λαμβαλμ+-+()0μβαλμ-=>+,λαμββλμ+-+()0μαβλμ-=<+ ∴λαμβαβλμ+<<+ 10分由(2)可知()()()f f f λαμβαβλμ+<<+,同理()()()f f f μαλβαβλμ+<<+()()f f f f λαμβμαλβαβλμλμ⎛⎫⎛⎫++-<- ⎪ ⎪++⎝⎭⎝⎭ 12分由(1)可知1()f αα=,1()f ββ=,1αβ=-, ∴11()()||||||f f αβαβαβαβαβ--=-==-∴f f λαμβμαλβαβλμλμ⎛⎫⎛⎫++-<- ⎪ ⎪++⎝⎭⎝⎭14分考点:函数与方程、函数的单调性、不等式的证明.。
山东省德州一中2015届高三上学期10月月考数学(理)试题(解析版)【试卷综析】试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支撑学科知识体系的重点内容为考点挑选合理背景,考查更加科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解,考查考生的数学素养和学习潜能. 第Ⅰ卷(选择题 共50分)一、选择题:每小题5分,共10题,50分.【题文】1.已知集合A ={0,1, 2,3},集合 {|||2}B x N x =∈≤ ,则A B =( )A .{ 3 }B .{0,1,2}C .{ 1,2}D .{0,1,2,3}【知识点】交集的运算.A1【答案解析】B 解析:因为{|||2}B x N x =∈≤{}|22x x =-≤≤,所以AB ={0,1,2},故选B.【思路点拨】先解出集合B ,再求AB 即可.【题文】2.若0()3f x '=-,则 )A .3-B .6-C .9-D .12- 【知识点】导数的概念.B11【答案解析】B B.【思路点拨】利用导数的概念解之即可.【题文】3.函数)ln()(2x x x f -=的定义域为( ) A.)1,0( B. ]1,0[ C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞ 【知识点】函数的定义域.B1【答案解析】C 解析:若使原函数有意义,则20x x ->,解得1x >或0x <,即函数的定义域为),1()0,(+∞-∞ ,故选C.【思路点拨】若使原函数有意义,解一元二次不等式即可.【题文】4.已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( )A.1B. 2C. 3D. -1【知识点】函数的值.B1【答案解析】A 解析:由题意得:()11g a =-,所以()|1|151a f a --==,解得1a =,故选A.【思路点拨】先由题意得()1g ,然后解方程|1|51a -=即可.【题文】5.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. 3-B. 1-C. 1D. 3 【知识点】奇函数、偶函数的性质.B4【答案解析】C 解析:因为)(),(x g x f 分别是定义在R 上的偶函数和奇函数,所以()()f x f x -=,g()()x g x -=-,又因为1)()(23++=-x x x g x f ,故32()g()1f x x x x ---=-++,即32()()1f x g x x x +=-++,则=+)1()1(g f 1,故选C.【思路点拨】先由题意的()()f x f x -=,g()()x g x -=-,再结合1)()(23++=-x x x g x f 可求出32()()1f x g x x x +=-++,进而得到结果. 【题文】6.已知集合A ={2,0,1,4},B ={k |k R ∈,22k A -∈,2k A -∉},则集合B 中所有元素之和为( )A .2B .-2C .0D 【知识点】集合中元素的特性.A1【答案解析】B 解析:因为22k A -∈,所以有下列情况成立:(1)22k -=2,解得2k =±,当2k =时,20k A -=∈不满足题意,舍去,故2k =-;(2)22k -=0(3)22k -=1(4)22k -=4所以集合B 中所有元素之和为2-,故选B.【思路点拨】由22k A -∈分情况讨论即可得到结果.【题文】7.曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 【知识点】导数的几何意义.B11【答案解析】C 解析:因为1()x f x xe -=,所以()1()1x f x x e -'=+,则()11(1)112k f e -'==+=,故选C.【思路点拨】先对原函数求导,再利用导数的几何意义求出斜率即可. 【题文】8.若12()2(),f x x f x dx =+⎰则1()f x dx =⎰( )A.1-B.【知识点】定积分.B13【答案解析】 B 解析:设()10m f x dx=⎰,则2()2f x x m =+,故选B. 【思路点拨】本题考查了定积分以及微积分基本定理的应用.【题文】9.下列四个图中,函数)A BCD【知识点】函数的图像;函数的性质.B8【答案解析】C 解析:令1t x =+,则原函数转化为于坐标原点对称,可排除A,D;又因为当0x >时,函数值为正值,故排除B,则答案为C. 【思路点拨】借助于函数的性质结合排除法即可.【题文】10.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )ABCD【知识点】导数的几何意义.B11【答案解析】C 解析:由图象知()0f x =的根为0,1,2,\d=0,\()322()0f x x bx cx x x bx c =++=++=,\20x bx c ++=的两根为1和2,\3,2b c =-=,\32()32f x x x x =-+,\2()362f x x x ¢=-+,Q 12,x x 为 23620x x -+=的两根,\122x x +=,选C.【思路点拨】由图象知()0f x =的根为0,1,2,求出函数解析式,12,x x 为23620x x -+=的两根,结合根与系数的关系求解.第Ⅱ卷(非选择题 共100分)二、填空题:每小题5分,共5题,25分.11.物体运动方程为23tS =-,则2t =时瞬时速度为【知识点】导数的几何意义.B11【答案解析】4ln 2 解析:由题意得:2ln 2tS '=,当2t =时瞬时速度为22|2ln 24ln 2t S ='==,故答案为:4ln 2。
山东省德州一中2015届高三上学期10月月考数学(理)试题(解析版)【试卷综析】试卷贴近中学教学实际,在坚持对五个能力、两个意识考查的同时,注重对数学思想与方法的考查,体现了数学的基础性、应用性和工具性的学科特色.以支撑学科知识体系的重点内容为考点挑选合理背景,考查更加科学.试卷从多视角、多维度、多层次地考查数学思维品质,考查考生对数学本质的理解,考查考生的数学素养和学习潜能.第Ⅰ卷(选择题 共50分)一、选择题:每小题5分,共10题,50分.【题文】1.已知集合A ={0,1, 2,3},集合 {|||2}B x N x =∈≤ ,则A B =( )A .{ 3 }B .{0,1,2}C .{ 1,2}D .{0,1,2,3}【知识点】交集的运算.A1【答案解析】B 解析:因为{|||2}B x N x =∈≤{}|22x x =-≤≤,所以A B ={0,1,2},故选B.【思路点拨】先解出集合B ,再求A B 即可.【题文】2.若0()3f x '=-,则 )A .3-B .6-C .9-D .12- 【知识点】导数的概念.B11【答案解析】B B.【思路点拨】利用导数的概念解之即可.【题文】3.函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞ 【知识点】函数的定义域.B1【答案解析】C 解析:若使原函数有意义,则20x x ->,解得1x >或0x <,即函数的定义域为),1()0,(+∞-∞ ,故选C.【思路点拨】若使原函数有意义,解一元二次不等式即可.【题文】4.已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A.1 B. 2 C. 3 D. -1【知识点】函数的值.B1【答案解析】A 解析:由题意得:()11g a =-,所以()|1|151a f a --==,解得1a =,故选A.【思路点拨】先由题意得()1g ,然后解方程|1|51a -=即可.【题文】5.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. 3-B. 1-C. 1D. 3 【知识点】奇函数、偶函数的性质.B4【答案解析】C 解析:因为)(),(x g x f 分别是定义在R 上的偶函数和奇函数,所以()()f x f x -=,g()()x g x -=-,又因为1)()(23++=-x x x g x f ,故32()g()1f x x x x ---=-++,即32()()1f x g x x x +=-++,则=+)1()1(g f 1,故选C.【思路点拨】先由题意的()()f x f x -=,g()()x g x -=-,再结合1)()(23++=-x x x g x f 可求出32()()1f x g x x x +=-++,进而得到结果.【题文】6.已知集合A ={2,0,1,4},B ={k |k R ∈,22k A -∈,2k A -∉},则集合B 中所有元素之和为( )A .2B .-2C .0D 【知识点】集合中元素的特性.A1【答案解析】B 解析:因为22k A -∈,所以有下列情况成立:(1)22k -=2,解得2k =±,当2k =时,20k A -=∈不满足题意,舍去,故2k =-;(2)22k -=0(3)22k -=1(4)22k -=4 所以集合B 中所有元素之和为2-,故选B.【思路点拨】由22k A -∈分情况讨论即可得到结果. 【题文】7.曲线1x y xe-=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1 【知识点】导数的几何意义.B11【答案解析】C 解析:因为1()x f x xe-=,所以()1()1x f x x e-'=+,则()11(1)112k f e -'==+=,故选C.【思路点拨】先对原函数求导,再利用导数的几何意义求出斜率即可. 【题文】8则1()f x dx =⎰( )A.1-B.【答案解析】B 解析:设()1m f x dx =⎰,则2()2f x x m =+,故选B.【思路点拨】本题考查了定积分以及微积分基本定理的应用. 【题文】9.下列四个图中,函数 )ABCD【知识点】函数的图像;函数的性质.B8【答案解析】C 解析:令1t x =+,则原函数转化为于坐标原点对称,可排除A,D;又因为当0x >时,函数值为正值,故排除B,则答案为C. 【思路点拨】借助于函数的性质结合排除法即可.【题文】10.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A B C D【答案解析】C 解析:由图象知()0f x =的根为0,1,2,\d=0,\()322()0f x x bx cx x x bx c =++=++=,\20x bx c ++=的两根为1和2,\3,2b c =-=,\32()32f x x x x =-+,\2()362f x x x ¢=-+,Q 12,x x 为23620x x -+=的两根,\122x x +=,选C.【思路点拨】由图象知()0f x =的根为0,1,2,求出函数解析式,12,x x 为23620x x -+=的两根,结合根与系数的关系求解.第Ⅱ卷(非选择题 共100分)二、填空题:每小题5分,共5题,25分.11.物体运动方程为23t S =-,则2t =时瞬时速度为 【知识点】导数的几何意义.B11【答案解析】4ln 2 解析:由题意得:2ln 2t S '=,当2t =时瞬时速度为22|2ln 24ln 2t S ='==,故答案为:4ln 2。
高二数学(理科)月考试题2014.10一、选择题(每小题5分,共50分) 1ABC ∆中,2=a ,6=b ,3π=B ,则A sin 的值是( )A .21B .22 C .23 D .21或232.已知1,c b a ,,,4成等比数列,则实数b 为( )A .4B .2-C .2±D .23.在等差数列}{na 中,若1202963=++a a a ,则11S 等于( )A .330B .340C .360D .380 4.在△ABC 中,角A,B,C 的对应边分别为c b a ,,若222a cb +-=,则角B 的值为( )A .6πB .3πC .6π或56πD .3π或23π5.在ABC∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 6.1+与1-的等比中项是( )A .1B .1-C .1±D .127. 已知}{n a 是等差数列,551554==S a ,,则过点),4(),,3(43a Q a P 的直线斜率为( )A .4 B.14C .-4 D .-148. △ABC 中,已知︒===60,2,B b x a ,如果△ABC 有两组解,则x 的取值范围( )A .2>xB .2<xC .3342<<x D . 3342≤<x9.已知各项均为正数的等比数列}{n a 的首项31=a ,前三项的和为21,则543a a a ++=( )A .33B .72C .189D . 8410.已知数列}{n a 满足⎪⎩⎪⎨⎧<≤-<≤=+)121(12)210(21n n n nn a a a a a ,若751=a ,则2014a 的值为( )A .76 B .75 C .73 D .71二、填空题(本大题共5小题,每小题5分,共25分) 11. 在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a ::.12.在等比数列{}n a 中,若101,a a 是方程06232=--x x 的两根则47a a ⋅=______13.在ABC ∆中,已知2=a ,︒=120A ,则=++BA ba sin sin . 14.已知数列{}n a 的前n 项和n n S 23+=,求n a =_______。
高三月考数学试题〔理〕须知事项:1.本试题分为第1卷和第2卷两局部,总分为150分,考试时间为120分钟.2.禁止使用计算器. 3.答卷之前将姓名、班级等信息填写在答题卡与答题纸的相应位置.4.答卷必须使用黑色0.5毫米中性笔,使用其它类笔不给分.画图题可先用铅笔轻轻画出,确定答案后,用中性笔重描. 禁止使用透明胶带,涂改液,修正带.5.选择题填涂在答题卡上,填空题的答案抄写在答题纸纸上.解答题必须写出详细的解题步骤,必须写在答题纸相应位置,否如此不予计分.第1卷〔选择题 共50分〕一、选择题:每一小题5分,共10题,50分.1.集合A ={0,1, 2,3} ,集合{|||2}B x N x =∈≤,如此A B =〔 〕A .{ 3 }B .{0,1,2}C .{1,2}D .{0,1,2,3}2.假设0()3f x '=-,如此000()()limh f x h f x h h →+--=〔 〕A .3-B .6-C .9-D .12-3.函数)ln()(2x x x f -=的定义域为〔 〕 A.)1,0( B. ]1,0[ C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞4.函数||5)(x x f =,)()(2R a x ax x g ∈-=,假设1)]1([=g f ,如此=a 〔 〕 A.1 B. 2 C. 3 D. -15.)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,如此=+)1()1(g f 〔 〕A. 3-B. 1-C. 1D. 36.集合A ={2,0,1,4},B ={k |k R ∈,22k A -∈,2k A -∉},如此集合B 中所有元素之和为〔 〕A .2B .-2C .0D .27.曲线1x y xe -=在点〔1,1〕处切线的斜率等于 〔 〕A .2eB .eC .2D .18.假设120()2(),f x x f x dx =+⎰如此1()f x dx =⎰〔 〕A.1-B.13-C.13 D.19.如下四个图中,函数y=10111n x x ++的图象可能是〔 〕ABCD10.如下列图的是函数d cx bx x x f +++=23)(的大致图象,如此2221x x +等于〔 〕A .32B .34C .38D .316第2卷〔非选择题 共100分〕二、填空题:每一小题5分,共5题,25分.11.物体运动方程为23tS =-,如此2t =时瞬时速度为12.()f x =是奇函数,如此实数a 的值是13.如下列图,抛物线拱形的底边弦长为a ,拱高为b ,其面积为____________.14.不等式632(2)(2)x x x x -+>+-的解集为____________.15.()f x 为R 上增函数,且对任意x R ∈,都有()34xf f x ⎡⎤-=⎣⎦,如此(2)f =____________.三、解答题:共6小题,75分.写出必要文字说明、证明过程与演算步骤.16.(本小题总分为12分)函数()f x 的定义域为(2,2)-,函数()(1)(32)g x f x f x =-+- 〔Ⅰ〕求函数()g x 的定义域;〔Ⅱ〕假设()f x 是奇函数,且在定义域上单调递减,求不等式()0g x ≤的解集.17.(本小题总分为12分)曲线32y x x =+- 在点 0P 处的切线 1l 平行直线410x y --=,且点 0P 在第三象限. 〔Ⅰ〕求P 的坐标;〔Ⅱ〕假设直线 1l l ⊥ , 且 l 也过切点P ,求直线 l 的方程.18.〔本小题总分为12分〕 假设实数x 满足00()f x x =,如此称x x =为()f x 的不动点.函数3()3f x x bx =++, 其中b 为常数.〔Ⅰ〕求函数()f x 的单调递增区间; 〔Ⅱ〕假设存在一个实数0x ,使得x x =既是()f x 的不动点,又是()f x 的极值点.求实数b 的值;19.〔本小题总分为12分〕统计明确,某种型号的汽车在匀速行驶中每小时的耗油量y 〔升〕关于行驶速度x 〔千米/小时〕的函数解析式可以表示为:3138(0120)12800080y x x x =-+<≤甲、乙两地相距100千米〔Ⅰ〕当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? 〔Ⅱ〕当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 20.(本小题总分为13分)函数()ln f x x =(0)x ≠,函数1()()(0)()g x af x x f x '=+≠'〔Ⅰ〕当0x ≠时,求函数()y g x =的表达式;〔Ⅱ〕假设0a >,函数()y g x =在(0,)+∞上的最小值是2 ,求a 的值;〔Ⅲ〕在〔Ⅱ〕的条件下,求直线2736y x =+与函数()y g x =的图象所围成图形的面积.21.〔本小题总分为14分〕设关于x 的方程012=--mx x 有两个实根βαβα<,,,函数()122+-=x m x x f 。
山东省德州市2014届高三数学上学期期末考试试题 理(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足45iz i =- (i 为虚数单位),则z 的共轭复数z 为( ) A .54i - B .54i -+ C .54i + D .54i --2.设集合2|log (1M {}1)x x -<=,2N {|20}x x x =-<,则M N=( )A .{|12x x <<}B .{ |13x x <<}C .{ |03x x <<}D .{ |02x x <<}3.命题“x R ∃∈,使得210x -=”的否定为( )A .x R ∀∈,都有210x -= B .x R ∃∈,都有210x -= C .x R ∃∈,都有210x -≠ D .x R ∀∈,都有210x -≠【解析】4.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[l04,l06].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于102克的产品的个数是()A.90 B.75 C.60 D.455.已知平行四边形ABCD中,AC为一条对角线,若AB=(2,4),AC=(1,3),则AD BD=()A.-8 B.-6 C.6 D.8=8,故6.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为( )A .K>2B .K>3C .K>4D .K>57.已知()f x 是定义域为R 的奇函数,当x ≤0时,2()3f x x x =+,则不等式(1)4f x +<的解集是( ) A .(-5,5) B .(-1,1) C .(-5,+∞) D .(-l ,+∞)8.函数y=sin2x 的图象向右平移(0)ϕϕ>个单位,得到的图象关于直线6x π=对称,则ϕ的最小值为( )A .512π B .56π C .1112π D .116π9.如图,设D 是边长为l 的正方形区域,E 是D 内函数y x =2y x =所构成(阴影部分)的区域,在D 中任取一点,则该点在E 中的概率是( )A .13 B .23 C .16 D .1410.已知双曲线C 1:22221(00)y x a b a b-=>>,的离心率为2,若抛物线C 2:22(0)y px p =>的焦点到双曲线C 1的渐近线的距离是2,则抛物线C 2的方程是( )A .28y x = B .21633y x =C .283y x =D .216y x =11.已知a 是实数,则函数()1sin f x a ax =+的图象可能是( )12.设函数()y f x =在(0,+∞)内有定义,对于给定的正数K ,定义函数(),()(),()K f x f x Kf x K f x K ≤⎧=⎨>⎩,取函数ln 1()xx f x e+=,恒有()()K f x f x =,则( ) A .K 的最大值为1e B .K 的最小值为1eC .K 的最大值为2D .K 的最小值为2考点:应用导数研究函数的单调性及最值,不等式恒成立问题.第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.设,x y满足约束条件360200,0x yx yx y--≤⎧⎪-+≥⎨⎪≥≥⎩,若3y zx z=++,则实数z的取值范围为.考点:直线的倾斜角、斜率,简单线性规划的应用.14.二项式1()nxx-的展开式中,仅有第5项的二项式系数最大,则其常数项是.15.已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 .16.下列四个命题:①11(0,),()()23x xx ∃∈+∞>; ②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),()log 32xx x ∀∈<.其中正确命题的序号是 .综上知,正确命题的序号是①②④. 考点:指数函数、对数函数的性质三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分l2分)已知a ,b ,c 分别为∆ABC 的三个内角A ,B ,C 的对边,向量m =(sinA ,1),n =(cosA ,3,且m //n .(I)求角A 的大小;(II)若a=2,2,求∆ABC 的面积.故∆ABC 的面积为13+31.考点:平面向量的 坐标运算,两角和差的三角函数,正弦定理的应用,三角形面积公式.18.(本题满分l2分)设函数2()(0)f x ax bx c a =++≠,曲线()y f x =通过点(0,2a+3),且在1x =处的切线垂直于y 轴. (I)用a 分别表示b 和c ;(II)当bc 取得最大值时,写出()y f x =的解析式;(III)在(II)的条件下,g(x)满足4()6(2)()(2)3f x xg x x-=->,求g(x)的最大值及相应x值.【解析】考点:二次函数的性质,基本不等式,导数的几何意义.19. (本题满分l2分)某中学经市批准建设分校,工程从2010年底开工到2013年底完工,分三期完成,经过初步招标淘汰后,确定由甲、乙两建筑公司承建,且每期工程由两公司之一独立完成,必须在建完前一期工程后再建后一期工程,已知甲公司获得第一期,第二期,第三期工程承包权的概率分别是34,12,14.(I)求甲乙两公司均至少获得l期工程的概率;(II)求甲公司获得的工程期数的分布列和数学期望E(X).(II)由题意知,X可取0,1,2,3.利用相互独立事件同时发生的概率计算公式即得.20.(本题满分l2分) 已知等差数列{n a }的首项a 1=1,公差d>0,且2514a a a ,,分别是等比数列{n b }的b 2,b 3,b 4.(I)求数列{n a }与{{n b }的通项公式; (Ⅱ)设数列{n c }对任意自然数n 均有12112...n n nc c c a b b b ++++=成立,求122014...c c c +++的值.【解析】21. (本题满分l3分)已知函数()ln ,0af x x x a x=-->. (I)讨论()f x 的单调性;(Ⅱ)若2()f x x x >-在(1,+∞)恒成立,求实数a 的取值范围.22. (本题满分l3分)已知椭圆C :2211x y m +=+的两个焦点是F 1(-c,0),F 2(c ,0)(c>0)。
2014-2015学年山东省德州市平原一中高三(上)第一次月考数学试卷(理科)一、选择题(每小题5分,共50分)1.设集合A={x|y=ln(1﹣x)},集合B={y|y=x2},则A∩B=()A.[0,1] B.[0,1)C.(﹣∞,1] D.(﹣∞,1)2.已知全集U=R,集合A={x|x2﹣3x+2>0},B={x|x﹣a≤0},若∁U B⊆A,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,2] C.[1,+∞)D.[2,+∞)3.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是()A.B.y=e x﹣e﹣x C.y=x3﹣x D.y=xlnx4.若实数则函数f(x)=asinx+cosx的图象的一条对称轴方程为()A.x=0 B.C.D.5.下列命题中的假命题是()A.∀x>0,3x>2x B.∀x∈(0,+∞),e x>1+xC.∃x0∈(0,+∞),x0<sinx0D.∃x0∈R,lgx0<06.已知定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,则下列结论不成立的是()A.f(0)>f(1)B.f(0)>f(2)C.f(1)>f(3)D.f(1)>f(2)7.函数的零点个数为()A.0 B.1 C.2 D.38.直线y=x+1与曲线y=ln(x+a)相切时,a=()A.﹣1 B.1 C.﹣2 D.29.已知函数y=﹣xf′(x)的图象如图(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象可能是()A.B.C.D.10.对于函数,下列选项中正确的是()A.内是递增的 B.f(x)的图象关于原点对称C.f(x)的最小正周期为2πD.f(x)的最大值为1二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置)11.已知,,则= .12.由曲线y=x2和直线x=1以及y=0所围成的图形的面积是.13.不等式的解集为.14.定义在R上的函数f(x)满足f(x﹣1)=2f(x),若当﹣1≤x≤0时,f(x)=x(1+x);则当0≤x≤1时,f(x)= .15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= .三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16.是命题p:函数f(x)=(a﹣)x是R上的减函数,命题q:f(x)=x2﹣3x+3在[0,a]上的值域为[1,3],若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.17.已知函数(1)求f(x)的单调递增区间;(2)当,求函数y=f(x)的值域.18.某厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是元.(Ⅰ)要使生产该产品1小时获得的利润不低于1200元,求x的取值范围;(Ⅱ)要使生产120千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.19.设函数f(x)=(1+x)2﹣21n(1+x).(1)求f(x)的单调区间;(2)试讨论关于x的方程:f(x)=x2+x+a在区间[0,2]上的根的个数.20.已知a>0且a≠1,函数f(x)=log a(x+1),,记F(x)=2f(x)+g(x)(1)求函数F(x)的定义域D及其零点;(2)若关于x的方程F(x)﹣m=0在区间[0,1)内有解,求实数m的取值范围.21.已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(1)求函数f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)单调增区间;(3)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.2014-2015学年山东省德州市平原一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.设集合A={x|y=ln(1﹣x)},集合B={y|y=x2},则A∩B=()A.[0,1] B.[0, 1) C.(﹣∞,1] D.(﹣∞,1)考点:交集及其运算;对数函数的定义域.专题:计算题.分析:由集合A={x|y=ln(1﹣x)},表示函数y=ln(1﹣x)的定义域,集合B={y|y=x2},表示y=x2的值域,我们不难求出集合A,B,再根据集合交集的定义,不难得到答案.解答:解:∵A={x|y=ln(1﹣x)}={x|x<1},B={y|y=x2}={y|y≥0},∴A∩B=[0,1).故选B点评:遇到两个连续数集的运算,其步骤一般是:①求出M和N;②借助数轴分析集合运算结果,方法是:并集求覆盖的最大范围,交集求覆盖的公共范围.2.已知全集U=R,集合A={x|x2﹣3x+2>0},B={x|x﹣a≤0},若∁U B⊆A,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,2] C.[1,+∞)D.[2,+∞)考点:一元二次不等式的解法;补集及其运算.专题:不等式的解法及应用.分析:利用不等式的解法即可化简集合A,B,再利用集合的运算即可.解答:解:对于集合A:∵x2﹣3x+2>0,∴(x﹣1)(x﹣2)>0,解得x>2或x<1,∴A=(﹣∞,1)∪(2,+∞).∵B={x|x﹣a≤0},∴C U B=(a,+∞).∵∁U B⊆A,∴a≥2.∴实数a的取值范围是[2,+∞).故选D.点评:本题考查了一元二次不等式的解法、集合的运算性质,属于基础题.3.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是()A.B.y=e x﹣e﹣x C.y=x3﹣x D.y=xlnx考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:分别根据函数奇偶性和单调性的性质进行判断即可.解答:解:A.函数y=x+是奇函数,在(0,1)上单调递减,在(1,+∞)上单调递增,∴A不满足条件.B.设y=f(x)=e x﹣e﹣x,则f(﹣x)=e﹣x﹣e x=﹣f(x).函数为奇函数,∵y=e x单调递增,y=e﹣x,单调递减,∴y=e x﹣e﹣x在区间(0,+∞)上单调递增,∴B满足条件.C.函数y=x3﹣x为奇函数,到x>0时,y'=3x2﹣1,由y'>0,解得x>或x,∴f(x)在(0,+∞)上不是单调函数,∴C不满足条件.D.函数y=xlnx的定义域为(0,+∞),关于原点不对称,∴D不满足条件.故选:B.点评:本题主要考查函数奇偶性和单调性的判断和应用,要求熟练掌握常见函数的奇偶性和单调性.4.若实数则函数f(x)=asinx+cosx的图象的一条对称轴方程为()A.x=0 B.C.D.考点:定积分;两角和与差的正弦函数;正弦函数的对称性.专题:导数的综合应用;三角函数的图像与性质.分析:利用微积分基本定理可得:实数a===1.因此函数f(x)=sinx+cosx=,即可得到对称轴:,令k=﹣1,即可得出.解答:解:实数a===lne=1.∴函数f(x)=sinx+cosx==,令x+=,解得,令k=﹣1,可得x=﹣.故可得函数f(x)的图象的一条对称轴方程为.故选B.点评:本题考查了微积分基本定理、三角函数的图象与性质、两角和差的正弦公式等基础知识与基本技能方法,属于基础题.5.下列命题中的假命题是()A.∀x>0,3x>2x B.∀x∈(0,+∞),e x>1+xC.∃x0∈(0,+∞),x0<sinx0D.∃x0∈R,lgx0<0考点:特称命题;命题的否定.专题:规律型.分析:根据含有量词的命题的真假判断方法和命题的否定分别进行判断.解答:解:A.根据指数函数的性质可知,当x>0时,,∴3x>2x成立,∴A正确.B.设f(x)=e x﹣(1+x).则f'(x)=e x﹣1,当x≥0时,f'(x)=e x﹣1≥0,即函数f(x)单调递增,∴f(x)>f(0)=0,即∀x∈(0,+∞),e x>1+x,∴B正确.C.设f(x)=x﹣sinx,则f'(x)=1﹣cosx,当x≥0时,f'(x)=1﹣cosx≥0,即函数f (x)单调递增,∴f(x)>f(0)=0,即∀x∈(0,+∞),x>sinx,∴C错误.D.当0<x<1时,lgx<0,∴∃x0∈R,lgx0<0成立,∴D正确.故选:C.点评:本题主要考查含有量词的命题的真假判断和命题的否定,比较基础.6.已知定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,则下列结论不成立的是()A.f(0)>f(1)B.f(0)>f(2)C.f(1)>f(3)D.f(1)>f(2)考点:函数单调性的性质;函数奇偶性的性质.专题:数形结合.分析:由定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,我们不难判断函数f(x)在定义域为R的单调性,并可以画出其草图,根据草图对四个答案逐一分析,即可得到结论.解答:解:∵函数f(x)在(2,+∞)为增函数∴函数y=f(x+2)在(0,+∞)为增函数又∵函数y=f(x+2)为偶函数,∴函数y=f(x+2)在(﹣∞,0)为减函数即函数y=f(x)在(﹣∞,2)为减函数则函数y=f(x)的图象如下图示:由图可知:f(0)>f(1),f(0)>f(2),f(1)>f(2)均成立只有f(1)与f(3)无法判断大小故选C点评:本题考查的知识是函数的单调性和函数的奇偶性,这两个函数综合应用时,要注意:奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反.7.函数的零点个数为()A.0 B.1 C.2 D.3考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由函数=0,得,分别作出函数的图象,利用图象的交点确定函数零点的个数.解答:解:因为函数,所以由=0,得,分别作出函数的图象,如图由图象可知两个函数的交点个数有2个,即函数的零点个数是2个.故选C.点评:本题主要考查函数与方程之间的关系,利用数形结合是解决函数交点问题中最基本的方法,要求熟练掌握.8.直线y=x+1与曲线y=ln(x+a)相切时,a=()A.﹣1 B.1 C.﹣2 D.2考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:切点在切线上也在曲线上得到切点坐标满足两方程,又曲线切点处的导数值是切线斜率得第三个方程.三个方程联立即可求出a的值.解答:解:设切点P(x0,y0),则y0=x0+1,且y0=ln(x0+a),又∵切线方程y=x+1的斜率为1,即==1,∴x0+a=1,∴y0=0,x0=﹣1,∴a=2.故选D.点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.学生在解方程时注意利用消元的数学思想.9.已知函数y=﹣xf′(x)的图象如图(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象可能是()A.B.C.D.考点:利用导数研究函数的单调性.专题:导数的概念及应用.分析:根据函数y=﹣xf′(x)的图象,依次判断f(x)在区间(﹣∞,﹣1),(﹣1,0),(0,1),(1,+∞)上的单调性即可.解答:解:由函数y=﹣xf′(x)的图象可知:当x<﹣1时,﹣xf′(x)>0,f′(x)>0,此时f(x)增;当﹣1<x<0时,﹣xf′(x)<0,f′(x)<0,此时f(x)减;当0<x<1时,﹣xf′(x)>0,f′(x)<0,此时f(x)减;当x>1时,﹣xf′(x)<0,f′(x)>0,此时f(x)增.综上所述,y=f(x)的图象可能是B,故选:B.点评:本题主要考查了函数的单调性与导数的关系,同时考查了分类讨论的思想,属于基础题.10.对于函数,下列选项中正确的是()A.内是递增的 B.f(x)的图象关于原点对称C.f(x)的最小正周期为2πD.f(x)的最大值为1考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;三角函数的周期性及其求法;正弦函数的单调性;正弦函数的对称性.专题:三角函数的图像与性质.分析:函数f(x)解析式前两项利用二倍角的余弦函数公式化简,整理后得到一个角的正弦函数,利用正弦函数的单调性,对称性,周期性,以及值域,即可做出判断.解答:解:函数f(x)=[1+cos(2x﹣)+1﹣cos(2x+)]﹣1=(cos2x+sin2x﹣cos2x+sin2x)=sin2x,令﹣+2kπ≤2x≤+2kπ,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z,∴f(x)的递增区间为[﹣+kπ,+kπ],k∈Z,当x∈(,)时,2x∈(,π),此时函数为减函数,选项A错误;当x=0时,f(x)=0,且正弦函数关于原点对称,选项B正确;∵ω=2,∴最小正周期T==π,选项C错误;∵﹣1≤sin2x≤1,∴f(x)=sin2x的最大值为,选项D错误,故选:B.点评:此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,三角函数的周期性及其求法,正弦函数的单调性,以及正弦函数的对称性,熟练掌握公式是解本题的关键.二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置)11.已知,,则= ﹣1 .考点:两角和与差的正切函数;同角三角函数间的基本关系.专题:三角函数的求值.分析:由α的范围,根据sinα的值,求出cosα的值,进而确定出tanα的值,原式利用两角和与差的正切函数公式化简,将tanα的值代入计算即可求出值.解答:解:∵α∈(,π),sinα=,∴cosα=﹣=﹣,∴tanα=﹣,则tan(α﹣)===﹣1.故答案为:﹣1点评:此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.12.由曲线y=x2和直线x=1以及y=0所围成的图形的面积是.考点:定积分.分析:关键定积分的几何意义,所求图形的面积等于定积分dx的值.解答:解:由题意,==,所以由曲线y=x2和直线x=1以及y=0所围成的图形的面积是;故答案为:.点评:本题考查利用定积分的几何意义求曲边梯形的面积;明确意义后确定积分的上限和下限是关键.13.不等式的解集为(.考点:其他不等式的解法.专题:计算题.分析:由两数相除商为负数,得到两数异号,将原不等式转化为两个不等式组,求出不等式组的解集,即可确定出原不等式的解集.解答:解:≤0,可化为或,解得:﹣<x≤1,则原不等式的解集为(﹣,1].故答案为:(﹣,1]点评:此题考查了其他不等式的解法,利用了转化的思想,其转化的依据为两数相除的取符合法则.14.定义在R上的函数f(x)满足f(x﹣1)=2f(x),若当﹣1≤x≤0时,f(x)=x(1+x);则当0≤x≤1时,f(x)= .考点:抽象函数及其应用;函数解析式的求解及常用方法.专题:函数的性质及应用.分析:设0≤x≤1,则﹣1≤x﹣1≤0,根据当﹣1≤x≤0时,f(x)=x(1+x),可得f(x ﹣1)的表达式,再利用f(x﹣1)=2f(x),即可得到f(x)的表达式.解答:解:设0≤x≤1,则﹣1≤x﹣1≤0,∵当﹣1≤x≤0时,f(x)=x(1+x),∴f(x﹣1)=(x﹣1)x,∵f(x﹣1)=2f(x),∴2f(x)=(x﹣1)x,∴f(x)=(﹣1≤x≤0).故答案为:.点评:本题考查了抽象函数及其应用,涉及了求函数解析式,对于求函数解析式的方法,一般有:待定系数法,换元法,凑配法,消元法等.解题时要认真审题,仔细解答,注意合理地进行等价转化.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= ﹣8 .考点:奇偶性与单调性的综合;函数的周期性.专题:数形结合.分析:由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.解答:解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.三、解答题(本大题共6小题,共75分,解答应写出文字说、证明过程或演算步骤)16.是命题p:函数f(x)=(a﹣)x是R上的减函数,命题q:f(x)=x2﹣3x+3在[0,a]上的值域为[1,3],若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;简易逻辑.分析:根据指数函数的单调性,二次函数的值域求出命题p,q下的a的取值范围,因为“p 或q”为真命题,“p且q”为假命题,所以p,q中一真一假,求p真q假,p假q真时的a 的取值范围,再求并集即可.解答:解:命题p:函数f(x)=(a﹣)x是R上的减函数;∴0<,∴;命题q:令x2﹣3x+3=1得,x=1,或2;令x2﹣3x+3=3得,x=0,或3;∴a=1;若“p或q”为真命题,“p且q”为假命题,则p,q一真一假;若p真q假,,解得a;若p假q真,,解得a=1;∴实数a的取值范围为{a|,或a=1}.点评:考查指数函数的单调性,二次函数的值域,p或q,p且q的真假和p,q真假的关系.17.已知函数(1)求f(x)的单调递增区间;(2)当,求函数y=f(x)的值域.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:计算题;三角函数的图像与性质.分析:(1)通过两角和与差的三角函数以及二倍角公式化简函数为一个角的一个三角函数的形式,利用正弦函数的单调增区间,求f(x)的单调递增区间;(2)通过,求出相位的范围,利用正弦函数的值域即可求函数y=f(x)的值域.解答:解:函数===由,k∈Z可得,k∈Z.∴函数的单调增区间:k∈Z.(2)∵,∴,∴,∴函数的值域是:.点评:本题考查两角和与差的三角函数以及二倍角公式的应用,三角函数的单调区间以及函数的值域的求法,考查计算能力.18.某厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是元.(Ⅰ)要使生产该产品1小时获得的利润不低于1200元,求x的取值范围;(Ⅱ)要使生产120千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.考点:函数模型的选择与应用.专题:应用题.分析:(Ⅰ)求出生产该产品1小时获得的利润,建立不等式,然后解一元二次不等式即可求x的取值范围;(Ⅱ)确定生产120千克该产品获得的利润函数,利用配方法,从而可求出最大利润.解答:解:(Ⅰ)生产该产品1小时获得的利润为100(4x+1﹣)×1=100(4x+1﹣),根据题意,100(4x+1﹣)≥1200,即4x2﹣11x﹣3≥0∴x≥3或x≤﹣1,∵1≤x≤10,∴3≤x≤10,即x的取值范围是3≤x≤10;(Ⅱ)设生产120千克该产品获得的利润为y元,则生产900千克该产品获得的利润为y=100(4x+1﹣)×=12000[﹣3(﹣)2+],∵1≤x≤10,∴x=6时,取得最大利润为49000元,故该厂应以6千克/小时的速度生产,可获得最大利润为49000元.点评:本题考查函数模型的建立,考查解不等式,考查函数的最值,确定函数的模型是关键.属于中档题.19.设函数f(x)=(1+x)2﹣21n(1+x).(1)求f(x)的单调区间;(2)试讨论关于x的方程:f(x)=x2+x+a在区间[0,2]上的根的个数.考点:利用导数研究函数的单调性;根的存在性及根的个数判断.专题:导数的综合应用.分析:(1)求函数的导数,即可求f(x)的单调区间;(2)利用参数分离法,转化为a=1+x﹣21n(1+x),然后利用导数求出g(x)=1+x﹣21n(1+x)在区间[0, 2]上的极值和最值即可得到结论.解答:解:(1)函数的定义域为(﹣1,+∞),则函数的导数f′(x)=2(x+1)﹣=,若f′(x)>0,则x>0,此时函数单调递增,若f′(x)<0,则﹣1<x<0,此时函数单调递减,即f(x)的单调增区间为(0,+∞);f(x)的单调减区间为(﹣1,0);(2)由f(x)=x2+x+a,得(1+x)2﹣21n(1+x)=x2+x+a,则a=1+x﹣21n(1+x),设g(x)=1+x﹣21n(1+x),则g′(x)=1﹣=,当1<x<2时,g′(x)>0,此时函数g(x)单调递增,当0<x<1时,g′(x)<0,此时函数g(x)单调递减,即当x=1时,函数g(x)取得极小值,同时也是最小值g(1)=2﹣2ln2,∵g(0)=1,g(2)=3﹣2ln3<1,∴若a<2﹣2ln2,则方程a=1+x﹣21n(1+x)在区间[0,2]无解,若a=2﹣2ln2,则方程a=1+x﹣21n(1+x)在区间[0,2]有1解,若2﹣2ln2<a≤3﹣2ln3,则方程a=1+x﹣21n(1+x)在区间[0,2]有2解,若3﹣2ln3<a≤1,则方程a=1+x﹣21n(1+x)在区间[0,2]有1解,若a>1则方程a=1+x﹣21n(1+x)在区间[0,2]无解.点评:本题主要考查函数的单调性和导数的关系,以及方程根的个数的判断,考查学生的推理能力.20.已知a>0且a≠1,函数f(x)=log a(x+1),,记F(x)=2f(x)+g(x)(1)求函数F(x)的定义域D及其零点;(2)若关于x的方程F(x)﹣m=0在区间[0,1)内有解,求实数m的取值范围.考点:函数的零点与方程根的关系;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)可得F(x)的解析式,由可得定义域,令F(x)=0,由对数函数的性质可解得x的值,注意验证即可;(2)方程可化为,设1﹣x=t∈(0,1],构造函数,可得单调性和最值,进而可得吗的范围.解答:解:(1)F(x)=2f(x)+g(x)=(a>0且a≠1)由,可解得﹣1<x<1,所以函数F(x)的定义域为(﹣1,1)令F(x)=0,则…(*)方程变为,即(x+1)2=1﹣x,即x2+3x=0解得x1=0,x2=﹣3,经检验x=﹣3是(*)的增根,所以方程(*)的解为x=0即函数F(x)的零点为0.(2)方程可化为=,故,设1﹣x=t∈(0,1]函数在区间(0,1]上是减函数当t=1时,此时x=0,y min=5,所以a m≥1①若a>1,由a m≥1可解得m≥0,②若0<a<1,由a m≥1可解得m≤0,故当a>1时,实数m的取值范围为:m≥0,当0<a<1时,实数m的取值范围为:m≤0点评:本题考查函数的零点与方程的跟的关系,属中档题.21.已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(1)求函数f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)单调增区间;(3)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,0),故由点斜式即可得所求切线的方程;(2)先求原函数的导数得:f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna,再对a进行讨论,得到f'(x)>0,从而函数f(x)在(0,+∞)上单调递增.(3)f(x)的最大值减去f(x)的最小值大于或等于e﹣1,由单调性知,f(x)的最大值是f(1)或f(﹣1),最小值f(0)=1,由f(1)﹣f(﹣1)的单调性,判断f(1)与f (﹣1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e﹣1求出a的取值范围.解答:解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna 单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0(当t=1时取等号),所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)点评:本题考查了基本函数导数公式,导数的几何意义,利用导数研究函数的单调性及利用导数求闭区间上函数的最值.属于中档题.。
2014-2015学年山东省德州一中高三(上)10月月考数学试卷(理科)一、选择题:每小题5分,共10题,50分.1.已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B= ()A.{ 3 } B.{0,1,2} C.{ 1,2} D.{0,1,2,3}2.若f′(x 0)=﹣3,则=()A.﹣3 B.﹣6 C.﹣9 D.﹣123.函数f(x)=ln(x2﹣x)的定义域为()A.(0,1)B.[0,1] C.(﹣∞,0)∪(1,+∞)D.(﹣∞,0]∪[1,+∞)4.已知函数f(x)=5|x|,g(x)=ax2﹣x(a∈R),若f[g(1)]=1,则a=()A.1 B. 2 C. 3 D.﹣15.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D. 36.已知集合A={2,0,1,4},B={k|k∈R,k2﹣2∈A,k﹣2∉A},则集合B中所有元素之和为()A.2 B.﹣2 C.0 D.7.曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B. e C. 2 D. 18.若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D. 19.下列四个图中,函数y=的图象可能是()A.B.C.D.10.如图所示的是函数f(x)=x3+bx2+cx+d的大致图象,则x12+x22等于()A.B.C.D.二、填空题:每小题5分,共5题,25分.11.物体运动方程为S=2t﹣3,则t=2时瞬时速度为.12.已知f(x)=lg(+a)是奇函数,则实数a的值是.13.如图所示,已知抛物线拱形的底边弦长为a,拱高为b,其面积为.14.不等式x6﹣(x+2)>(x+2)3﹣x2的解集为.15.已知f(x)为R上增函数,且对任意x∈R,都有f[f(x)﹣3x]=4,则f(2)=.三、解答题:共6小题,75分.写出必要文字说明、证明过程及演算步骤.16.(12分)(2014秋•芜湖期末)已知函数f(x)的定义域为(﹣2,2),函数g(x)=f (x﹣1)+f(3﹣2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.17.(12分)(2011秋•华容县期末)已知曲线y=x3+x﹣2在点P0处的切线l1平行直线4x﹣y﹣1=0,且点P0在第三象限,(1)求P0的坐标;(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.18.(12分)(2014秋•德州校级月考)若实数x0满足f(x0)=x0,则称x=x0为f(x)的不动点.已知函数f(x)=x3+bx+3,其中b为常数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若存在一个实数x0,使得x=x0既是f(x)的不动点,又是f(x)的极值点.求实数b的值.19.(12分)(2006•福建)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:x+8(0<x≤120).已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?20.(13分)(2015春•蠡县校级期末)已知函数f(x)=ln|x|(x≠0),函数g(x)=(x≠0)(1)当x≠0时,求函数y=g(x)的表达式;(2)若a>0,函数y=g(x)在(0,+∞)上的最小值是2,求a的值;(3)在(2)的条件下,求直线y=与函数y=g(x)的图象所围成图形的面积.21.(14分)(2007•海淀区二模)设关于x的方程x2﹣mx﹣1=0有两个实根α、β,且α<β.定义函数(Ⅰ)求αf(α)+βf(β)的值;(Ⅱ)判断f(x)在区间(α,β)上的单调性,并加以证明;(Ⅲ)若λ,μ为正实数,证明不等式:2014-2015学年山东省德州一中高三(上)10月月考数学试卷(理科)参考答案与试题解析一、选择题:每小题5分,共10题,50分.1.已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B= ()A.{ 3 } B.{0,1,2} C.{ 1,2} D.{0,1,2,3}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集,找出解集中的自然数解确定出B,求出两集合的交集即可.解答:解:由B中的不等式解得:﹣2≤x≤2,x∈N,得到x=0,1,2,即B={0,1,2},∵A={0,1,2,3},∴A∩B={0,1,2}.故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义解本题的关键.2.若f′(x 0)=﹣3,则=()A.﹣3 B.﹣6 C.﹣9 D.﹣12考点:极限及其运算.专题:导数的概念及应用.分析:把要求解极限的代数式变形,化为若f′(x0)得答案.解答:解:∵f′(x0)=﹣3,则===2f′(x0)=﹣6.故选;B.点评:本题考查了极限及其运算,考查了导数的概念,体现了数学转化思想方法,是基础题.3.函数f(x)=ln(x2﹣x)的定义域为()A.(0,1)B.[0,1] C.(﹣∞,0)∪(1,+∞)D.(﹣∞,0]∪[1,+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可求出函数的定义域.解答:解:要使函数有意义,则x2﹣x>0,即x>1或x<0,故函数的定义域为(﹣∞,0)∪(1,+∞),故选:C点评:本题主要考查函数定义域的求法,比较基础.4.已知函数f(x)=5|x|,g(x)=ax2﹣x(a∈R),若f[g(1)]=1,则a=()A.1 B. 2 C. 3 D.﹣1考点:函数的值.专题:函数的性质及应用.分析:根据函数的表达式,直接代入即可得到结论.解答:解:∵g(x)=ax2﹣x(a∈R),∴g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=1,故选:A.点评:本题主要考查函数值的计算,利用条件直接代入解方程即可,比较基础.5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D. 3考点:函数解析式的求解及常用方法;函数的值.专题:函数的性质及应用.分析:将原代数式中的x替换成﹣x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=1即可.解答:解:由f(x)﹣g(x)=x3+x2+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3+x2+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选:C.点评:本题属于容易题,是对函数奇偶性的考查,在高考中,函数奇偶性的考查一般相对比较基础,学生在掌握好基础知识的前提下,做题应该没有什么障碍.本题中也可以将原代数式中的x直接令其等于﹣1也可以得到计算结果.6.已知集合A={2,0,1,4},B={k|k∈R,k2﹣2∈A,k﹣2∉A},则集合B中所有元素之和为()A.2 B.﹣2 C.0 D.考点:元素与集合关系的判断.专题:集合.分析:由于集合A={2,0,1,4},根据集合B={k|k∈R,k2﹣2∈A,k﹣2∉A},先求出集合B中的元素再求和.解答:解:A={2,0,1,4},B={k|k∈R,k2﹣2∈A,k﹣2∉A},①当k2﹣2=2时,k=±2,k=2时,k﹣2=0∈A,∴k≠2;k=﹣2时,k﹣2=﹣4∉A,成立;②当k2﹣2=0时,k=,k﹣2=±﹣2∉A,A,成立;③当k2﹣2=1时,k=,k﹣2=∉A,成立;④当k2﹣2=4时,k=,k ﹣2=∉A,成立.从而得到B={},∴集合B中所有元素之和为﹣2.故选B.点评:本题考查集合中元素之和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.7.曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B. e C. 2 D. 1考点:导数的几何意义.专题:导数的概念及应用.分析:求函数的导数,利用导数的几何意义即可求出对应的切线斜率.解答:解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.点评:本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D. 1考点:定积分.专题:导数的综合应用.分析:利用回代验证法推出选项即可.解答:解:若f(x)dx=﹣1,则:f(x)=x2﹣2,∴x2﹣2=x2+2(x2﹣2)dx=x2+2()=x2﹣,显然A不正确;若f(x)dx=,则:f(x)=x2﹣,∴x2﹣=x2+2(x2﹣)dx=x2+2()=x2﹣,显然B正确;若f(x)dx=,则:f(x)=x2+,∴x2+=x2+2(x2+)dx=x2+2()=x2+2,显然C不正确;若f(x)dx=1,则:f(x)=x2+2,∴x2+2=x2+2(x2+2)dx=x2+2()=x2+,显然D不正确;故选:B.点评:本题考查定积分以及微积分基本定理的应用,回代验证有时也是解答问题的好方法.9.下列四个图中,函数y=的图象可能是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据四个选择项判断函数值的符号即可选择正确选项.解答:解:当x>0时,y>0,排除A、B两项;当﹣2<x<﹣1时,y>0,排除D项.故选:C.点评:本题考查函数的性质与识图能力,属中档题,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项.10.如图所示的是函数f(x)=x3+bx2+cx+d的大致图象,则x12+x22等于()A.B.C.D.考点:导数的运算;函数解析式的求解及常用方法;一元二次方程的根的分布与系数的关系.专题:压轴题;数形结合.分析:由图象知f(x)=0的根为0,1,2,求出函数解析式,x1,x2为导函数的两根,可结合根与系数求解.解答:解:由图象知f(x)=0的根为0,1,2,∴d=0.∴f(x)=x3+bx2+cx=x(x2+bx+c)=0.∴x2+bx+c=0的两个根为1和2.∴b=﹣3,c=2.∴f(x)=x3﹣3x2+2x.∴f′(x)=3x2﹣6x+2.∵x1,x2为3x2﹣6x+2=0的两根,∴.∴.点评:本题考查了识图能力,以及极值与导数的关系二、填空题:每小题5分,共5题,25分.11.物体运动方程为S=2t﹣3,则t=2时瞬时速度为4ln2.考点:导数的运算.专题:导数的概念及应用.分析:直接求出原函数的导函数,代入t=2得答案.解答:解:由S=2t﹣3,得S′=2t•lnt,∴S′|t=2=4ln2.故答案为:4ln2.点评:本题考查了导数的运算,是基础的计算题.12.已知f(x)=lg(+a)是奇函数,则实数a的值是﹣1.考点:对数函数的图像与性质.专题:函数的性质及应用.分析:根据奇函数的性质即可求出a的值.解答:解:∵f(x)=lg(+a)是奇函数,∴f(0)=0,即f(0)=lg(2+a)=0,解得a=﹣1,故答案为:﹣1点评:本题主要考查了对数函数的图象和性质,属于基础题.13.如图所示,已知抛物线拱形的底边弦长为a,拱高为b,其面积为ab.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设抛物线的方程为;x2=﹣2py,根据题意可得抛物线上的点的坐标为(,﹣b),求出抛物线的方程,运用积分求解面积.解答:解:设抛物线的方程为;x2=﹣2py,根据题意可得抛物线上的点的坐标为(,﹣b)把点坐标代入可得;2p=,即x2=﹣y,y=﹣x2,2∫x2dx=抛物线拱形的底边弦长为a,拱高为b,其面积为ab﹣=故答案为:点评:本题综合考查了抛物线的几何性质,方程的运用,借助积分求解面积,难度不大,运用的知识不常用,仔细些即可.14.不等式x6﹣(x+2)>(x+2)3﹣x2的解集为{x|x<﹣1或x>2}.考点:其他不等式的解法.专题:不等式的解法及应用.分析:将不等式变形为x6+x2>(x+2)3+(x+2),设f(x)=x3+x,利用其单调性将不等式转化为f(x2)>f(x+2),再利用单调性得到自变量的大小关系解之.解答:解:原不等式等价于x6+x2>(x+2)3+(x+2),设f(x)=x3+x,则f(x)在R上单调增.所以,原不等式等价于f(x2)>f(x+2)⇔x2>x+2,解得x<﹣1或者x>2;所以,原不等式解集为{x|x<﹣1或x>2}故答案为:{x|x<﹣1或x>2}.点评:本题考查了利用函数的单调性解不等式,关键是构造函数f(x)=x3+x,利用其单调性将不等式转化为一元二次不等式.15.已知f(x)为R上增函数,且对任意x∈R,都有f[f(x)﹣3x]=4,则f(2)=10.考点:函数单调性的性质.专题:函数的性质及应用.分析:因为f(x)是R上的增函数,所以若f(x)﹣3x不是常数,则f[f(x)﹣3x]便不是常数.而已知f[f(x)﹣3x]=4,所以f(x)﹣3x是常数,设f(x)﹣3x=m,所以f(m)=4,f(x)=3x+m,所以f(m)=3m+m=4,容易知道该方程有唯一解,m=1,所以f(x)=3x+1,所以便可求出f(2).解答:解:根据题意得,f(x)﹣3x为常数,设f(x)﹣3x=m,则f(m)=4,f(x)=3x+m;∴3m+m=4,易知该方程有唯一解,m=1;∴f(x)=3x+1;∴f(2)=10;故答案为:10.点评:考查对于单调函数,当自变量的值是变量时,函数值也是变量,单调函数零点的情况.三、解答题:共6小题,75分.写出必要文字说明、证明过程及演算步骤.16.(12分)(2014秋•芜湖期末)已知函数f(x)的定义域为(﹣2,2),函数g(x)=f (x﹣1)+f(3﹣2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.考点:函数的定义域及其求法;函数单调性的性质;函数奇偶性的性质.专题:函数的性质及应用.分析:(1)由题意知,,解此不等式组得出函数g(x)的定义域.(2)等式g(x)≤0,即f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),有,解此不等式组,可得结果.解答:解:(1)∵数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).∴,∴<x<,函数g(x)的定义域(,).(2)∵f(x)是奇函数且在定义域内单调递减,不等式g(x)≤0,∴f(x﹣1)≤﹣f(3﹣2x)=f(2x﹣3),∴,∴<x≤2,故不等式g(x)≤0的解集是(,2].点评:本题考查函数的定义域的求法,利用函数的单调性和奇偶性解不等式,属于基础题.17.(12分)(2011秋•华容县期末)已知曲线y=x3+x﹣2在点P0处的切线l1平行直线4x﹣y﹣1=0,且点P0在第三象限,(1)求P0的坐标;(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.考点:利用导数研究曲线上某点切线方程.专题:综合题.分析:(1)根据曲线方程求出导函数,因为已知直线4x﹣y﹣1=0的斜率为4,根据切线与已知直线平行得到斜率相等都为4,所以令导函数等于4得到关于x的方程,求出方程的解,即为切点P0的横坐标,代入曲线方程即可求出切点的纵坐标,又因为切点在第3象限,进而写出满足题意的切点的坐标;(2)由直线l1的斜率为4,根据两直线垂直时斜率的乘积为﹣1,得到直线l的斜率为﹣,又根据(1)中求得的切点坐标,写出直线l的方程即可.解答:解:(1)由y=x3+x﹣2,得y′=3x2+1,由已知得3x2+1=4,解之得x=±1.当x=1时,y=0;当x=﹣1时,y=﹣4.又∵点P0在第三象限,∴切点P0的坐标为(﹣1,﹣4);(2)∵直线l⊥l1,l1的斜率为4,∴直线l的斜率为﹣,∵l过切点P0,点P0的坐标为(﹣1,﹣4)∴直线l的方程为y+4=﹣(x+1)即x+4y+17=0.点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握两直线垂直时斜率的关系,会根据一点和斜率写出直线的方程,是一道中档题.18.(12分)(2014秋•德州校级月考)若实数x0满足f(x0)=x0,则称x=x0为f(x)的不动点.已知函数f(x)=x3+bx+3,其中b为常数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若存在一个实数x0,使得x=x0既是f(x)的不动点,又是f(x)的极值点.求实数b的值.考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)利用导数研究函数的单调性,即可求出函数的单调区间;(Ⅱ)根据函数不动点的定义及函数极值的意义,列出方程组解得即可.解答:解:(Ⅰ)因f(x)=x3+bx+3,故f′(x)=3x2+b.当b≥0时,显然f(x)在R上单增;当b<0时,x>或x<.所以,当b≥0时,f(x)的单调递增区间为(﹣∞,+∞);当b<0时,f(x)的单调递增区间为(﹣∞,),(,+∞);(Ⅱ)由条件知,于是2+x0﹣3=0,即(x0﹣1)(2)=0,解得x0=1,从而b=﹣3.点评:本题主要考查利用导数求函数的单调区间,考查函数的极值的意义及不动点的定义的运用,属于中档题.19.(12分)(2006•福建)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:x+8(0<x≤120).已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?考点:利用导数研究函数的极值;函数模型的选择与应用.专题:计算题;应用题.分析:(I)把用的时间求出,在乘以每小时的耗油量y即可.(II)求出耗油量为h(x)与速度为x的关系式,再利用导函数求出h(x)的极小值判断出就是最小值即可.解答:解:(I)当x=40时,汽车从甲地到乙地行驶了小时,要耗油(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.(II)当速度为x千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,依题意得,.令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120)时,h'(x)>0,h(x)是增函数.∴当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.点评:本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.20.(13分)(2015春•蠡县校级期末)已知函数f(x)=ln|x|(x≠0),函数g(x)=(x≠0)(1)当x≠0时,求函数y=g(x)的表达式;(2)若a>0,函数y=g(x)在(0,+∞)上的最小值是2,求a的值;(3)在(2)的条件下,求直线y=与函数y=g(x)的图象所围成图形的面积.考点:定积分在求面积中的应用;函数解析式的求解及常用方法;利用导数求闭区间上函数的最值.专题:计算题.分析:(1)对x的取值分类讨论,化简绝对值,求出f′(x)得到x>0和x<0导函数相等,代入到g(x)中得到即可;(2)根据基本不等式得到g(x)的最小值即可求出a;(3)根据(2)知,先联立直线与函数解析式求出交点,利用定积分求直线和函数图象围成面积的方法求出即可.解答:解:(1)∵,∴当x>0时,,当x<0时,…(1分)∴当x>0时,,当x<0时,…(2分)∴当x≠0时,函数…(4分)(2)∵由(1)知当x>0时,,∴当a>0,x>0时,当且仅当时取等号…(6分)∴函数在上的最小值是…(7分)∴依题意得∴a=1…(8分)(用导数求最小值参考给分)(3)根据(2)知a=1,∴…(9分)由解得…(10分)∴直线与函数的图象所围成图形的面积…(11分).…(14分).点评:考查学生导数运算的能力,理解函数最值及几何意义的能力,利用定积分求平面图形面积的能力.21.(14分)(2007•海淀区二模)设关于x的方程x2﹣mx﹣1=0有两个实根α、β,且α<β.定义函数(Ⅰ)求αf(α)+βf(β)的值;(Ⅱ)判断f(x)在区间(α,β)上的单调性,并加以证明;(Ⅲ)若λ,μ为正实数,证明不等式:考点:函数与方程的综合运用;利用导数研究函数的单调性;不等式的证明.专题:计算题;证明题.分析:(1)因为α,β是方程x2﹣mx﹣1=0的两个实根,则利用根与系数的关系即f(x)的解析式求出f(α)和f(β)即可求出αf(α)+βf(β)的值;(2)求出函数的导函数并利用二次函数图象的性质推导出导函数大于零则该函数为增函数;(3)此题要证不等式成立,先求出和的取值范围,根据函数的增减性判断出其函数值的取值范围把两个函数值相减的左边不等式在根据(1)中的结论推出得证.解答:解:(Ⅰ)α,β是方程x2﹣mx﹣1=0的两个实根∴∴同理∴αf(α)+βf(β)=2(Ⅱ)∵∴当x∈(α,β)时,x2﹣mx﹣1=(x﹣α)(x﹣β)<0而f'(x)>0∴f(x)在(α,β)上为增函数(Ⅲ)∵λ,μ∈R+且α<β∴∴由(Ⅱ)可知同理可得∴∴又由(Ⅰ)知∴所以点评:考查学生函数与方程的综合运用能力.。