【考试必备】2018-2019年最新天津市第一中学初升高自主招生考试数学模拟精品试卷【含解析】【5套试卷】
- 格式:pdf
- 大小:4.70 MB
- 文档页数:5
天津一中2018-2019-2 高一年级数学学科模块质量调查试卷本试卷分为第I 卷(选择题)、第II 卷(非选择题)两部分,共100 分,考试用时90 分钟。
第I 卷1 页,第II 卷至2 页。
考生务必将答案涂写在规定的位置上,答在试卷上的无效。
一.选择题1.以下说法正确的有几个()①四边形确定一个平面;②如果一条直线在平面外,那么这条直线与该平面没有公共点;③过直线外一点有且只有一条直线与已知直线平行;④如果两条直线垂直于同一条直线,那么这两条直线平行;A.0 个B.1 个C.2 个D.3 个2.在△ABC 中,角A, B, C的对边分别是a, b, c ,且a cos B = ( 2c - A ,则角A 的大小为()ππππA.B.C.D.6 4 3 23.在∆ABC 中,若AB ⋅AC = 2 且∠BAC = 30 ,则∆ABC 的面积为()A B.C D4.设α、β、γ为平面,为m、n、l 直线,则下列判断正确的是()A.若α⊥β,α⋂β=l, m ⊥l ,则m ⊥β B.若α⋂γ=m,α⊥γ, β⊥γ,则m ⊥βC.若α⊥γ, β⊥γ, m ⊥α,则m ⊥β D.若n ⊥α,n ⊥β, m ⊥α,则m ⊥βB.C.D.2 3 4 151 1 1 1 1 1A.13B.23C.43D.26.点G 为∆ABC 的重心,AB = 2, BC =1, ∠ABC = 60 ,则AG ⋅CG =()A.-59B.-98C.59D.197.在正方体ABCD -A1B1C1D1中,点O 是正方形ABCD 的中心,关于直线A1O 下列说法正确的()A.A1O / / D1C B.A1O / / 平面B1CD1C.A1O ⊥BC D.A1O ⊥平面AB1D18.一个圆锥SC 的高和底面直径相等,且这个圆锥SC 和圆柱OM 的底面半径及体积也都相等, 则圆锥SC 和圆柱OM 的侧面积的比值为()A.39.平行六面体ABCD -A B C D 的底面ABCD 是菱形,且∠C CB =∠C CD =∠BCD = 60 ,CD = 2, C C =3 ,则二面角C-BD -C 的平面角的余弦值为()1 2 1A.12B.13C3D310.如图,在 ∆ABC 的边 AB 、AC 上分别取点 M 、N ,使AM = 1 AB , AN = 1 AC , BN 与 CM 交于点 P ,若 BP = λ PN , PM = μCP ,3 2则 λ的值为( ) μA . 83B . 38C . 16D . 6二.填空题11.已知向量 a , b 满足 | a |= 1 ,| b |= 2 , | a + b |=,则 | 2a - b |=.12 如图, PA ⊥ 平面ABC , ∠ACB = 90 且PA = AC ,AC = 2BC ,则异面直线 PB 与 AC 所成的角的正切值等于.13.如图,在直棱柱 ABC - A 1 B 1C 1 中, AB ⊥ AC , AB = AC = AA 1 = 2 , 则二面角 A 1 - BC 1 - C 的平面角的正弦值为.14.在 △ABC 中,角 A 、B 、C 的对边分别为a 、b 、c , 2b (2b - c ) cos A = a 2 + b 2 - c 2 ,则内角 A 的值为 .15.已知正方体 ABCD - A 1 B 1C 1 D 1 的棱长为1 ,点 E 是棱 BB 1 的中点,则点 B 1 到平面 ADE 的距离为.16.如图,在直角梯形 ABCD 中, ∠BAD = π, AB = AD = 2 ,若 M 、N3分别是边 AD 、BC 上的动点,满足 AM = λ AD , BN = (1 - λ )BC ,其中λ ∈ (0,1) ,若 AN ⋅ BM = -2 ,则 λ 的值为 .Nα 1 αα17. 设f (α) =m ⋅n ,其中向量m = ( n = (2 in , cos-1) .2 4 2(1)若f (α) =-1 ,求cos( π-α) 的值;3 2(2)在△ABC 中,角A, B, C的对边分别是a, b, c ,若a cos B +b cos A + 2c ⋅ cos C = 0 ,求函数f ( A) 的取值范围.18. 如图,在几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面ADNM ⊥平面ABCD , E 为AB 中点.(1)求证:AN / / 平面MEC ;(2)求证:AC ⊥BN .19.如图1 所示,在矩形ABCD 中,AB = 2 A D = 4 ,E 为CD 的中点,沿AE 将∆AED 折起,如图2 所示,O、H、M 分别为AE、BD、AB 的中点,且DM = 2 .(1)求证:OH / / 平面DEC ;(2)求证:平面ADE ⊥平面ABCE .20.如图,四棱锥P -ABCD 的底面是菱形,PO ⊥底面ABCD ,O、E 分别是AD、AB 的中点,AB = 6, AP =5,∠BAD = 60 . (1)求证:平面PAC ⊥平面POE ;(2)求直线PB 与平面POE 所成角的正弦值;(3)若F 是边DC 的中点,求异面直线BF 与PA 所成角的正切值。
2018年••天津市中考一模模拟试卷•••(一)第Ⅰ卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若实数a,b满足a﹣ab+b2+2=0,则a的取值范围是()A.a≤﹣2 B.a≥4 C.a≤﹣2或a≥4 D.﹣2≤a≤42.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交=9.则k的值是()x轴于点C,若S△AOCA.9 B.6 C.5 D.43.已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③a <;④b>1.其中正确的结论是()A.①②B.②③C.③④D.②④4.如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是()5.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD 的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C恰好落在AB边的C′处,则∠A′的大小是()A.40°B.36°C.32°D.30°7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2) B.(﹣2,1) C.()D.(1,﹣1)8.化简的结果()A.x﹣1 B.x C.D.9.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y310.正六边形的边心距与边长之比为()A.1:2 B.:2 C.:1 D.:211.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF 绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.12.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1,给出四个结论:①b2>4ac;②2a﹣b=0;③a+b+c=0;④5a<b.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)13.函数y=中自变量x的取值范围是.14.计算:已知:a+b=3,ab=1,则a2+b2=.15.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于 .16.如图,矩形ABCD 的对角线AC 、BD 相交于点0,过点O 作OE ⊥AC 交AB 于E .若BC=8,△AOE 的面积为20,则sin ∠BOE 的值为 .17.如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点M 在AC 边上,且AM=2,MC=6,动点P 在AB 边上,连接PC ,PM ,则PC+PM 的最小值是 .18.如图,已知扇形OAB 与扇形OCD 是同心圆,OA=R ,OC=r .(1)若R=8,r=6,圆心角度数为60°,则环形面积为 ;(2)请在原图中以O 为圆心,以r′为半径,将环形面积分成面积相等的两个环形,(尺规作图),并将作图步骤进行简单的描述.三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)(19)(本小题 8 分) 解不等式组⎩⎨⎧>-+-≤-)2(0)3(3)1(2)1(02x x x 请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.(20)(本小题 8 分)为了解八年级学生参加社会实践活动情况,教育局随机抽查了某区部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制出如下的统计图①和图②,请根据图中提供的相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的八年级学生人数为,图①中 a 的值为.(Ⅱ)在这次抽样调查中,众数和中位数分别是多少?(Ⅲ)如果该市共有八年级学生 80000 人,请你估计“活动时间不少于 7 天”的学生人数大约有多少人?(21)(本小题 10 分)已知AB 是⊙O 的直径,点 P 在线段 AB 的延长线上,BP=OB=2,点 Q 在⊙O 上,连接 PQ.(Ⅰ)如图①,线段 PQ 所在的直线与⊙O 相切,求线段 PQ 的长;(Ⅱ)如图②,线段 PQ 与⊙O 还有一个公共点 C,且 PC=CQ,求线段 PQ 的长.(22)(本小题 10 分)如图,小红同学用仪器测量一棵大树 AB 的高度,在 C 处测得树顶 A 的仰角为 300,在 E 处测得树顶 A 的仰角为 600,CE=8m,仪器高度 CD=1.5m,求这棵树 AB 的高度(结果保留小数点后一位). 参考数据:3≈1.73 .(23)(本小题 10 分) 从 A 地向 B 地打长途电话,通话时间不超过 3min 收费 2.4 元,超过 3min 后每分加收1 元.(Ⅰ)根据题意,填写下表:(Ⅱ)设通话时间为 x min,通话费用 y 元,求 y 与 x 的函数解析式;(Ⅲ)若小红有 10 元钱,求她打一次电话最多可以通话的时间(本题中通话时间取整数,不足 1min 的通话时间按 1min 计费).(24)(本小题 10 分)已知点 A 是 x 轴正半轴上的动点,点 B 坐标为(0,4),M 是线段 AB 的中点,将点M 绕点 A 顺时针方向旋转 900得到点 C,过点 C 作 x 轴的垂线,垂足为 F,过点 B 作 y 轴的垂线与直线 CF 相交于点 E,点 D 是点 A 关于直线 CF 的对称点,连结 AC,BC,CD,设点 A的横坐标为 t .(Ⅰ)如图,当 t=2 时,求 CF 的长;(Ⅱ)①当 t 为何值时,点 C 落在线段 BD 上?②设△BCE 的面积为 S,求 S 与 t 之间的函数关系式;(25)(本小题 10 分)已知 O 为坐标原点,抛物线 y1=ax 2+ bx+c (a≠0)与 x 轴相交于点 A( x1,0),B( x2,0),与 y 轴交于点 C,且 O,C 两点间的距离为 3, x1 · x2 <0,| x1 |+| x2 |= 4,点A,C 在直线 y2 =-3x+t 上.(Ⅰ)求点 C 的坐标;(Ⅱ)当 y1 随着 x 的增大而增大时,求自变量 x 的取值范围;(Ⅲ)将抛物线 y1 向左平移 n(n>0)个单位,记平移后 y 随着 x 的增大而增大的部分为 P,直线 y2 向下平移 n 个单位.当平移后的直线与 P 有公共点时,求 n的取值范围.答案详解一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)1.【解答】解:∵b是实数,∴关于b的一元二次方程b2﹣ab+a+2=0,△=(﹣a)2﹣4×1×(a+2)≥0解得:a≤﹣2或a≥4;∴a的取值范围是a≤﹣2或a≥4.故选C.2.【解答】解:作AD⊥x轴于D,BE⊥x轴于E,如图,设反比例函数解析式为y=(k>0),∵A、B两点的横坐标分别是a、2a,∴A、B两点的纵坐标分别是、,∵AD∥BE,∴△CEB∽△CDA,∴===,∴DE=CE,∵OD:OE=a:2a=1:2,∴OD=DE,∴OD=OC,∴S△AOD=S△AOC=×9=3,∴|k|=3,而k>0,∴k=6.故选B.3.【解答】解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∵对称轴为x=<0,∴a、b同号,即b>0,∴abc<0,故本选项错误;②当x=1时,函数值为2,∴a+b+c=2;故本选项正确;③∵对称轴x=>﹣1,解得:<a,∵b>1,∴a>,故本选项错误;④当x=﹣1时,函数值<0,即a﹣b+c<0,(1)又a+b+c=2,将a+c=2﹣b代入(1),2﹣2b<0,∴b>1故本选项正确;综上所述,其中正确的结论是②④;故选D.4.【解答】解:作PH⊥AB于H,如图,∵△PAB为等腰直角三角形,∴∠A=∠B=45°,AH=BH=AB=1,∴△PAH和△PBH都是等腰直角三角形,∴PA=PB=AH=,∠HPB=45°,∵∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,而∠CPD=45°,∴1≤AN≤2,即1≤x≤2,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM,而∠A=∠B,∴△ANP∽△BPM,∴=,即=,∴y=,∴y与x的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选:A.5.【解答】解:如右图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,,故可得△ENK≌△EML ,即阴影部分的面积始终等于正方形面积的.故选B.6.解答:解:连接C'D,∵AB=AC,BD=BC,∴∠ABC=∠ACB=∠BDC,∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处,∴∠BCD=∠BC'D,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∵四边形BCDC'的内角和为360°,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∴∠A=180°﹣∠ABC﹣∠ACB=36°.故选B.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2)B.(﹣2,1)C.()D.(1,﹣1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,﹣),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,﹣1).故选:D.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.化简的结果()A.x﹣1 B.x C.D.【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=x﹣1,故选A.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.9.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】首先确定反比例函数的系数与0的大小关系,然后根据题意画出图形,再根据其增减性解答即可.【解答】解:∵﹣a2﹣1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y随x的增大而增大,∵x1<0<x2<x3,∴y2<y3<y1.故选B.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的函数值的大小,同学们要灵活掌握.10.正六边形的边心距与边长之比为()A.1:2 B.:2 C.:1 D.:2【考点】正多边形和圆.【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设正六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线段OC,则AC=AB=a,于是OC==a,所以正六边形的边心距与边长之比为:a:a=:2.故选:D.【点评】此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.11.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.【考点】旋转的性质.【专题】压轴题.【分析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.【解答】解:∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.二、填空题(共6小题,每小题3分,满分18分)13.函数y=中自变量x的取值范围是x≥﹣1且x≠1.【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由y=,得x+1≥0且x﹣1≠0.解得x≥﹣1且x≠1,故答案为:x≥﹣1且x≠1.14.计算:已知:a+b=3,ab=1,则a2+b2=7.【考点】完全平方公式.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:715.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:画树形图如下:由树形图可知所得的两位数恰好是奇数的概率=,故答案为:.16.如图,矩形ABCD的对角线AC、BD相交于点0,过点O作OE⊥AC交AB于E.若BC=8,△AOE的面积为20,则sin∠BOE的值为.【考点】矩形的性质;线段垂直平分线的性质;勾股定理;锐角三角函数的定义.【分析】由题意可知,OE为对角线AC的中垂线,则CE=AE,S△AEC=2S△AOE=40,由S△AEC求出线段AE的长度,进而在Rt△BCE中,由勾股定理求出线段BE的长度;然后证明∠BOE=∠BCE,从而可求得结果.【解答】解:如图,连接EC.由题意可得,OE为对角线AC的垂直平分线,∴CE=AE,S△AOE=S△COE=5,∴S△AEC=2S△AOE=20.∴AE•BC=20,又BC=8,∴AE=5,∴EC=5.在Rt△BCE中,由勾股定理得:BE==3.∵∠AEO+∠EAO=90°,∠AEO=∠BOE+∠ABO,∴∠BOE+∠ABO+∠EAO=90°,又∠ABO=90°﹣∠OBC=90°﹣(∠BCE+∠ECO)∴∠BOE+[90°﹣(∠BCE+∠ECO)]+∠EAO=90°,化简得:∠BOE﹣∠BCE﹣∠ECO+∠EAO=0,∵OE为AC中垂线,∴∠EAO=∠ECO.代入上式得:∠BOE=∠BCE.∴sin∠BOE=sin∠BCE==.故答案为:.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P 在AB边上,连接PC,PM,则PC+PM的最小值是2.【考点】轴对称-最短路线问题.【分析】根据平面内线段最短,构建直角三角形,解直角三角形即可.【解答】解:如图,过点作CO⊥AB于O,延长BO到C',使OC'=OC,连接MC',交AB于P,此时PC'=PM+PC'=PM+PC的值最小,连接AC',∵CO⊥AB,AC=BC,∠ACB=90°,∴∠ACO=×90°=45°,∵CO=OC',CO⊥AB,∴AC'=CA=AM+MC=8,∴∠OC'A=∠OCA=45°,∴∠C'AC=90°,∴C'A⊥AC,∴MC′===2,∴PC+PM的最小值为2.故答案为:2.18.如图,已知扇形OAB与扇形OCD是同心圆,OA=R,OC=r.(1)若R=8,r=6,圆心角度数为60°,则环形面积为;(2)请在原图中以O为圆心,以r′为半径,将环形面积分成面积相等的两个环形,(尺规作图),并将作图步骤进行简单的描述.过B作BE⊥OB,截取BE=OD,连接OE,作OE的垂直平分线,作以OE为斜边的等腰直角三角形OEF,OF为直角边,则OF=r’.【考点】扇形面积的计算.【分析】(1)根据扇形的面积公式计算即可;(2)过B 作OB 的垂线并截取BE=OD ,再作OE 的垂直平分线,OF 为直角边的等腰直角三角形OEF ,于是得到OF 即为所求.【解答】解:(1)环形面积=S 扇形AOB ﹣S 扇形COD =﹣=,故答案为:;(2)如图所示,作法:过B 作BE ⊥OB ,截取BE=OD ,连接OE ,作OE 的垂直平分线,作以OE 为斜边的等腰直角三角形OEF ,OF 为直角边,则OF=r′.三、解答题(本大题共 7 小题,共 66 分)(19)(本小题 8 分)解:(Ⅰ) x ≤2 ; (Ⅲ)-1<x ≤2(20)(本小题 8 分) 解:(Ⅰ)600,10;(Ⅱ)参加社会实践活动 5 天的最多,所以,众数是 5 天, 600 人中,按照参加社会实践活动的天数从少到多排列,第 300 人和 301 人都是 6 天,所以,中位数是 6 天;(Ⅲ)80000×(25%+10%+5%)=80000×40%=32000(人).答:估计“活动时间不少于 7 天”的学生人数大约有 32000 人.(21)(本小题 10 分)(Ⅰ)解:连接 QO .∵ 线段 PQ 所在的直线与⊙O 相切,点 Q 在⊙O 上, ∴ OQ ⊥QP ,即∠OQP=90°.又∵OQ= OB ,BP=OB =2,∴OQ=2,OP=4. ∴ PQ=3222=-OQ OP 即线段 PQ 的长为32.(Ⅱ)解:过点 O 作 OE ⊥QC ,垂足为 E ,连接 QO.∵ OE ⊥QC ,垂足为 E , ∴ QE=EC . 设 QE=x ,则 EC=x ,QC=2x .∵PC=CQ ,∴PC=2x ,PE=3x ,PQ=4x .由(Ⅰ)知 OQ=2,OP=4. ∴ 在 Rt △QOE 中, OE 2= OQ 2 -QE 2 = 22-x 2 ,在 Rt △POE 中, OE 2 = OP 2- PE 2 = 42- 9x 2 , ∴ 22- x 2 = 42-9x 2 ,解这个方程,得 26,2621-==x x (不合题意,舍). ∴ PQ=4x= 4×26=62.即线段 PQ 的长为62. (22)(本小题 10 分)解:根据题意,∠ADG=30°,∠AFG=60°,∠DCE=∠FEC=∠FEB=∠GBC=90°,DF ∥CE ,FG ∥EB ,∴∠FDC=90°,∠GFE=90°,∴ 四边形 DCEF ,四边形 EFGB 均为矩形.∴ DF=CE=8m ,GB=EF=CD=1.5 m.设 AG=xm ,在 Rt △ADG 中,∠ADG=30°,∴ DG=3AG= 3 x m.在 Rt △AED 中,∠AFG=60°, AG=x ,FG= 33x.∵DG -FG =DF ,∴3 x -33x=8解得 x=43 ≈6.92, ∴AB=AG+BG=6.92+1.5≈8.4(m).答:这棵树 AB 的高约为 8.4m .(23)(本小题 10 分)(Ⅰ)2.4 ,5.4 .(Ⅱ)根据题意,当 0<x ≤3 时,收费 2.4 元,∴ y=2.4.当 x >3 时,其中 3min 通话时间收费 2.4 元, 其余的(x -3)min 通话时间收费(x -3)元,∴ y=2.4+(x -3)= x -0.6 . ⎩⎨⎧>-≤<=)3(6.0)30(4.2x x x y (Ⅲ)∵10>2.4 , ∴小红打此次电话最多可以通话的时间超过 3min ; ∴x -0.6=10,解得 x=10.6 . ∵不足 1min 的通话时间按 1min 计费, ∴有 10 元钱最多可以通话 10min.24.。
天津一中2018-2019-2 高一年级数学学科模块质量调查试卷本试卷分为第I 卷(选择题)、第II 卷(非选择题)两部分,共100 分,考试用时90 分钟。
第I 卷 1 页,第II 卷至2 页。
考生务必将答案涂写在规定的位置上,答在试卷上的无效。
一.选择题1.以下说法正确的有几个()①四边形确定一个平面;②如果一条直线在平面外,那么这条直线与该平面没有公共点;③过直线外一点有且只有一条直线与已知直线平行;④如果两条直线垂直于同一条直线,那么这两条直线平行;A.0 个B.1 个C.2 个D.3 个2.在△ABC 中,角A, B, C的对边分别是a, b, c ,且a cos B =-b) cos A ,则角A 的大小为()ππππA.B.C.D.6 4 3 23.在∆ABC 中,若AB ⋅AC = 2 且∠BAC = 30 ,则∆ABC 的面积为()DA B.C34.设α、β、γ为平面,为m、n、l 直线,则下列判断正确的是()A.若α⊥β,α⋂β=l, m ⊥l ,则m ⊥β B.若α⋂γ=m,α⊥γ, β⊥γ,则m ⊥βC.若α⊥γ, β⊥γ, m ⊥α,则m ⊥β D.若n ⊥α,n ⊥β, m ⊥α,则m ⊥β5.某三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,则此三棱锥的体积为()B.C.D.3 4 151 1 1 1 1 1A.13B.23C.43D.26.点G 为∆ABC 的重心,AB = 2, BC =1, ∠ABC = 60 ,则AG ⋅CG =()A.-59B.-98C.59D.197.在正方体ABCD -A1B1C1D1中,点O 是正方形ABCD 的中心,关于直线A1O 下列说法正确的()A.A1O / / D1C B.A1O / / 平面B1CD1C.A1O ⊥BC D.A1O ⊥平面AB1D18.一个圆锥SC 的高和底面直径相等,且这个圆锥SC 和圆柱OM 的底面半径及体积也都相等, 则圆锥SC 和圆柱OM 的侧面积的比值为()A.9.平行六面体ABCD -A B C D 的底面ABCD 是菱形,且∠C CB =∠C CD =∠BCD = 60 ,CD = 2, C C =3 ,则二面角C-BD -C 的平面角的余弦值为()1 2 1A.12B.13C3D10.如图,在 ∆ABC 的边 AB 、AC 上分别取点 M 、N ,使AM = 1 AB , AN = 1 AC , BN 与 CM 交于点 P ,若 BP = λ PN , PM = μCP ,3 2则 λ的值为( ) μA . 83 B . 38C . 16D . 6二.填空题11.已知向量 a , b 满足 | a |= 1 ,| b |= 2 , | a + b |,则 | 2a - b |=.12 如图, PA ⊥ 平面ABC , ∠ACB = 90 且PA = AC ,AC = 2BC ,则异面直线 PB 与 AC 所成的角的正切值等于.13.如图,在直棱柱 ABC - A 1 B 1C 1 中, AB ⊥ AC , AB = AC = AA 1 = 2 , 则二面角 A 1 - BC 1 - C 的平面角的正弦值为.14.在 △ABC 中,角 A 、B 、C 的对边分别为a 、b 、c , 2b (2b - c ) cos A = a 2 + b 2 - c 2 ,则内角 A 的值为 .15.已知正方体 ABCD - A 1 B 1C 1 D 1 的棱长为1 ,点 E 是棱 BB 1 的中点,则点 B 1 到平面 ADE 的距离为.16.如图,在直角梯形 ABCD 中, ∠BAD = π, AB = AD = 2 ,若 M 、N3分别是边 AD 、BC 上的动点,满足 AM = λ AD , BN = (1 - λ )BC ,其中λ ∈ (0,1) ,若 AN ⋅ BM = -2 ,则 λ 的值为 .N三.解答题α 1 αα17. 设f (α) =m ⋅n ,其中向量m = ( cos , ), n = (2 s in , cos-1) .2 4 2 4 2(1)若f (α) =-1 ,求cos( π-α) 的值;3 2(2)在△ABC 中,角A, B, C的对边分别是a, b, c ,若a cos B +b cos A + 2c ⋅ cos C = 0 ,求函数f ( A) 的取值范围.18. 如图,在几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面ADNM ⊥平面ABCD , E 为AB 中点.(1)求证:AN / / 平面MEC ;(2)求证:AC ⊥BN .19.如图1 所示,在矩形ABCD 中,AB = 2 A D = 4 ,E 为CD 的中点,沿AE 将∆AED 折起,如图2 所示,O、H、M 分别为AE、BD、AB 的中点,且DM = 2 .(1)求证:OH / / 平面DEC ;(2)求证:平面ADE ⊥平面ABCE .20.如图,四棱锥P -ABCD 的底面是菱形,PO ⊥底面ABCD ,O、E 分别是AD、AB 的中点,AB = 6, AP =5,∠BAD = 60 . (1)求证:平面PAC ⊥平面POE ;(2)求直线PB 与平面POE 所成角的正弦值;(3)若F 是边DC 的中点,求异面直线BF 与PA 所成角的正切值。
天津市第一中学2023-2024学年中考数学模拟测试卷第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 下列图形中,既是轴对称图形,又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】图1、图5都是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图3不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图2、图4既是轴对称图形,又是中心对称图形.故选B .2.)A. B. C. 10 D. 4【答案】D【解析】【分析】先根据三角形三边的关系求出的取值范围,再把二次根式进行化解,得出结论.【详解】解:是三角形的三边,,解得:,,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出的范围,再对二次根式化简.2,5,m210m -102m -m 2,5,m 5252m ∴-<<+37m <<374m m =-+-=m3. 计算的结果是( )A. B. 1 C. D. 3【答案】B【解析】再合并即可.【详解】解:故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.4. 县林业部门考察银杏树苗在一定条件下移植的成活率,所统计的银杏树苗移植成活的相关数据如下表所示:移植的棵数a1003006001000700015000成活的棵数b84279505847633713581成活的频率0.840.930.8420.8470.9050.905根据表中的信息,估计银杏树苗在一定条件下移植成活的概率为(精确到0.1)( )A 0.905 B. 0.90 C. 0.9 D. 0.8【答案】C【解析】【分析】利用表格中数据估算这种树苗移植成活率的概率即可得出答案.【详解】解:由表格数据可得,随着样本数量不断增加,这种树苗移植成活的频率稳定在0.905,∴银杏树苗在一定条件下移植成活的概率为0.9,故选:C .【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即为概率..-321-=-=ba5. 如图,已知A ,B 的坐标分别为,,将沿x 轴正方向平移,使B 平移到点E ,得到,若,则点C 的坐标为( ).A. B. C. D. 【答案】A【解析】【分析】由B 可得,进而得到,即将沿x 轴正方向平移1个单位得到,然后将A 向右平移1个单位得到C ,最后根据平移法则即可解答.【详解】解:∵B ∴∵∴∴将沿x 轴正方向平移1个单位得到∴点C 是将A 向右平移1个单位得到的∴点C 是的坐标是,即.故选A .【点睛】本题主要考查了图形的平移、根据平移方式确定坐标等知识点,根据题意得到将沿x 轴正方向平移1个单位得到是解答本题的关键.6. 如图,正方形的边长为8,在各边上顺次截取,则四边形的面积是( )A. 34B. 36C. 40D. 100()1,2()3,0OAB DCE △4OE =()2,2()3,2()1,3()1,4()3,03OB =1BE =OAB DCE △()3,03OB =4OE =1BE OE OB =-=OAB DCE△()11,2+()2,2OAB DCE △ABCD 6AE BF CG DH ====EFGH【答案】C【解析】【分析】利用正方形的面积减去4个直角三角形的面积,进行计算即可.【详解】解:∵正方形的边长为8,在各边上顺次截取,∴,∴四边形的面积为:;故选C .【点睛】本题考查正方形的性质.熟练掌握正方形的性质,正确的识图,利用割补法求面积,是解题的关键.7. 一列单项式按以下规律排列:x ,,,,,,,…,则第2024个单项式是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查数字的变化规律,解答的关键是由所给的单项式总结出存在的规律.分析所给的单项式可得到第n 个单项式为:,即可求第2024个单项式.【详解】解:∵,,,,…,∴第n 个单项式为:,∴第2024个单项式为:.故选:C .8. 某几何体的主视图和俯视图及相关数据(单位:cm )如图所示,则该几何体的侧面积是( )ABCD 6AE BF CG DH ====862BE AH DG CF ====-=EFGH 2182646424402-⨯⨯⨯=-=23x -35x 47x -59x 611x -713x 20244049x -20244049x 20244047x -20244047x ()()1121n n n x +--()()111211x x +=-⨯⨯-()()212231221x x +-=-⨯⨯-()()313351231x x +=-⨯⨯-()414471241x x +-=-⨯⨯-()()()1121n n n x +--()()202412024202412202414047x x +-⨯-=-A. 60πc m 2B. 65πcm 2C. 90πcm 2D. 120πcm 2【答案】B【解析】【分析】先求出圆锥底面半径及母线长,然后通过 求解.【详解】由图象可得圆锥底面半径r =5cm ,则母线l=13cm ,∴侧面积S =πrl =5×13π=65π(cm 2)故选:B .【点睛】本题考查了圆锥侧面积计算,解题关键是熟练掌握圆锥的侧面积公式.9. 如图,在中,是斜边上的高.若,则的值为()A. B. C. D. 【答案】B【解析】【分析】根据直角三角形中正切的定义及余弦函数求解即可.【详解】解:∵是斜边上的高,∴是直角三角形,.S rl π=S rl π=Rt ABC △CD AB 4tan 3A =cos BCD ∠34354543CD Rt ABC △AB ACD 90ADC ∠=︒∵在中,,∴设,,则,,∴,∵,∴,∴.故选B .【点睛】题目主要考查解直角三角形,理解三角函数的定义是解题关键.10. 如图,四边形是内接四边形,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了圆内接四边形的性质,圆周角定理,由圆内接四边形的性质可得,再根据圆周角定理可得,即可求解,掌握圆内接四边形的性质和圆周角定理是解题的关键.【详解】解:∵四边形是的内接四边形,,∴,∴,故选:.11. 某种柑橘果肉清香、酸甜适度,深受人们的喜爱,也是馈赠亲友的上佳礼品首批柑橘成熟后,某电商用元购进这种柑橘进行销售,面市后,线上订单猛增,供不应求,该电商又用元购进第二批这种柑橘,由于更多柑橘成熟,单价比第一批每箱便宜了元,但数量与第一批的数量一样多,求购进的第一批柑橘的单价设购进的第一批柑橘的单价为元,根据题意可列方程为( )A. B. 的Rt ACD △4tan 3A =4CD k =3AD k =5AC k =0k >33cos 55k A k ==90A ACD BCD ACD ∠+∠=∠+∠=︒A BCD ∠=∠3cos cos 5BCD A ∠==ABCD O 114ABC ∠=︒AOC ∠134︒132︒76︒66︒66D ∠=︒2132AOC D ∠=∠=︒ABCD O 114ABC ∠=︒180********D ABC ∠=︒-∠=︒-︒=︒2266132AOC D ∠=∠=⨯︒=︒B .350025004.x 350025004x x =-350025004x x =+C. D.【答案】A【解析】【分析】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.根据单价比第一批每箱便宜了4元,数量与第一批的数量一样多,可以列出相应的分式方程,本题得以解决.【详解】解:由题意可得,,故选:A.12. 根据如图所示的二次函数的图象,判断反比例函数与一次函数的图象大致是()A. B. C. D.【答案】A【解析】【分析】先根据二次函数的图象,确定a、b、c的符号,再根据a、b、c的符号判断反比例函数y与一次函数y=bx+c的图象经过的象限即可.【详解】解:由二次函数图象可知a>0,c<0,由对称轴x0,可知b<0,所以反比例函数y的图象在一、三象限,一次函数y=bx+c经过二、三、四象限.故选:A.【点睛】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于350025004x x=-250035004x x=+350025004x x=-2y ax bx c=++ayx=y bx c=+ax= 2ba=->ax=通过二次函数图象推出a 、b 、c 的取值范围.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在答题卡相应位置上)13. 分解因式:________.【答案】【解析】【分析】考查提取公因式法和平方差公式法因式分解,解题的关键是掌握提公因式和平方差公式因式分解法.【详解】解:,故答案为:.14.有意义时,x 应满足的条件是______.【答案】【解析】【分析】根据二次根式的被开方数是非负数得到.【详解】解:由题意,得,解得.故答案是:.【点睛】本题主要考查了二次根式有意义条件,正确把握二次根式的定义是解题关键.15. 如图,是操场上直立的一根旗杆,旗杆上有一点B ,用测角仪(测角仪的高度忽略不计)测得地面上的D 点到B 点的仰角,到A 点的仰角,若米,则旗杆的高度________________米.【答案】【解析】【分析】本题考查了解直角三角形的应用,解题的关键是根据仰角构造直角三角形.在中,根据的233m -=3(1)(1)m m +-22333(1)3(1)(1)m m m m -=-=+-3(1)(1)m m +-2x ≥240x -≥240x -≥2x ≥2x ≥AC AC 45BDC ∠=︒60ADC ∠=︒3BC =AC =Rt BDC,求出米,在中,根据即可求出的高度.【详解】解:在中,∵°,∴米,在中,∵,∴米.故答案为:16. 在平面直角坐标系中,若反比例函数的图象经过点和点,则的值为______________.【答案】【解析】【分析】由题意易得,然后再利用反比例函数的意义可进行求解问题.【详解】解:把点代入反比例函数得:,∴,解得:,故答案为-2.【点睛】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.17. 如图,是一个圆锥形状的生日帽,若该圆锥形状帽子的母线长为,底面半径为,将该帽子沿母线剪开,则其侧面展开扇形的圆心角为_______.【答案】##120度【解析】【分析】本题考查了求圆锥侧面展开扇形的圆心角.设侧面展开扇形的圆心角为,则,代入数据即可求解.【详解】解:设侧面展开扇形圆心角为,则,的45BDC ∠=︒3DC BC ==Rt ADC 60ADC ∠=︒AC Rt BDC 45BDC ∠=︒3DC BC ==Rt ADC 60ADC ∠=︒tan 60AC DC =︒=xOy (0)k y k x =≠()1,2A ()1,B m -m 2-2k =()1,2A ()0k y k x=≠2k =12m -⨯=2m =-6cm 2cm 120︒n ︒2360n l rl ππ=n ︒2360n l rl ππ=.故答案为:.18. 如图,在正方形中,点E 是边的中点,连接、,分别交、于点P 、Q ,过点P 作交的延长线于F ,下列结论:①,②,③,④若四边形的面积为4,则该正方形的面积为36,⑤.其中正确的结论有__________.【答案】①②③⑤【解析】【分析】①正确.证明∠EOB =∠EOC =45°,再利用三角形的外角的性质即可解决问题.②正确.利用四点共圆证明∠AFP =∠ABP =45°即可.③正确.设BE =EC =a ,求出AE ,OA 即可解决问题.④错误,通过计算正方形ABCD 的面积为48.⑤正确.利用相似三角形的性质证明即可.【详解】解:如图,连接OE .∵四边形ABCD 是正方形,∴AC ⊥BD ,OA =OC =OB =OD ,∴∠BOC =90°,∵BE =EC ,∴∠EOB =∠EOC =45°,∵∠EOB =∠EDB +∠OED ,∠EOC =∠EAC +∠AEO ,∴∠AED +∠EAC +∠EDO =∠EAC +∠AEO +∠OED +∠EDB =90°,故①正确,连接AF .∵PF ⊥AE,23603601206r n l ∴=⨯︒=⨯︒=︒120︒ABCD BC AE DE BD AC PF AE ⊥CB 90AED EAC EDB ∠+∠+∠= AP FP=AE AO =OPEQ ABCD CE EF EQ DE ⋅=⋅∴∠APF =∠ABF =90°,∴A ,P ,B ,F 四点共圆,∴∠AFP =∠ABP =45°,∴∠PAF =∠PFA =45°,∴PA =PF ,故②正确,设BE =EC =a ,则AE a ,OA =OC =OB =OD,∴,即AE AO ,故③正确,根据对称性可知,△OPE ≌△OQE,∴S △OEQS 四边形OPEQ =2,∵OB =OD ,BE =EC ,∴CD =2OE ,OE ∥CD ,∴,△OEQ ∽△CDQ ,∴S △ODQ =4,S △CDQ =8,∴S △CDO =12,∴S 正方形ABCD =48,故④错误,∵∠EPF =∠DCE =90°,∠PEF =∠DEC ,∴△EPF ∽△ECD ,∴,∵EQ =PE ,∴CE •EF =EQ •DE ,故⑤正确,故答案为:①②③⑤【点睛】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线分线段成==AE AO ===12=12EQ OE DQ CD ==EF PE ED EC=比例定理,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.三、解答题(本大题共7小题,第19-20题,每题8分,第21-25题,每题10分,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. 先化简再求值:,其从,2,,3中选一个合适的数代入求值.【答案】,当时,原式;当时,原式【解析】【分析】先根据分式的混合计算法则化简,然后结合分式有意义的条件选取合适的值代值计算即可.【详解】解:原式,由题意可得,和,当时,原式,当时,原式.【点睛】本题主要考查了分式的化简求值,熟知分式的相关计算法则是解题的关键.20. “百节年为首,四季春为先”,春节是我们中华民族最为隆重的传统节日.某日小宁在微博上通过网络投票对“过年计划做的事情”展开调查,当天调查数据如下:过年计划做的事情:a .回家和父母家人一起过年b .观看央视春晚c .准备年夜饭d .拜年,走亲访友根据“过年计划做的事情”的数量分为四个组,其中n 为计划做的事情的数量A .B .C .D .2569222a a a a a ++⎛⎫+-÷ ⎪--⎝⎭a 2-3-33a a -+3a =0=2a =-=5-()()()22252223a a a a a a +-⎡⎤-=-⋅⎢⎥--+⎣⎦()2245223a a a a ---=⋅-+()()()233223a a a a a +--=⋅-+3=3a a -+2a ≠3-3a =33033-==+2a =-=5-APP 02n ≤≤3n =4n =5n =e .外出旅游(1)请直接写出条形统计图中 ;(2)请直接写出该组数据的众数所在组别,并求出B 组所对应的扇形圆心角的度数;(3)经10天的调查,共收到2400份调查结果,根据上述数据估计属于A 组大约有多少人?【答案】(1)(2)众数在C 组,(3)200人【解析】【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据C 组别占比,可知C 组的人数等于其余三项之和,据此即可解答;(2)根据众数的概念,即可求解出该组数据的众数所在组别;想求出B 组所对应的扇形圆心角的度数,要先求出B 组的人数占比,再根据各部分扇形圆心角的度数=部分占总体的百分比,即可求解.(3)先求出A 组的占比,再乘总数,即可求解.【小问1详解】解:(人),故答案为:60.【小问2详解】根据众数的概念可知,这组数据中组的数据最多,所以众数在组,(人),,答:众数在组,组所对应的扇形圆心角的度数为.【小问3详解】(人),m =6060︒50%360⨯︒10203060++=C C 6050%120÷=2036060120⨯=︒C B 60︒102400200120⨯=答:估计属于组大约有200人.21. 《海岛算经》是中国古代测量术的代表作,原名《重差》.这本著作建立起了从直接测量向间接测量的桥梁.直至近代,重差测量法仍有借鉴意义.如图,为测量海岛上一座山峰的高度,直立两根高2米的标杆和,两杆间距相距6米,D 、B 、H 三点共线.从点B 处退行到点F ,观察山顶A ,发现A 、C 、F 三点共线,且仰角为;从点D 处退行到点G ,观察山顶A ,发现A 、E 、G 三点共线,且仰角为.(点F 、G 都在直线上)(1)求的长(结果保留根号);(2)山峰高度的长(结果精确到米).)【答案】(1)米(2)山峰高度的长约为米【解析】【分析】(1)根据题意可得:,,然后分别在和中,利用锐角三角函数的定义求出和的长,从而利用线段的和差关系进行计算,即可解答;(2)设米,在中,利用锐角三角函数的定义求出的长,从而求出的长,再在中,利用锐角三角函数的定义可得,从而列出关于x 的方程,进行计算即可解答.【小问1详解】解:由题意得:,,在中,,,(米),在中,,,(米),米,A AH BC DE BD 45︒30︒HB FG AH 0.11.41≈ 1.73≈(4+AH 10.2CB FH⊥ED HG ⊥Rt FBC △Rt DEG V BF DG AH x =Rt AHF △HF H G Rt AHG △HG =CB FH ⊥ED HG ⊥Rt FBC △45BFC ∠=︒2BC =2tan45BC BF ∴==︒Rt DEG V 30G ∠=︒2DE =tan30G DE D ∴===︒6BD =米,的长为米;【小问2详解】解:设米,在中,,(米),∵米,米,在中,,,,解得:,米,∴山峰高度的长约为米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,相似三角形的应用,熟练掌握锐角三角函数的定义,以及A 字模型相似三角形是解题的关键.22. 如图,在中,,以为直径作,交于点,连接并延长,分别交于两点,连接.(1)求证:是的切线;(2)求证:;(3)求的正切值.(624FG BD DG BF ∴=+-=+=+FG∴(4+AH x =Rt AHF △45AFH ∠=︒tan45FH x AH ∴==︒(4FG =+(4HG HF FG x ∴=+=++Rt AHG △30G ∠=︒tan30HG AH ∴===︒4x ∴++=510.2x =+≈10.2AH ∴=AH 10.2ABC 6,8,10AB BC AC ===AB O AC F CO O D E 、,BE BD BC O 2BC CD CE =⋅ABE ∠【答案】(1)证明见解析(2)证明见解析(3【解析】【分析】本题考查圆的综合题型,涉及切线的判定,勾股定理的逆定理,三角形相似,角的正切值.(1)先用勾股定理的逆定理证是直角三角形,得出即可;(2)证,得到对应边成比例,再变形即可,具体见详解;(3)先求出的值,再证明得出对应边的比,最后用对应边的比表示出即可.【小问1详解】证明:在中是直角三角形是的的直径是的切线;【小问2详解】证明:是直径,(公共角)ABC 90ABC ∠=︒BCD ECB △∽△CD BCD ECB △∽△tan ABE ∠ABC 222268100AB BC +=+= 2210100AC ==222AB BC AC ∴+=ABC ∴ 90ABC ∴∠=︒AB O BC ∴O DE 90EBC ∴∠=︒90EBO OBD ∴∠+∠=︒90CBD OBD ∠+∠=︒EBO CBD∴∠=∠OE OB= E EBO∴∠=∠E CBD∴∠=∠BCD BCE ∠=∠ BCD ECB∴ ∽即;【小问3详解】由(2)得即解这个方程,得或(舍去)连结与都是的直径,与互相平分四边形为平行四边形,在中.23. 近年来,国潮联名款产品层出不穷,大品牌通过在服饰中加入如“大闹天宫”,“故宫” 这样的传统中国元素,唤起年轻一代消费群体的记忆,与这些年轻消费者进行着价值沟通,逐渐构成“国潮力量”.某外贸公司经市场调研,整理出某爆款联名卫衣的售价每增加x 元,日销售量的变化情况如下表:售价(元/件)日销售量(件)BC CD CE BC∴=2BC CD CE =⋅2()BC CDCD DE =+(6)64CD CD +=3CD =-+3CD =-3CD ∴=-+BCD ECB∽BD CD BE BC ∴==,AE ADAB DE O AB ∴DE ∴AEBD AE BD∴=Rt ABD tan AE BD ABE BE BE ∠===IP IP已知该款卫衣的成本价为80元/件,设销售该卫衣的日销售利润为w 元.(1)求w (元)与x (元)之间的函数关系式;(2)在销售过程中,该卫衣售价增加8元后的日销售利润能达到80000元吗,为什么?(3)求该卫衣售价增加多少元时,日销售利润最大,最大日利润是多少?【答案】(1)(2)能,理由见解析(3)售价增加30元时,日销售利润最大,最大日利润为98000元【解析】【分析】本题考查了二次函数的实际应用中的利润最大问题,熟练将生活问题转化为二次函数问题解决是解题的关键.(1)根据利润售价日销售量计算即可;(2)当时,求销售利润的值,比较即可;(3)把问题转化为二次函数的最值问题处理即可.【小问1详解】解:由题意得;【小问2详解】解:∵当时,,∴该卫衣售价增加8元后的日销售利润能达到80000元;【小问3详解】解:∵,∵,∴抛物线开口向下,∴当时,w 取得最大值为98000,∴该卫衣售价增加30元时,日销售利润最大,最大日利润为98000元.24. 已知,,,点是边上一点,过点作于点,连接,点是中点,连接,.120x +200020x-220120080000w x x =-++=⨯8x =()()12080200020w x x =+--220120080000w x x =-++8x =222012008000020812008800008832080000w x x =-++=-⨯+⨯+=>()2220120080000203098000w x x x =-++=--+200-<30x =Rt ABC △90ACB ∠=︒30BAC ∠=︒D AC D DE AB ⊥E BD F BD EF CF(1)如图①,线段,之间的数量关系为________,的度数为________;(2)如图②,将绕点按顺时针方向旋转,请判断线段,之间的数量关系及的度数,并说明理由;(3)若绕点旋转的过程中,当点落到直线上时,连接,若,,请直接写出的长.【答案】(1),(2),;理由见解析;(3).【解析】【分析】(1)要求与之间的数量关系,可通过直角三角形斜边上的中线等于斜边的一半求得;要求的度数,可根据等腰三角形的性质,进行等角代换求得;(2)作辅助线,通过构造可求得,的度数可通过等边三角形的性质及等角代换求得;(3)要分点落在线段上和点落在延长线上两种情况,通过勾股定理分别求解.【小问1详解】解:∵,∴,∵,点是中点,∴,∴,,∴.故答案为:,;【小问2详解】解:,;理由:如图,取的中点,的中点,连接,,,.的EF CF EFC ∠AED △A ()030αα︒<<︒EF CF EFC ∠AED △A D AB BE 3BC =2AD =BE EF CF =120︒EF CF =120EFC ∠=︒BE EF CF EFC ∠MFC ENF ≌△△EFC ∠D AB D BA DE AB ⊥90BED ∠=︒90BCD ∠=︒F BD FE FB FD CF ===FBE FEB ∠=∠FBC FCB ∠=∠EFC EFD CFD FBE FEB FBC FCB∠=∠+∠=∠+∠+∠+∠()22120FBE FBC ABC =∠+∠=∠=︒EF CF =120︒EF CF =120EFC ∠=︒AB M AD N MC MF EN FN∵,,,∴,,,∵,∴,∴四边形是平行四边形,∴,,在中,∵,,∴,在和中,,,∵,∴,又∵,∴,∴,∴,,∵,∴,∵,,∴,是等边三角形,,∴;【小问3详解】.在中,∵,,∴,BM MA=BF FD=90ACB∠=︒MF AD∥12MF AD=12CM AB AM MB===AN ND=MF AN=MFNANF AM MC==FMA ANF∠=∠Rt ADE△AN ND=90AED∠=︒12EN AD AN ND===AEN△ACM△AEN EAN∠=∠MCA MAC∠=∠MAC EAN∠=∠AMC ANE∠=∠FMA ANF∠=∠FMC ENF∠=∠()SASMFC ENF≌FE FC=NFE MCF∠=∠NF AB∥NFD ABD∠=∠90ACB∠=︒30BAC∠=︒60ABC∠=︒BMC△60MCB∠=︒EFC EFN NFD DFC MCF ABD FBC FCB ∠=∠+∠+∠=∠+∠+∠+∠6060120ABC MCB=∠+∠=︒+︒=︒Rt ABC△30BAC∠=︒3BC=26AB BC==①如图,当点落在线段上时,过点作于点.∵,∴,在中,,,∴,在中,∵,,∴,在中,②如图,当点落在的延长线上时,过点作于点.在中,,,∴∴,在中,.综上所述,的长为.【点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理,解直角三角形,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.D ABE EF AB ⊥F 2AD =4BD =Rt AED △30DAE ∠=︒2AD =112DE AD ==Rt DEF △60EDF ∠=︒1DE =sin 60EF ED =⋅︒=1cos 602DF ED =⋅︒=Rt BEF △BE ==D BA E EG AB ⊥G Rt AED △30DAE ∠=︒2AD =AE =32AG =GE =Rt BEG △BE ===BE25. 如图,抛物线:经过点和点.已知直线的解析式为..(1)如图1,求抛物线的解析式;(2)如图1,若直线将线段AB 分成1:3两部分,求k 的值;(3)如图2,将抛物线在x 轴上方的部分沿x 轴折叠到x 轴下方,将这部分图象与原抛物线剩余的部分组成的新图象记为.①直接写出新图象,当y 随x 的增大而增大时x 的取值范围;②直接写出直线与图象有四个交点时k 的取值范围.【答案】(1)(2)或 (3)①当或时新图象随的增大而增大;②.【解析】【分析】(1)先求点再利用待定系数法求抛物线的解析式;(2)先确定分点的坐标,代入直线的解析式求的值;(3)①观察图象上升的部分对应的范围;②直线过,利用数形结合观察有四个交点的情形,求出临界值,再写的范围.【小问1详解】直线的解析式为,,经过点和点,,L ₁²y ax bx c =++(1,0)A (5,0)B 2L 5y kx =-L ₁L ₂L ₁L ₃L ₂L ₃265y x x =-+-52k =541x ≤35x ≤≤3L y x 61k -<<M 1L 2L k x 5y kx =-(0,5)-k 2L 5y kx =-(0,5)M ∴-2y ax bx c =++Q (1,0)A (5,0)B ∴502550c a b c a b c =-⎧⎪++=⎨⎪++=⎩,抛物线的解析式为;【小问2详解】设直线与轴的交点为,点和点,,直线将线段分成两部分,或,或,代入得或;【小问3详解】①的对称轴是直线,点和点,当或时新图象随的增大而增大;②如图所示,当直线夹在两条虚线之间时直线与图象有四个交点,把代入得;的顶点是,将抛物线在轴上方的部分沿轴折叠到轴下方后,顶点变为,折叠后的抛物线表达式为,联立和得,∴165a b c =-⎧⎪=⎨⎪=-⎩∴1L 265y x x =-+-2L x C (1,0)A (5,0)B 4AB ∴= 2L AB 1:31AC ∴=3AC =(2,0)C ∴(4,0)5y kx =-52k =54265y x x =-+-3x =(1,0)A (5,0)B 1x ≤35x ≤≤3L y x 5y kx =-2L 3L (5,0)B 5y kx =-1k =265y x x =-+- (3,4)∴1L x x x (3,4)-∴22(3)465y x x x =--=-+5y kx =-265y x x =-+2565y kx y x x =-⎧⎨=-+⎩,即,△,或,,,.【点睛】本题考查了一次函数和二次函数的图象与性质,结合了对称变换,渗透了数形结合的思想,对于(3)②,关键是找到并求出的临界值.2655x x kx ∴-+=-2(6)100x k x -++=∴2(6)400k =+-=6k ∴=-6k =-0k >6k ∴=-61k ∴-<<k。
天津一中2018-2019-2 高二年级数学学科模块质量调查试卷本试卷分为第 I 卷(选择题)、第 II 卷(非选择题)两部分,共 100 分,考试用时90 分钟。
第 I 卷第 1 页,第 II 卷第 2 页。
考生务必将答案涂写规定的位置上,答在试卷上的无效。
祝各位考生考试顺利!一.选择题第 I 卷1.某学校高一、高二年级共有 1800 人,现按照分层抽样的方法,抽取 90 人作为样本进行某项调查.若样本中高一年级学生有 42 人,则该校高一年级学生共有A.420 人B.480 人C.840 人D.960 人2.函数f (x) = 3x2 + ln x - 2x 的极值点的个数为A.0 B.1 C.2 D.无数个3.某研究机构在对具有线性相关的两个变量x,y 进行统计分析时,得到如下数据,由表中数据求得y 关于x 的回归方程为yˆ= 0.7x +a ,则在这些样本中任取一点,该点落在回归直线下方的概率为A.B.4 2C.D.0 44.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的 1120 名学生中随机抽取了 100 名学生的数学成绩,发现都在[80,150]内现将这 100 名学生的成绩按照 [80,90),[90,100),[100,110),[110,120), [120,130),[130,140),[140,150]分组后,得到的频率分布直方图如图所示则下列说法正确的是A.频率分布直方图中a 的值为 0.040B.样本数据低于 130 分的频率为 0.3C.总体的中位数(保留 1 位小数)估计为 123.3 分D.总体分布在[90,100)的频数一定不总体分布在[100,110)的频数相等5.若A、B、C、D、E 五位同学站成一排照相,则A、B 两位同学至少有一人站在两端的概率是1 3 3 7 A.B.C.D.5 10 5 10⎩6.函数f ( x) = sin xln( x+ 2)的图象可能是A. B.C. D.7.某校为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的PK 赛,A,B两队各由 4 名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者得 2 分外,其余各局胜者均得 1 分,每局的负者得 0 分.假设每局比赛A 队选手获胜的概率均为2,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为316 52A.B.27 81⎧20 7C.D.27 90 , 0 <x ≤18.函数f ( x) = | l n x |, g (x) =| x2 4 | 2, x,若关于x 的方程f (x) +m =g(x) 恰有1⎨- - >三个丌相等的实数解,则m 的取值范围是A.[0,l n 2] B.(-2 -ln 2,0]C.(-2 -ln 2,0)D.[0, 2 + ln 2)二.填空题第 II 卷9.从区间(﹣2,3)内任选一个数m,则方程mx2+y2=1 表示的是双曲线的概率为.10.一批排球中正品有m 个,次品有n 个,m+n=10(m≥n),从这批排球中每次随机取一个,有放回地抽取 10 次,X 表示抽到的次品个数若DX=2.1,从这批排球中随机一次取两个,则至少有一个次品的概率p=11.已知直线y = 2x -1不曲线y = ln(x +a)相切,则a 的值为12.某公司 16 个销售店某月销售产品数量(单位:台)的茎叶图如图,已知数据落在[18,22]中的频率为 0.25,则这组数据的中位数为.13.函数f(x)=e x﹣3x+2 的单调增区间为.14.已知函数f(x)=ax+lnx,若f(x)≤1 在区间(0,+∞)内恒成立,实数a 的取值范围为.三.解答题15.已知某校有歌唱和舞蹈两个兴趣小组,其中歌唱组有 4 名男生,1 名女生,舞蹈组有 2 名男生,2 名女生,学校计划从两兴趣小组中各选 2 名同学参加演出. (1)求选出的 4 名同学中至多有 2 名女生的选派方法数;(2)记 X 为选出的 4 名同学中女生的人数,求 X 的分布列和数学期望.16.某工厂有甲乙两个车间,每个车间各有 3 台机器.甲车间每台机器每天发生故障的概 1 率均为3 1 1 1,乙车间 3 台机器每天发生概率分别为 , , 6 6 2.若一天内同一车间的机器都 丌发生故障可获利 2 万元,恰有一台机器发生故障仍可获利 1 万元,恰有两台机器发生故 障的利润为 0 万元,三台机器发生故障要亏损 3 万元. (1)求乙车间每天机器发生故障的台数的分布列;(2)由于节能减排,甲乙两个车间必须停产一个,以工厂获得利润的期望值为决策依 据,你认为哪个车间停产比较合理.17.已知函数 f ( x ) = a x + 1 x+ ln x 在点(1,f (1))处的切线方程是 y =bx +5.(1)求实数 a ,b 的值;1(2)求函数 f (x )在 [ , e ] 上的最大值和最小值(其中 e 是自然对数的底数).e18.已知函数 f (x ) = xe kx (k ≠ 0) .(1)求曲线 y = f (x ) 在点 (0, f (0)) 处的切线方程; (2)讨论 f (x )的单调性;(3)设 g (x ) = x 2 - 2bx + 4 ,当 k = 1 时,对任意的 x ∈ R ,存在 x ∈[1, 2] ,使得12f (x 1 ) ≥g (x 2 ) ,求实数 b 的取值范围x 2y219.已知椭圆 C :+a 2b 2= 1(a > b > 0) 的左右焦点分别 F 1(﹣c ,0),F 2(c ,0),3过 F 2 作垂直于 x 轴的直线 l 交椭圆于 A ,B 两点,满足 | AF 2 |= c .6(I )求椭圆 C 的离心率.(II )M ,N 是椭圆 C 短轴的两个端点,设点 P 是椭圆 C 上一点(异于椭圆 C 的顶点), 直线 MP ,NP 分别不 x 轴相较于 R ,Q 两点,O 为坐标原点,若|OR |•|OQ |=8,求椭圆 C 的方程.一.选择题(共9 小题)1.C2.A3.B4.C参考答案【分析】由频率分布直方图得的性质求出a=0.030;样本数据低于130 分的频率为:1﹣(0.025+0.005)×10=0.7;[80,120)的频率为0.4,[120,130)的频率为0.3.由此求出总体的中位数(保留1 位小数)估计为:120+≈123.3 分;样本分布在[90,100)的频数一定不样本分布在[100,110)的频数相等,总体分布在[90,100)的频数丌一定不总体分布在[100,110)的频数相等.【解答】解:由频率分布直方图得:(0.005+0.010+0.010+0.015+a+0.025+0.005)×10=1,解得a=0.030,故A 错误;样本数据低于 130 分的频率为:1﹣(0.025+0.005)×10=0.7,故B 错误;[80,120)的频率为:(0.005+0.010+0.010+0.015)×10=0.4,[120,130)的频率为:0.030×10=0.3.∴总体的中位数(保留1 位小数)估计为:120+≈123.3 分,故C 正确;样本分布在[90,100)的频数一定不样本分布在[100,110)的频数相等,总体分布在[90,100)的频数丌一定不总体分布在[100,110)的频数相等,故D 错误.故选:C.5.D【分析】五名同学站成一排照相,共有n==120 种排法.A、B 两位同学至少有一人站在两端的排法有:+=84 种,由此能求出A、B 两位同学至少有一人站在两端的概率.【解答】解:五名同学站成一排照相,共有n==120 种排法.A、B 两位同学至少有一人站在两端的排法有:+ =84 种,∴A、B 两位同学至少有一人站在两端的概率为p=.故选:D.【解析】解:若使函数的解析式有意义 则,即即函数的定义域为 可排除 B ,D 答案 当时,,则可排除 C 答案 故选:A .由函数的解析式,可求出函数的定义域,可排除 B ,D 答案;分析时,函 数值的符号,进而可以确定函数图象的位置后可可排除 C 答案. 本题考查的知识点是函数的图象,熟练掌握函数定义域的求法及函数值符号的判定是 解答的关键. 7.C【分析】比赛结束时 A 队的得分高于 B 队的得分的情况有 3 种;A 全胜,A 三胜一 负,A 第三局胜,另外三局两胜一负,由此能求出比赛结束时 A 队的得分高于 B 队的 得分的概率.【解答】解:比赛结束时 A 队的得分高于 B 队的得分的情况有 3 种;A 全胜,A 三胜 一负,A 第三局胜,另外三局两胜一负,∴比赛结束时 A 队的得分高于 B 队的得分的概率为:P =()4++=. 故选:C .8.B二.填空题(共 5 小题) 9.【分析】根据题意,求出方程 mx 2+y 2=1 表示双曲线的条件即可.【解答】解:当 m ∈(﹣2,0)时,方程 mx 2+y 2=1 表示的是双曲线, 所以所求的概率为 P ==.故答案为:.8 10.11.15 1 ln 2 2【分析】根据题意知a≤2,再由中位数的定义求得结果.【解答】解:根据茎叶图中的数据知,数据落在[18,22]中的频率为0.25,则频数为 16×0.25=4,∴a≤2;∴这组数据的中位数为×(26+28)=27.故答案为:27.13.(ln3, +∞)【分析】求出原函数的导函数,由导函数小于0 求解指数丌等式得答案.【解答】解:由f(x)=e x﹣3x+2,得f′(x)=e x﹣3,由f′(x)=e x﹣3>0,得x>ln3.∴函数f(x)=e x﹣3x+2 的单调减区间为(ln3, + ∞).故答案为:(ln3, +∞).14.(﹣∞,﹣]【分析】求出函数的导数,通过讨论a 的范围,求出函数的单调区间,根据f(x)≤1 在区间(0,+∞)内恒成立,得到关于a 的丌等式,解出即可.【解答】解:f′(x)=a+,①a≥0 时,f′(x)>0,f(x)在(0,+∞)递增,而x→+∞时,f(x)→+∞,丌合题意;②a<0 时,令f′(x)>0,解得:x<﹣,令f′(x)<0,解得:x>﹣,故f(x)在(﹣∞,﹣)递增,在(﹣,+∞)递减,故f(x)max=f(﹣)=﹣1+ln(﹣)≤1,解得:a≤﹣,故答案为:(﹣∞,﹣].三.解答题(共5 小题)15.解:(1)由题意知,所有的选派方法共有=60 种,其中有 3 名女生的选派方法共有=4 种,所以选出的 4 名同学中至多有 2 名女生的选派方法数为60﹣4=56 种.…(3 分)(2)X 的可能取值为0,1,2,3.……………………………………………………(5 分)P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,(8 分)∴X 的分布列为:X0123P∴E(X)==.…………………………………(10 分)16.解:(1)乙车间每天机器发生故障的台数为ξ,则ξ的可能取值为 0,1,2,3;且P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P(ξ=1)=C21××(1﹣)×(1﹣)2+(1﹣)×=,P(ξ=2)=C21××(1﹣)×+()2×(1﹣)=,P(ξ=3)=××=,ξ0123PX,则η~B(3,),P(η=k)=••,(k=0,1,2,3),∴EX=2P(η=0)+1×P(η=1)+0×P(η=2)﹣3×P(η=3)=2×+1×+0﹣3×=;由(1)得EY=2P(ξ=0)+1×P(ξ=1)+0×P(ξ=2)﹣3×P(ξ=3)=2×+1×+0﹣3×=;∵EX<EY,∴甲车间停产比较合理.17.【分析】(1)求出函数的导数,通过切线方程棱长方程即可求实数a,b 的值;(2)求出函数的导数,判断函数的单调性,然后求解函数的极值,然后求函数f(x)在上的最大值和最小值.【解答】解:(1)因为,,………(1 分)则f'(1)=1﹣a,f(1)=2a,函数f(x)在点(1,f(1))处的切线方程为:y﹣2a=(1﹣a)(x﹣1),…………(2 分)(直线y=bx+5 过(1,f(1))点,则f(1)=b+5=2a)由题意得,即a=2,b=﹣1.………………………………………(4 分)(2)由(1)得,函数f(x)的定义域为(0,+∞),……(5 分)∵,∴f'(x)<0⇒0<x<2,f'(x)>0⇒x>2,∴在(0,2)上单调递减,在(2,+∞)上单调递增.……(7 分)故f(x)在上单调递减,在[2,e]上单调递增,……………(9 分)∴f(x)在上的最小值为f(2)=3+ln2.………………………(10 分)又,,且.∴f(x)在上的最大值为.………………………(11 分)综上,f(x)在上的最大值为2e+1,最小值为 3+ln2.……………(12 分)18.19.【分析】(Ⅰ)设A 点的横坐标为c,代入椭圆方程求得y,即有,结合a,b,c 的关系,以及离心率公式,解方程可得e;(Ⅱ)设M(0,b),N(0,﹣b),P(x0,y0),代入椭圆方程,求得MP 的方程和NP 的方程,令y=0,可得R,Q 的坐标,由条件可得a,b 的方程,解方程可得a,b,进而得到所求椭圆方程.【解答】解:(Ⅰ)设A 点的横坐标为c,代入椭圆方程得,y=±b =±,解得,∴,又b2=a2﹣c2=ac,由e=可得e2+ e﹣1=0,解得;(Ⅱ)设M(0,b),N(0,﹣b),P(x0,y0),可得b2x02+a2y02=a2b2,则直线MP 的方程为,令y=0 得到R 点的横坐标为,同理可得直线NP的方程为,令y=0 得到Q 点的横坐标为,∴,而e==,可得c2=6,b2=2,所以椭圆的方程为.。
天津一中2018-2019高一年级数学学科期末质量调查试卷第Ⅰ卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点落在角的终边上,且,则的值为()A. B. C. D.【答案】C【解析】【分析】确定点P所在象限,求出值.【详解】由题意,∴P点在第四象限,又,∴.故选C.【点睛】本题考查已知角终边上一点坐标,求角问题.解题关键是掌握三角函数的定义.可以先确定点所在象限(即角的象限),然后由三角函数定义求出一个三角函数值,注意角的象限结合三角函数的定义可求角.2.已知,则的值是()A. B. C. -2 D. 2【答案】A【解析】试题分析:由已知可得,故.应选A.考点:同角三角函数的关系及运用.3.已知,则的值为()A. B. C. D.【答案】A【解析】【分析】由条件利用诱导公式化简所给的三角函数式,可得结果.【详解】∵cos(),则sin()=sin[()-]=-cos(),故选:A.【点睛】本题主要考查诱导公式的应用,关键是建立所求角与已知角的关系,属于基础题.4.已知,点为角的终边上一点,且,则角()A. B. C. D.【答案】D【解析】【分析】由已知,得出 sin(α﹣β),将β角化为β=α﹣(α﹣β),根据和差角公式,求出β的某种三角函数值,再求出β.【详解】∵|OP|=7,∴sinα,cosα.由已知,,根据诱导公式即为sinαcosβ﹣cosαsinβ,∴,∵∴0<α﹣β,∴c os(α﹣β),∴sinβ=sin[α﹣(α﹣β)]=sinαcos(α﹣β)﹣cosαsin(α﹣β),∵,所以角β故选:D.【点睛】本题考查三角函数诱导公式、和差角公式的应用:三角式求值、求角.运用和差角公式时,角的转化非常关键,注意要将未知角用已知角来表示.常见的角的代换形式:β=α﹣(α﹣β),2α=(α﹣β)+(α+β)等.5.在中,三内角的对边分别为,若的面积为,且,则()A. B. C. D.【答案】B【解析】【分析】首先由三角形面积公式得到S△ABC,再由余弦定理,结合2S=(a+b)2﹣c2,得出sin C﹣2cos C=2,然后通过(sin C﹣2cos C)2=4,求出结果即可.【详解】△ABC中,∵S△ABC,由余弦定理:c2=a2+b2﹣2ab cos C,且 2S=(a+b)2﹣c2,∴ab sin C=(a+b)2﹣(a2+b2﹣2ab cos C),整理得sin C﹣2cos C=2,∴(sin C﹣2cos C)2=4.∴4,化简可得 3tan2C+4tan C=0.∵C∈(0,180°),∴tan C,∴,故选:B.【点睛】本题考查了余弦定理、三角形面积公式、诱导公式的应用,考查了利用同角基本关系对三角函数进行化简求值,注意角C的范围,属于中档题.6.要得到函数的图像,只需将函数的图像上所有的点的()A. 横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B. 横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C. 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D. 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度【答案】C【解析】∵y=cos x=sin(x+),∴将y=sin(2x+)图象上所有点的纵坐标不变,横坐标伸长为原来的2倍,得到y=sin(x+)的图象,再向左平移个单位即可得到y=sin(x+)的图象.故选C.7.函数的图像与函数的图像所有交点的横坐标之和等于A. 2B. 4C. 6D. 8【答案】D【解析】试题分析:由于函数与函数均关于点成中心对称,结合图形以点为中心两函数共有个交点,则有,同理有,所以所有交点的横坐标之和为.故正确答案为D.考点:1.函数的对称性;2.数形结合法的应用.【此处有视频,请去附件查看】8.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B.C. D.【答案】C【解析】因为对任意恒成立,所以,则或,当时,,则(舍去),当时,,则,符合题意,即,令,解得,即的单调递减区间是;故选A.9.定义在上的函数满足,当时,,则()A. B.C. D.【答案】B【解析】【分析】先将区间[1,3]分解为[1,2]和(2,3]两部分,去绝对值讨论出函数的单调性,依次看选项,利用f(x)=f(x+2)结合单调性比较大小.【详解】x∈[1,2]时,f(x)=x,故函数f(x)在[1,2]上是增函数,x∈(2,3]时,f(x)=4﹣x,故函数f(x)在[2,3]上是减函数,又定义在R上的f(x)满足f(x)=f(x+2),故函数的周期是2所以函数f(x)在(0,1)上是减函数,在[1,2]上是增函数,观察四个选项:A中,由,知,故A不对;B选项中f(cos)=f()=f(),f(sin)=f()=f(2),,∴故B为真命题;C选项中,,所以,故C为假命题;D选项中,所以,故D为假命题;综上,选项B是正确的.故选B.【点睛】本题考查了利用函数的周期性与函数的单调性来比较大小,属于中档题.将函数的表达式化为分段的形式,再将所给的区间转化到同一单调区间内,进而利用单调性来比较函数值的大小,是处理函数周期性的常用方法.10.(2016新课标全国I理科)已知函数为的零点,为图像的对称轴,且在单调,则的最大值为A. 11B. 9C. 7D. 5【答案】B【解析】试题分析:因为为的零点,为图像的对称轴,所以,即,所以,又因为在单调,所以,即,则的最大值为9.故选B.【考点】三角函数的性质【名师点睛】本题将三角函数的单调性与对称性结合在一起进行考查,题目新颖,是一道考查能力的好题.注意本题求解中用到的两个结论:①的单调区间长度是最小正周期的一半;②若的图像关于直线对称,则或.【此处有视频,请去附件查看】第Ⅱ卷二、填空题(将答案填在答题纸上)11.已知,且,则的值为_____.【答案】【解析】【分析】由θ的范围,得到cosθ<sinθ,进而得到所求式子的值为负数,然后把所求式子平方,利用同角三角函数间的基本关系化简后,将sinθcosθ的值代入,开方即可得到值.【详解】由θ,根据函数正弦及余弦函数图象得到cosθ<sinθ,即cosθ﹣sinθ<0,∵sinθcosθ,∴(cosθ﹣sinθ)2=cos2θ﹣2sinθcosθ+sin2θ=1﹣2sinθcosθ=1﹣2,则cosθ﹣sinθ.故答案为.【点睛】本题考查了同角三角函数基本关系的运用,熟练掌握同角三角函数间的基本关系是解本题的关键,同时注意根据θ的范围判断所求式子的正负,开方得到满足题意的解.12.已知函数,若,则_____.【答案】-2020【解析】【分析】根据题意,设g(x)=f(x)+1=a sin x+b tan x,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案.【详解】根据题意,函数f(x)=a sin x+b tan x﹣1,设g(x)=f(x)+1=a sin x+b tan x,有g(﹣x)=a sin(﹣x)+b tan(﹣x)=﹣(a sin x+b tan x)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020.【点睛】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题.13.在中,角的对边分别为,已知,,,若,则_____.【答案】【解析】【分析】由题意根据正弦定理得B=2C(舍)或B+2C=π,从而解得C=A,即a=c=3,再利用余弦定理可得b.【详解】由题意,根据正弦定理知,即,∴,在中,,∴,∴B=2C或B+2C=π,当B=2C时,B+C=3C>π,(舍)∴B+2C=π,∴C=A,即a=c=3,又<,∴B<或B>(舍,因为),∴,由余弦定理可得b2=a2+c2﹣2ac cos B=3,∴b=.故答案为.【点睛】本题主要考查了正、余弦定理及应用,考查了三角形中角的大小关系,考查了正弦函数单调性的应用,属于中档题.14.将函数的图像向左平移个单位得到函数的图像,若在上为增函数,则的最大值为_____.【答案】【解析】试题分析:函数的图象向左平移个单位,得到函数y=g(x)=2sinωx,y=g(x)在上为增函数,所以,即:ω≤2,所以ω的最大值为:2.考点:本题考查了图象的变换及周期的运用点评:熟练掌握三角函数图象变换及性质是解决此类问题的关键,属基础题15.已知在上有两个不同的零点,则的取值范围是___.【答案】[1,2)【解析】试题分析:因为函数在区间上增,上减,根据题意结合零点存在性定理可知且,且,解得,故答案为[1,2).考点:函数的性质与零点存在性定理16.关于下列命题:①若是第一象限角,且,则;②函数是偶函数;③函数的一个对称中心是;④函数在上是增函数,所有正确命题的序号是_____.【答案】②③【解析】【分析】结合相关知识对给出的每个选项分别进行分析、判断可得正确的命题.【详解】对于①,若α,β是第一象限角,且α>β,可令α=390°,β=30°,则sin α=sin β,所以①错误;对于②,函数y=sin=-cos πx,f(x)=-cos(πx)=f(x),则为偶函数,所以②正确;对于③,令2x-=kπ,解得x=(k∈Z),所以函数y=sin的对称中心为,当k=0时,可得对称中心为,所以③正确;对于④,函数,当时,,所以函数在区间上单调递减,所以④不正确.综上,命题②③正确.【点睛】本题综合考查三角函数的有关内容,考查综合运用和解决问题的能力,解题时可根据题中的要求分别进行求解,但由于涉及的内容较多,所以解题时要注意结果的正确性.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.已知函数,.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值.【答案】(Ⅰ)(Ⅱ)最大值为,最小值为-1【解析】试题分析:(1)利用正弦函数的两角和与差的公式、二倍角的余弦公式与辅助角公式将化为,利用周期公式即可求得函数的最小正周期;(2)可分析得到函数在区间上是增函数,在区间上是减函数,从而可求得在区间上的最大值和最小值.试题解析:(1)f(x)=sin 2x·cos+cos 2x·sin+sin 2x·cos-cos 2x·sin+cos 2x =sin 2x+cos 2x=sin.所以,f(x)的最小正周期T==π.(2)因为f(x)在区间上是增函数,在区间上是减函数.又,故函数f(x)在区间上的最大值为,最小值为-1.【此处有视频,请去附件查看】18.在中,角的对边分别为,已知.(1)若,求的值;(2)若,的面积为,求的值.【答案】(1);(2)【分析】(1)先利用正弦定理化简得,再根据和正弦定理求出a的值.(2)因为的面积为得,由余弦定理可得,所以.【详解】(1)因为,所以由正弦定理可得,即,所以,因为,所以,则,因为,所以由正弦定理可得.(2)因为的面积为,所以,得,因为,所以由余弦定理可得,所以,即,因为,所以.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的掌握水平和分析推理能力.19.设函数的图像过点.(1)求的解析式;(2)已知,,求的值;(3)若函数的图像与的图像关于轴对称,求函数的单调区间.【答案】(1);(2);(3)单减区间为,单增区间为.【解析】【分析】(1)将P点坐标代入求A,即得结果,(2)先代入得,利用平方关系得,再根据诱导公式化简式子,最后代入求结果,(3)先根据对称性得解析式,在根据正弦函数性质求单【详解】(1)因为,所以;(2),所以, =;(3)因为函数的图象与图象关于轴对称,所以,由得单减区间为,由得单增区间为。
2018-2019学年天津一中九年级(下)月考数学试卷(3月份)一、填空题1.(3分)使有意义的x的取值范围是()A.x>3B.x<3C.x≥3D.x≠32.(3分)sin60°的值等于()A.B.C.D.13.(3分)人体中成熟的红细胞平均直径为0.00077厘米,将数字0.00077用科学记数法表示为()A.7.7×10﹣3B.77×10﹣4C.77×10﹣3D.7.7×10﹣4 4.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.5.(3分)若一个正六边形的周长为24,则该正六边形的面积为()A.B.C.12D.246.(3分)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE =40°,则∠P的度数为()A.140°B.70°C.60°D.40°7.(3分)分式方程=1的解为()A.x=1B.x=2C.x=﹣1D.x=﹣28.(3分)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<19.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b10.(3分)如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是()A.正方形B.矩形C.菱形D.平行四边形11.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x1 12.(3分)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是()A.①②③B.①③C.①③④D.①④二、填空题13.(3分)因式分解:a2﹣2ab+b2=.14.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.15.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.16.(3分)若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.17.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD 与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是18.(3分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的平行四边形PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.三、解答题19.求不等式组的正整数解.20.某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数21.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD 的大小.22.随着航母编队的成立,我国海军日益强大.2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A 处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离P A为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里).23.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;(1)写出销售单价x的取值范围;(2)求出一次函数y=kx+b的解析式;(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?24.对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好不点D重合(如图②)(1)根据以上操作和发现,则=;(2)将该矩形纸片展开,如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°.25.已知:二次函数y=ax2﹣2ax﹣3(a>0),当2≤x≤4时,函数有最大值5.(1)求此二次函数图象与坐标轴的交点;(2)将函数y=ax2﹣2ax﹣3(a>0)图象x轴下方部分沿x轴向上翻折,得到的新图象,若点P(x0,y0)是翻折得到的抛物线弧部分上任意一点,若关于m的一元二次方程m2﹣y0m+k﹣4+y0=0恒有实数根时,求实数k的最大值.2018-2019学年天津一中九年级(下)月考数学试卷(3月份)参考答案与试题解析一、填空题1.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.2.【解答】解:根据特殊角的三角函数值可知:sin60°=.故选:C.3.【解答】解:0.00077=7.7×10﹣4.故选:D.4.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.5.【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为24,∴BC=24÷6=4,∴OB=BC=4,∴BM=BC=2,∴OM==2,∴S△OBC=×BC×OM=×4×2=4,∴该六边形的面积为:4×6=24.故选:D.6.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选:B.7.【解答】解:去分母得:3x=x+4,解得:x=2,经检验x=2是分式方程的解,故选:B.8.【解答】解:∵方程x2﹣2x+m=0有两个不相同的实数根,∴△=(﹣2)2﹣4m>0,解得:m<1.故选:D.9.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.10.【解答】解:连接AC、BD.AC交FG于L.∵四边形ABCD是菱形,∴AC⊥BD,∵DH=HA,DG=GC,∴GH∥AC,HG=AC,同法可得:EF=AC,EF∥AC,∴GH=EF,GH∥EF,∴四边形EFGH是平行四边形,同法可证:GF∥BD,∴∠OLF=∠AOB=90°,∵AC∥GH,∴∠HGL=∠OLF=90°,∴四边形EFGH是矩形.故选:B.11.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.12.【解答】解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x=﹣>1,﹣b<2a,∴2a+b>0,故选项①正确;∵﹣b<2a,∴b>﹣2a>0>a,令抛物线解析式为y=﹣x2+bx﹣,此时a=c,欲使抛物线与x轴交点的横坐标分别为和2,则=﹣,解得:b=,∴抛物线y=﹣x2+x﹣,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),故②选项错误;∵﹣1<m<n<1,﹣2<m+n<2,∴抛物线对称轴为:x=﹣>1,>2,m+n<,故选项③正确;当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0(图象与y轴交于负半轴),∴3|a|+|c|=﹣3a﹣c<2b=2|b|,故④选项正确.故选:C.二、填空题13.【解答】解:原式=(a﹣b)2故答案为:(a﹣b)214.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.15.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.16.【解答】解:∵一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,∴k﹣2>0,解得k>2,故答案为:k>2.17.【解答】解:∵△ABC是等腰直角三角形,∴=,∠BAC=45°,同理,=,∠EAD=45°,∴=,∠BAE=∠CAD,∴△BAE∽△CAD,①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,又∠PME=∠AMD,∴△PME∽△AMD,∴=,∴MP•MD=MA•ME,②正确;∵∠BEA=∠CDA,∴P、E、D、A四点共圆,∴∠APM=∠AED=90°,∵∠BAC=∠EAD=45°,∴∠CAM=90°,∴△CAP∽△CMA,∴=,∴AC2=CP•CM,∵AC2=2CB2,∴2CB2=CP•CM,③正确,故答案为:①②③.18.【解答】解:(1)如图,平行四边形PAQB为所;(2)如图,四边形PCQD为所作.三、解答题19.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.20.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.21.【解答】解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.22.【解答】解:在△APC中,∠ACP=90°,∠APC=45°,则AC=PC.∵AP=400海里,∴由勾股定理知,AP2=AC2+PC2=2PC2,即4002=2PC2,故PC=200海里.又∵在直角△BPC中,∠PCB=90°,∠BPC=60°,∴PB==2PC=400≈566(海里).答:此时巡逻舰与观测点P的距离PB约为566海里.23.【解答】解:(1)根据题意得,60≤x≤60×(1+40%),即60≤x≤84;(2)由题意得:,∴.∴一次函数的解析式为:y=﹣x+120;(3)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线开口向下,∴当x<90时,w随x的增大而增大,而60≤x≤84,∴当x=84时,w=(84﹣60)×(120﹣84)=864.答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.24.【解答】(1)解:由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,∵四边形ABCD是矩形,∴AD=BC,∴CD=AD,∴=,故答案为:;(2)证明:设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得:x=a,即AP=BC,在Rt△APH和Rt△BCP中,,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°.25.【解答】解:(1)抛物线y=y=ax2﹣2ax﹣3(a>0)的对称轴为:x==1∵a>0,抛物线开口向上:∴当x≥1时,y随x增大而增大;由已知:当2≤x≤4时,函数有最大值5.∴当x=4时,y=5,∴16a﹣8a﹣3=5,解得a=1;∴y=x2﹣2x﹣3,令x=0,得y=﹣3,令y=0,得x=﹣1或x=3,∴抛物线与y轴交于(0,﹣3),抛物线与x轴交于(﹣1,0)、(3,0)(2)若关于m的一元二次方程m2﹣y0m+k﹣4+y0=0 恒有实数根,则须,即4k≤恒成立,即k恒成立.∵点p(x0,y0)是(2)中翻折得到的抛物线弧部分上任意一点,且抛物线y=x2﹣2x﹣3的顶点坐标为(1,﹣4),∴0<y0≤4,∴3≤≤4,(k取的值之下限)∴实数k的最大值为3.。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.分式方程213xx=-的解为()A.x=-2 B.x=-3 C.x=2 D.x=3【答案】B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.2.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】3 1.732-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】3 1.732-≈-,()1.7323 1.268---≈,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以3-表示的点与点B最接近,故选B.3.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:9【答案】A【解析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴23OB OB '= , 故选A .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.4.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【解析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.5.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可. 【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3,故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.7.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根【答案】C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 8.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数B.中位数C.众数D.方差【答案】B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.9.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.二、填空题(本题包括8个小题)11.已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.【答案】14【解析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD中,BD=2.∵菱形的周长为10,BD=2,∴AB=5,BO=3,∴22534AO=-=,AC=3.∴面积168242S=⨯⨯=.故答案为14.【点睛】此题考查了菱形的性质及面积求法,难度不大.12.如图,已知一次函数y=ax+b和反比例函数kyx=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________【答案】﹣2<x<0或x>1【解析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.【答案】40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.14.如图,直线y =x +2与反比例函数y =k x 的图象在第一象限交于点P.若OP =10,则k 的值为________.【答案】1【解析】设点P (m ,m+2),∵OP=10,∴()222m m ++ =10, 解得m 1=1,m 2=﹣1(不合题意舍去),∴点P (1,1),∴1=1k , 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键. 15.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.【答案】73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.16.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.【答案】11 【解析】根据无理数的性质,得出接近无理数的整数,即可得出a ,b 的值,即可得出答案.【详解】∵a <28<b ,a 、b 为两个连续的整数,∴252836<<,∴a =5,b =6,∴a +b =11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.17.若式子2x x+有意义,则x 的取值范围是_____. 【答案】x≥﹣2且x≠1.【解析】由2x +知20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题(本题包括8个小题)19.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题.试题解析:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF .考点:平行四边形的判定与性质.20.我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?【答案】(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x 天 根据题意,得1010511.5x x ++= 解得x =20经检验,x =20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天) (6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.21.解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解. 【答案】﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,22.如图,AD 、BC 相交于点O ,AD =BC ,∠C =∠D =90°.求证:△ACB ≌△BDA ;若∠ABC =36°,求∠CAO 度数.【答案】(1)证明见解析(2)18°【解析】(1)根据HL 证明Rt △ABC ≌Rt △BAD 即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.【详解】(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是Rt △,在Rt △ABC 和Rt △BAD 中,AD BC AB BA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL );(2)∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∵∠C =90°,∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°.【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”. 23.观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.【答案】(1)1111 9112911⨯-⨯,()(2)()()1111 2n 12n+122n 12n+1⨯--⨯-,()(3)100201【解析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-(); (3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 24.为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?【答案】(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元.【解析】整体分析:(1)设购买一副乒乓球拍x 元,一副羽毛球拍y 元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由题意得,211632204x y x y +=⎧⎨+=⎩, 解得:2860x y =⎧⎨=⎩答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.25.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).【答案】6+332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB=x ,则AF=x-4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF=4tan30x -︒=BD , 同理,Rt △ABE 中,BE=tan60x ︒, ∵BD-BE=DE ,∴4tan30x -︒-tan60x ︒=3, 解得332答:树高AB 为(332 . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键. 26.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( )A .10000x ﹣90005x -=100B .90005x -﹣10000x =100 C .100005x -﹣9000x =100 D .9000x ﹣100005x -=100 【答案】B 【解析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x 元,则可列方程为:9000x 5-﹣10000x=100, 故选B .【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.2.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.3.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )A .B .C .D .【答案】A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A 、上面小下面大,侧面是曲面,故本选项正确;B 、上面大下面小,侧面是曲面,故本选项错误;C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误;故选A .点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.4.在函数y =1x x 中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠1【答案】C【解析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.故x 的取值范围是x≥2且x≠2.故选C .【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.5.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°【答案】B 【解析】由正方形的性质和等边三角形的性质得出∠BAE =150°,AB =AE ,由等腰三角形的性质和内角和定理得出∠ABE =∠AEB =15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∠BAF =45°,∵△ADE 是等边三角形,∴∠DAE =60°,AD =AE ,∴∠BAE =90°+60°=150°,AB =AE ,∴∠ABE =∠AEB =12(180°﹣150°)=15°, ∴∠BFC =∠BAF+∠ABE =45°+15°=60°;故选:B .【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.6.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .【答案】D【解析】本题可先由一次函数y=ax+c 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致.【详解】A 、一次函数y=ax+c 与y 轴交点应为(0,c ),二次函数y=ax 2+bx+c 与y 轴交点也应为(0,c ),图象不符合,故本选项错误;B 、由抛物线可知,a >0,由直线可知,a <0,a 的取值矛盾,故本选项错误;C 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误;D 、由抛物线可知,a <0,由直线可知,a <0,且抛物线与直线与y 轴的交点相同,故本选项正确. 故选D .【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.7.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可. 【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+B .72072054848x +=+C .720720548x -=D .72072054848x -=+ 【答案】D 【解析】因客户的要求每天的工作效率应该为:(48+x )件,所用的时间为:72048x+, 根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+, 可以列出方程:72072054848x -=+. 故选D .9.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差【答案】D【解析】解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符;B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符;C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12, 添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25, 故方差发生了变化.故选D .10.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .125【答案】B【解析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.二、填空题(本题包括8个小题)11.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【解析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.12.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.【答案】300【解析】设成本为x 元,标价为y 元,根据已知条件可列二元一次方程组即可解出定价.【详解】设成本为x 元,标价为y 元,依题意得0.75250.920y x y x +=⎧⎨-=⎩,解得250300x y =⎧⎨=⎩故定价为300元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.13.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.【答案】73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.14.与直线2y x =平行的直线可以是__________(写出一个即可).【答案】y=-2x+5(答案不唯一)【解析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.15.已知:如图,在△AOB 中,∠AOB=90°,AO=3 cm ,BO=4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D=__________cm .【答案】1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB+=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.16.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.【答案】50°.【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.17.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.【答案】m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2m x-,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1. 点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键.18.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.【答案】1x <-【解析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(本题包括8个小题)19.如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .【答案】证明见解析【解析】试题分析:证明三角形△ABC ≅△DEF,可得AB =DE .试题解析:证明:∵BF =CE ,∴BC=EF,∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,AC=DF,∴△ABC ≅△DEF,∴AB=DE.20.如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC//BP交PA于点C,连接CB.已知=,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.AB6cm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:()1通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0 0.5 1 1.5 2 2.5 3y/cm 3 3.1 3.5 4.0 5.3 6(说明:补全表格时相关数据保留一位小数)()2建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;()3结合画出的函数图象,解决问题:直接写出OBC周长C的取值范围是______.≤≤.【答案】(1)4.6(2)详见解析;(3)9C12【解析】(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.【详解】()1经过测量,x2=时,y值为4.6()2根据题意,画出函数图象如下图:()3根据图象,可以发现,y的取值范围为:3y6≤≤,C6y=+,故答案为9C12≤≤.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.21.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O 分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=513,求DG的长,【答案】(1)证明见解析;(2)AD=xy3013【解析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF =,即AD 2=AB•AF=xy , 则AD=xy ; (3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B , ∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD ,∴501013513AG AF DG OD ===,即DG=1323AD , ∴AD=503013·1813AB AF =⨯=, 则DG=133********⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.22.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)【答案】解:(1)22.1.(2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x -1)]=(0.1x +0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x +0.9)+0.3x=12,整理,得x 2+14x -120=0,解这个方程,得x 1=-20(不合题意,舍去),x 2=2.当x >10时,根据题意,得x·(0.1x +0.9)+x=12,整理,得x 2+19x -120=0,解这个方程,得x 1=-24(不合题意,舍去),x 2=3.∵3<10,∴x 2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x 部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x >10时,分别讨论得出即可.23.已知抛物线y =ax 2﹣bx .若此抛物线与直线y =x 只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y 轴上的点P (1,n )为中心,作该抛物线关于点P 对称的抛物线y',若这两条抛物线有公共点,求n 的取值范围;若a >1,将此抛物线向上平移c 个单位(c >1),当x =c 时,y =1;当1<x <c 时,y >1.试比较ac 与1的大小,并说明理由.【答案】(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解析】(1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可;②顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n ,联立方程组即可求n 的范围; (2)将点(c ,1)代入y =ax 2﹣bx+c 得到ac ﹣b+1=1,b =ac+1,当1<x <c 时,y >1. b 2a ≥c ,b≥2ac ,。
天津一中2018-2019 高三年级第三次月考数学试卷(理)一、选择题:1.已知集合,,则等于()A. B. C. D.【答案】C【解析】试题分析:由,解得集合,集合,故.考点:集合的运算.2.已知实数满足约束条件,则的取值范围是()A. B.C. D.【答案】C【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【详解】如图,作出不等式组表示的平面区域,由z=x+4y可得:,平移直线,由图像可知:当直线过点B时,直线的截距最小,此时z最小。
将代入目标函数得:,故选:C。
【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.3.执行如图所示的程序框图,则输出的n值是()A. 5B. 7C. 9D. 11【答案】C【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值. 【详解】执行程序框图,时,;时,;时,;时,,,满足循环终止条件,退出循环,输出的值是9,故选C.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.下列判断正确的是()A. “”是“” 的充分不必要条件B. 函数的最小值为2C. 当时,命题“若,则”的逆否命题为真命题D. 命题“”的否定是“”【答案】C【解析】【分析】利用特殊值判断;利用基本不等式的条件“一正二定三相等”判断,利用原命题与逆否命题的等价性判断;利用全称命题的否定判断.【详解】当时,成立,不成立,所以不正确;对,当,即时等号成立,而,所以,即的最小值不为2,所以不正确;由三角函数的性质得“若,则”正确,故其逆否命题为真命题,所以正确;命题“,”的否定是“,”,所以不正确,故选C.【点睛】本题主要通过对多个命题真假的判断,主要考查充分条件与必要条件、基本不等式的性质、原命题与逆否命题的等价性、全称命题的否定,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的、自己掌握熟练的知识点入手、结合特殊值的应用,最后集中精力突破较难的命题.5.已知函数,图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于轴对称,则函数的图象()A. 关于直线对称B. 关于直线对称C. 关于点对称D. 关于点对称【答案】D【解析】【分析】由函数y=f(x)的图象与性质求出T、ω和φ,写出函数y=f(x)的解析式,再求f(x)的对称轴和对称中心.【详解】由函数y=f(x)图象相邻两条对称轴之间的距离为,可知其周期为4π,所以ω==,所以f(x)=sin(x+φ);将函数y=f(x)的图象向左平移个单位后,得到函数y=sin[(x+)+φ]图象.因为得到的图象关于y轴对称,所以×+φ=kπ+,k∈Z,即φ=kπ+,k∈Z;又|φ|<,所以φ=,所以f(x)=sin(x+),令x+=kπ,k∈Z,解得x=2k﹣,k∈Z;令k=0时,得f(x)的图象关于点(-,0)对称.故选:D.【点睛】本题考查了三角函数的图象与性质的应用问题,考查了函数y=Asin(ωx+φ)的图象变换,是基础题.6.已知抛物线,直线倾斜角是且过抛物线的焦点,直线被抛物线截得的线段长是,双曲线的一个焦点在抛物线的准线上,则直线与轴的交点到双曲线的一条渐近线的距离是()A. B. C. D.【答案】D【解析】抛物线的焦点为,由弦长计算公式有 ,所以抛物线的标线方程为,准线方程为 ,故双曲线的一个焦点坐标为,即 ,所以 ,渐近线方程为,直线方程为,所以点,点P到双曲线的一条渐近线的距离为 ,选D.点睛: 本题主要考查了抛物线与双曲线的简单几何性质, 属于中档题. 先由直线过抛物线的焦点,求出弦长,由弦长求出的值,根据双曲线中的关系求出 ,渐近线方程等,由点到直线距离公式求出点P到双曲线的一条渐近线的距离.7.已知函数对于任意的满足,其中是函数的导函数,则下列不等式成立的是()A. B.C. D.【答案】B【解析】令,则,则函数在上单调递减,在上单调递增,所以,即;故选B.点睛:处理本题的关键是合理利用的形式,恰当构造,这是导数在函数中应用中的常见题型,要在学习过程中积累构造方法.8.已知是半径为的圆上的三点,若且,则()A. B. C. D.【答案】C【解析】【分析】先根据向量加法几何意义以及向量垂直确定四边形形状,再根据向量数量积定义求结果.【详解】因为,,所以平行四边形的对角线相互垂直,即四边形为菱形,因为,所以∠,因此选C.【点睛】本题考查向量加法几何意义以及向量数量积,考查基本分析求解能力,属中档题.二、填空题:9.已知为虚数单位,复数,则________.【答案】【解析】【分析】根据复数模的性质与定义求解.【详解】.【点睛】本题考查复数模的性质与定义,考查基本分析求解能力,属基础题.10.在极坐标系中,直线与圆交于A,B两点,则______.【答案】2【解析】试题分析:直线过圆的圆心,因此【考点】极坐标方程【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程时,要灵活运用以及,,同时要掌握必要的技巧.11.已知,且,则的最小值是________【答案】【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.如图,有个白色正方形方块排成一列,现将其中块涂上黑色,规定从左往右数,无论数到第几块,黑色方块总不少于白色方块的涂法有________ 种【答案】【解析】【分析】用黑白两种颜色随机地涂如图所示表格中7个格子,每个格子都有2种染色方法,利用分类讨论方法求出出现从左至右数,不管数到哪个格子,总有黑色格子不少于白色格子个数。
2018-2019年最新天津市第一中学自主招生考试
数学模拟精品试卷
(第一套)
考试时间:90分钟总分:150分
一、选择题(本题有12小题,每小题3分,共36分)
下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.下列事件中,必然事件是( )
A.掷一枚硬币,正面朝上
B.a是实数,|a|≥0
C.某运动员跳高的最好成绩是20.1米
D.从车间刚生产的产品中任意抽取一个,是次品
2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()
A.平移变换 B.轴对称变换 C.旋转变换 D.相似变
换
3.如果□×3ab=3a2b,则□内应填的代数式( )
A.ab B.3ab C.a D.3a
4.一元二次方程x(x-2)=0根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
5、割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不
可割,则与圆周合体而无所失矣”。
试用这个方法解决问
题:如图,⊙的内接多边形周长为3 ,⊙的外切多边形
O
周长为3.4,则下列各数中与此圆的周长最接近的是
()
A
B
.
10
D
6、今年5月,我校举行“庆五四”歌咏比赛,有17位同学参加选
A
拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的()A.中位数 B.众数 C.平均数 D.方差
7.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )
A.Error!
B. Error!
C.Error!
D.Error!
8.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )
A.有最小值0,有最大值3
B.有最小值-1,有最大值0
C.有最小值-1,有最大值3
D.有最小值-1,无最大值
9.如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
235
10.广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
水平面
主视方向
A .4米
B .3米
C .2米
D .1米
11、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )
(A )两个外离的圆 (B )两个外切的圆(C )两个相交的圆 (D )两个内切的圆
12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:
①b 2-4ac >0;
②abc >0;
③8a +c >0;
④9a +3b +c <0.
其中,正确结论的个数是( )
A .1
B .2
C .3
D .4
二、填空题(本小题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案
13.当x ______时,分式有意义. 13-x
14.在实数范围内分解因式:2a 3-16a =________.
15.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.
16.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.
17.若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.
18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆. (用含 n 的代数式表示)
三、解答题(本大题7个小题,共90分)
19.(本题共2个小题,每题8分,共16分)
(1).计算:(-1)0+sin45°-2-1 201118。