云南省昆明市官渡区2014-2015学年八年级下学期期末考试数学试卷(扫描版,无答案)
- 格式:doc
- 大小:255.01 KB
- 文档页数:4
八年级期末数学试卷一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+92.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:47.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣18.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是_________.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:_________(填甲或乙)机床性能好.甲13.(3分)不等式3(x+1)≥5x﹣3的正整数解是_________.14.(3分)已知=,则分式的值是_________.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是_________(填序号).三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴_________∥_________(_________)∴∠1=_________(_________)∵∠1=65°(已知)∴∠C=65°.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.期末数学试卷参考答案与试题解析一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9考点:因式分解-运用公式法.分析:能用平方差公式分解因式的式子特点是:两项平方项,符号相反.解答:解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故错误;D、﹣x2+9能用平方差公式分解因式,故正确.故选D.点评:本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.2.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个考点:分式的定义.专题:存在型.分析:根据分式的定义进行解答即可.解答:解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.点评:本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解答:解:不等式组的解集是≤x<2,在数轴上可表示为:故应选B.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:应用题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,故选C.点评:本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假,关键是要熟悉课本中的性质定理,难度适中.5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形考点:相似图形.专题:常规题型.分析:根据相似图形的定义,对选项进行一一分析,排除错误答案.解答:解:A、所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误;B、所有矩形,属于形状不唯一确定的图形,不一定相似,故错误;C、所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D、所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确.故选D.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:4考点:相似三角形的性质.分析:根据相似三角形的面积比等于相似比的平方解题.解答:解:∵△ABC∽△A′B′C′,且相似比为2:3∴它们的面积比为4:9故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣1考点:分式方程的增根.专题:计算题.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1即可.解答:解:∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1.故选D.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km考点:比例线段.分析:首先设A、B之间的实际距离为xcm,然后根据本比例尺的性质,即可得方程:,解此方程即可求得答案,注意统一单位.解答:解:设A、B之间的实际距离为xcm,根据题意得:=,解得:x=1500000,∵1500000cm=15km.∴A、B之间的实际距离为15km.故选A.点评:此题考查了比例尺的性质.此题比较简单,解题的关键是根据比例尺的性质列方程,注意统一单位.9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解答:解:这种调查方式是抽样调查;故①正确;总体是我校八年级800名学生期中数学考试情况;故②正确;个体是每名学生的数学成绩;故③正确;样本是所抽取的200名学生的数学成绩,故④错误样本容量是200,故⑤错误,故选C.点评:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题.分析:关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.解答:解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.点评:列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是1.考点:分式的加减法.专题:计算题.分析:本题考查了分式的加减运算.分母互为相反数,把分母化成同分母的分式,然后进行加减运算.解答:解:原式=﹣==1.故答案为1.点评:本题考查了分式的加减运算,注意将结果化为最简分式.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:甲(填甲或乙)机床性能好.甲考点:方差;算术平均数.分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.解答:解:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故填甲.点评:一般地设n个数据,x1,x2,…x n的平均数为,则差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.(3分)不等式3(x+1)≥5x﹣3的正整数解是1,2,3.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,然后求其正整数解.解答:解:∵不等式3(x+1)≥5x﹣3的解集是x≤3,∴正整数解是1,2,3.点评:本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.(3分)已知=,则分式的值是.考点:比例的性质;分式的值.分析:根据比例的性质,两內项之积等于两外项之积用a表示出b,然后代入比例式进行计算即可得解.解答:解:∵=,∴b=a,∴==.故答案为:.点评:本题考查了比例的性质,熟记两內项之积等于两外项之积并用a表示出b是解题的关键.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是①②③(填序号).考点:相似三角形的判定.分析:根据图形,∠A为△ACP和△ABC的公共角,然后根据相似三角形的判定方法对各小题分析判断后利用排除法求解.解答:解:由图可知,∠A为△ACP和△ABC的公共角,①∠ACP=∠B,符合两角对应相等,两三角形相似,②∠APC=∠ACB,符合两角对应相等,两三角形相似,③由AC2=AP•AB可得=,符合两边对应成比例,夹角相等,两三角形相似,④=,夹角为∠B,可判定△CBP∽△ABC,所以能判定△ACP∽△ABC的条件是①②③.故答案为:①②③.点评:本题考查了相似三角形的判定,熟记三角形的判定方法是解题的关键.三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.考点:提公因式法与公式法的综合运用.分析:(1)直接利用完全平方公式分解因式即可;(2)先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解答:解:(1)x2y2+6xy+9=(xy+3)2;(2)2x3﹣18x,=2x(x2﹣9),=2x(x+3)(x﹣3).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.考点:分式的化简求值.专题:计算题.分析:先化简,把“1”看做分母是“1”,化到最简后再把x=4代入求值.解答:解:原式==x﹣3,当x=4时,原式=1.点评:此题主要考查分式的化简与求值,比较简单.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:(1)先求出两个不等式的解集,然后表示在数轴上,再求其公共解;(2)先求出两个不等式的解集,然后表示在数轴上,再求其公共解.解答:解:(1),由①得,x>2,由②得,x>4,在数轴上表示如下:所以,不等式组的解集是x>4;(2),由①得,x≥1,由②得,x<2,在数轴上表示如下:所以,不等式组的解集是1≤x<2.点评:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据50.5﹣60.5频数为4,频率为0.08,求出总人数,即可求出90.5﹣100.5的人数,以及频率.(2)根据各组频数即可补全条形图;(3)根据条形图的高度可得答案;(4)先计算出样本的优秀率,再乘以900即可.解答:解:(1)∵50.5﹣60.5频数为4,频率为0.08,∴总人数为:4÷0.08=50人,∴90.5﹣100.5的人数为:50﹣4﹣8﹣10﹣16=12(人),频率为:12÷50=0.24,填表即可;(2)根据(1)中数据补全频数分布直方图,如图所示;(3)由频率分布表或频率分布直方图可知,竞赛成绩落在80.5﹣90.5这个范围内的人数最多;(4)12÷50×100%×900=216(人).答:该校成绩优秀学生约为216人.点评:此题主要考查了频数分布直方图,频率,用样本估计总体,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∴∠1=∠C(两直线平行,内错角相等)∵∠1=65°(已知)∴∠C=65°.考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的判定定理“同旁内角互补,两直线平行”判定AB∥CD,然后由平行线的性质推知∠1=∠C;最后根据已知条件∠1=65°,利用等量代换求得∠C=65°.解答:解:∵∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行),∴∠1=∠C(两直线平行,内错角相等),∵∠1=65°(已知)∴∠C=65°(等量代换).故答案是:AB、CD、同旁内角互补,两直线平行、∠C、两直线平行,内错角相等.点评:本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?考点:分式方程的应用.专题:应用题.分析:根据(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的,则若设(1)班平均每人捐款x元,则(2)班平均每人捐款元.根据:(1)班比(2)多2人即可列方程求解.解答:解:设(1)班平均每人捐款x元,则(2)班平均每人捐款元,根据题意得:,解得:x=5,经检验x=5是原方程的解.答:(1)班平均每人捐款5元.点评:本题主要考查了利用方程解决实际问题,正确把信息一,二转化为相等关系是解题的关键.22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.考点:相似三角形的判定与性质;矩形的性质.分析:(1)根据等角的余角相等,得∠1=∠3,根据两个角对应相等即可证明相似;(2)根据30°直角三角形的性质,得PC=8,再根据勾股定理求得DP的长,总而利用相似三角形的对应边的比相等即可求解;(3)根据相似三角形周长的比等于相似比进行分析.解答:解:(1)证明:在△DPC、△AEP中,∠1与∠2互余,∠2与∠3互余,∴∠1=∠3,(1分)又∠A=∠D=90°,(1分),∴△DPC∽△AEP.(1分)(2)∵∠2=30°,CD=4,∴PC=8,PD=(2分),又∵AD=10,∴AP=AD﹣PD=10﹣4,由(1),得=10﹣12;(3)存在这样的点P,使△DPC的周长等于△AEP周长的2倍,(1分)∵相似三角形周长的比等于相似比,设=2,解得DP=8.(2分)点评:此题综合考查了相似三角形的判定和性质.。
云南省八年级下学期期末考试数学试卷(本套试卷三个大题,共25个小题,满分共120分,考试时间为120分钟)一、相信你,都能选择对! (每题3分,共24分)1.分式有意义,则x的取值范围是( )A.X〉3 B。
X<3 C。
X≠3 D.X≠-32.反比例函数y=错误!的图象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限3.在下列长度的各组线段中,能组成直角三角形的是()A.2,3,4 B.12,15,17 C.9,16,25 D.5,12,13 4.矩形具有而一般平行四边形不具有的特征是()A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分5。
某商场试销一种新款衬衫,一周内销售情况如下表:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A.平均数 B.众数 C.中位数 D.方差6.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为().A.8 B.10 C.12 D.167. 一个直角三角形的两直角边分别为x,y,面积为2,则y关于x的关系用图象表示大致是()8.菱形,则点B的坐标是( )A.(,1)B.(1,)C.(+1,1)D.(1,+1)二、希望你能填得又快又准.(每题3分,共21分)9.人体中成熟的红细胞的平均直径为0.00000077m,用科学记数法表示m.10。
现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为= 0。
28、= 0.36,则身高较整齐的球队是队(填“甲"或“乙”).11. 若点A(2,)、B(3,)都在反比例函数的图象上,则_____(填“〈"、“>"或“=”)。
12.图中两个小正方形的面积分别为33和67,则大正方形边长a= . 13.如图,在Rt△ABC中,∠C=90o,AB=10cm, D为AB中点,则CD= cm。
2015-2016学年云南省昆明市官渡区八年级(下)期末数学试卷一、填空题(共8小题,每小题3分,满分24分)1.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分.那么成绩较为整齐的是班(填“甲”或“乙”).2.如图,字母A所代表的正方形面积为.3.若x,y为实数,且|x+2|+=0,则()2016= .4.将直线y=2x+6向下平移4个单位长度得到的直线为.5.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F的值为度.6.如图,y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是.7.如图,已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为.8.在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有个.二、选择题(共8小题,每小题4分,满分32分)9.要调查昆明市民喜欢看的电视节目,应关注的是哪个数据的代表()A.众数 B.中位数C.平均数D.加权平均数10.函数y=的自变量x的取值范围是()A.x>6 B.x<6 C.x≥6 D.x≤611.下列式子中,属于最简二次根式的是()A.B.C. D.12.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分13.能够判定一个四边形是菱形的条件是()A.对角线互相垂直平分B.对角线互相平分且相等C.对角线相等且互相垂直 D.对角线互相垂直14.一次函数y=﹣5x+3不经过第()象限.A.一B.二C.三D.四15.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,且DF=1,连接AF,CF,若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1516.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.三、解答题(共9小题,满分64分)17.计算:(1)﹣()0+;(2)(3﹣2+)÷2;(3)(2+)(2﹣)﹣(+1)2.18.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8cm,BD=6cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.19.如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE∥DF.20.今年6月南博会在我市成功举办,吸引了众多的国内外人士,期间,对六家大宾馆、饭店中游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制成条形统计图,如图所示,请结合图形回答下列问题:(1)这次抽样的总人数是人;(2)样本中年龄的中位数落在第小组内(只要求写出答案);(3)这天的游客约有600000人,请估计在20.5﹣50.5年龄段的游客约有多少人?21.为迎接南博会,要在会场周围的一块四边形空地上种植草坪进行绿化,经测量∠B=90°,AB=7米,BC=24米,CD=15米,AD=20米,求这块四边形草坪ABCD的面积.22.甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示.(1)请根据图象回答:甲先出发小时后,乙才出发;在甲出发小时后,两人相遇,这时他们离A地千米;(2)乙的行驶速度是千米/小时;(3)分别求出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).23.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC,∠BAN=90°,求证:四边形ADCN是矩形.24.六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.其中,书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y1,y2(元)与所买水性笔支数x(支)的函数解析式(请化简函数解析式),并写出自变量x的取值范围;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜.25.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求菱形ABCO边长;(2)求直线AC的解析式;(3)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式.2015-2016学年云南省昆明市官渡区八年级(下)期末数学试卷参考答案与试题解析一、填空题(共8小题,每小题3分,满分24分)1.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分.那么成绩较为整齐的是乙班(填“甲”或“乙”).【考点】方差.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分,∴S甲2>S乙2,∴成绩较为整齐的是乙;故答案为:乙.2.如图,字母A所代表的正方形面积为64 .【考点】勾股定理.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.3.若x,y为实数,且|x+2|+=0,则()2016= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣2=0,∴x=﹣2,y=2,∴()2016=1,故答案为:1.4.将直线y=2x+6向下平移4个单位长度得到的直线为y=2x+2 .【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x+6的图象向下平移4个单位所得函数的解析式为y=2x+6﹣4=2x+2,故答案为:y=2x+25.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F的值为70 度.【考点】平行四边形的性质;三角形内角和定理;三角形的外角性质.【分析】根据平行四边形的性质知,∠B=∠ADC=∠FDE,然后根据三角形的内角和为180°求解.【解答】解:∵平行四边形ABCD中,∠B=110°∴∠ADC=110°,∴∠E+∠F=180°﹣∠ADC=70°.故答案为:70.6.如图,y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是x>2 .【考点】一次函数的性质.【分析】首先根据图象可知,该一次函数y=kx+b的图象经过点(2,0)、(0,﹣3).因此可确定该一次函数的解析式为y=x﹣3.由于y>0,根据一次函数的单调性,那么x的取值范围即可确定.【解答】解:由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,﹣3).∴可列出方程组,解得,∴该一次函数的解析式为y=x﹣3,∴当y>0时,x的取值范围是:x>2.故答案为:x>27.如图,已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为 4 .【考点】翻折变换(折叠问题);正方形的性质.【分析】根据正方形对角线的长,求出正方形的边长,由图形翻折变换的性质可知AD=A′D′,A′H=AH,D′G=DG,由阴影部分的周长=A′D′+A′H+BH+BC+CG+D′G即可得出结论.【解答】解:∵正方形ABCD的对角线长为,∴正方形ABCD的边长为1,由翻折变换的性质可知AD=A′D′,A′H=AH,D′G=DG,阴影部分的周长=A′D′+(A′H+BH)+BC+(CG+D′G)=AD+AB+BC+CD=1×4=4.故答案为:4.8.在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有 3 个.【考点】平行四边形的性质;坐标与图形性质.【分析】作出图形,分AB、BC、AC为对角线三种情况进行求解.【解答】解:如图所示,①AB为对角线时,点D的坐标为(3,﹣3),②BC为对角线时,点D的坐标为(7,3),③AC为对角线时,点D的坐标为(﹣3,3),综上所述,点D的坐标是(7,3)(﹣3,3)(3,﹣3).故答案为:3.二、选择题(共8小题,每小题4分,满分32分)9.要调查昆明市民喜欢看的电视节目,应关注的是哪个数据的代表()A.众数 B.中位数C.平均数D.加权平均数【考点】统计量的选择.【分析】根据平均数、中位数、众数的定义进行判断即可.【解答】解:要调查昆明市民喜欢看的电视节目,即要看喜欢那个电视节目的人数最多,故应关注的是众数,故选:A.10.函数y=的自变量x的取值范围是()A.x>6 B.x<6 C.x≥6 D.x≤6【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由被开方数是非负数,得x﹣6≥0,解得x≥6,故选:C.11.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.12.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【考点】加权平均数.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:85×+80×+90×=17+24+45=86(分),故选D13.能够判定一个四边形是菱形的条件是()A.对角线互相垂直平分B.对角线互相平分且相等C.对角线相等且互相垂直 D.对角线互相垂直【考点】菱形的判定.【分析】根据菱形的判定方法一一判断即可解决问题.【解答】解:A、正确.因为四边形的对角线互相平分,所以这个四边形是平行四边形,又因为对角线互相垂直,所以四边形是菱形,故正确.B、错误.因为对角线互相平分且相等,所以四边形是矩形,故错误.C、错误.对角线相等且垂直,无法判断四边形是菱形,故错误.D、错误.对角线互相垂直,无法判断四边形是菱形,故错误.故选A14.一次函数y=﹣5x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数图象与系数的关系.【分析】根据k值是﹣5<0,函数图象经过第二四象限,3>0,函数图象与y轴的正半轴相交即可进行判断.【解答】解:∵k=﹣5<0,∴函数图象经过第二四象限,∵b=3>0,∴函数图象与y轴正半轴相交,∴函数图象经过第一二四象限,故不经过第三象限.故选:C.15.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,且DF=1,连接AF,CF,若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.15【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】根据直角三角形的性质得到EF=6,根据三角形的中位线定理计算即可.【解答】解:∵∠AFC=90°,E是AC的中点,∴FE=AC=6,又DF=1,∴DE=DF+FE=7,∵D,E分别是AB,AC的中点,∴BC=2DE=14,故选:C.16.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选B.三、解答题(共9小题,满分64分)17.计算:(1)﹣()0+;(2)(3﹣2+)÷2;(3)(2+)(2﹣)﹣(+1)2.【考点】二次根式的混合运算;零指数幂.【分析】(1)化简二次根式、计算零指数幂、二次根式的除法,再计算加减即可;(2)先化简括号内的二次根式、将除法转化为乘法,再用乘法分配律展开分别计算即可得;(3)先用平方差和完全平方公式展开,再去括号计算加减即可.【解答】解:(1)原式==;(2)原式=(6﹣+4)×==;(3)原式==.18.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8cm,BD=6cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.【考点】菱形的性质.【分析】(1)由四边形ABCD是菱形,AC=8cm,BD=6cm,根据菱形的面积等于对角线积的一半,即可求得答案;(2)首先求得菱形的边长,然后由DH⊥AB,求得答案.【解答】解:(1)∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴S菱形ABCD=AC•BD=×6×8=24,(2)∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴在直角三角形AOB中,AB=cm,∴DH==4.8cm.19.如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE∥DF.【考点】平行四边形的判定与性质.【分析】先求出DE=BF,再证明四边形BEDF是平行四边形,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC,∵AE=CF,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∴BE∥DF.20.今年6月南博会在我市成功举办,吸引了众多的国内外人士,期间,对六家大宾馆、饭店中游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制成条形统计图,如图所示,请结合图形回答下列问题:(1)这次抽样的总人数是100 人;(2)样本中年龄的中位数落在第三小组内(只要求写出答案);(3)这天的游客约有600000人,请估计在20.5﹣50.5年龄段的游客约有多少人?【考点】条形统计图;用样本估计总体;中位数.【分析】(1)把直方图给出的所有数据加起来即可求出这次抽样的总人数;(2)根据抽查的总人数和中位数的定义即可得出答案;(3)先求出20.5~50.5年龄段的游客所占的百分比,再乘以这天的游客总人数即可得出答案.【解答】解:(1)这次抽样的总人数是:8+20+32+24+12+4=100(人);故答案为:100;(2)∵共有100个人,中位数是第50、51个数的平均数,∴中位数在第三组;故答案为:三;(3)20.5~50.5年龄段的游客的比例是: =0.76,则20.5~50.5年龄段的游客的人数是:600000×0.76=456000(人),答:20.5~50.5年龄段的游客的人数约为456000人.21.为迎接南博会,要在会场周围的一块四边形空地上种植草坪进行绿化,经测量∠B=90°,AB=7米,BC=24米,CD=15米,AD=20米,求这块四边形草坪ABCD的面积.【考点】勾股定理的应用.【分析】连接AC.首先根据勾股定理求得AC的长,再根据勾股定理的逆定理求得∠D=90°,由题意可知四边形ABCD的面积等于两个直角三角形的面积问题的解.【解答】解:连接AC,如图所示:在Rt△ABC中,AC2=AB2+BC2=72+242=625,∵AC>0,∴AC=25,在△CAD中,AD2+CD2=400+225=625=AC2∴AD2+CD2=AC2∴∠ADC=90°,S四边形ABCD=S△BAC+S△ADC=•AB•BC+AD•DC,=×24×7+×15×20=84+150=234,答:这块四边形草坪ABCD的面积是234米2.22.甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示.(1)请根据图象回答:甲先出发 3 小时后,乙才出发;在甲出发 4 小时后,两人相遇,这时他们离A地40 千米;(2)乙的行驶速度是40 千米/小时;(3)分别求出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).【考点】一次函数的应用.【分析】(1)观察函数图象,即可得出结论;(2)根据速度=路程÷时间,即可算出乙的行驶速度;(3)根据速度=路程÷时间,求出甲的行驶速度,再结合甲的图象过原点O即可写出甲的函数表达式;设出乙的函数表达式为y=kx+b(k≠0),结合点的坐标利用待定系数法即可求出乙的函数表达式.【解答】解:(1)观察函数图象,发现:甲先出发3小时后,乙才出发;在甲出发4小时后,两人相遇,这时他们离A地40千米.故答案为:3;4;40.(2)乙行驶的速度为:80÷(5﹣2)=40(千米/小时),故答案为:40.(3)甲的速度为:80÷8=10(千米/小时),∵甲的函数图象过原点(0,0),∴甲的函数表达式:y=10x;设乙的函数表达式为y=kx+b(k≠0),∵点(3,0)和(5,80)在乙的图象上,∴有,解得:.故乙的函数表达式:y=40x﹣120.23.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC,∠BAN=90°,求证:四边形ADCN是矩形.【考点】矩形的判定.【分析】通过证明△AMD≌△CMN得到对应边AD=CN;结合已知条件“CN∥AB”判定四边形ADCN是平行四边形;再根据“有一内角为直角的平行四边形是矩形”证得结论.【解答】证明:∵CN∥AB,∴∠DAC=∠NCA,在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),∴AD=CN.又∵AD∥CN,∴四边形ADCN是平行四边形.又∵∠BAN=90度,∴四边形ADCN是矩形.24.六一儿童节,某学习用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.其中,书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y1,y2(元)与所买水性笔支数x(支)的函数解析式(请化简函数解析式),并写出自变量x的取值范围;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜.【考点】一次函数的应用.【分析】(1)根据“购买费用=购买书包钱数+购买水性笔钱数”即可得出两种优惠方法购买费用y1,y2(元)与所买水性笔支数x(支)的函数解析式;(2)分别令y1=y2、y1>y2、y1<y2得出关于x的一元一次方程或一元一次不等式,解方程或不等式即可得出结论.【解答】解:(1)由题意可知:y1=(x﹣4)×5+20×4=5x+60(x≥4);y2=(5x+20×4)×0.9=4.5x+72(x≥4).(2)当y1=y2时,即5x+60=4.5x+72,解得:x=24,此时选择优惠方法①,②均可;当y1>y2时,即5x+60>4.5x+72,解得:x>24,此时选择优惠方法②比较便宜;当y1<y2时,即5x+60<4.5x+72,解得:x<24,此时选择优惠方法①比较便宜.答:当购买水性笔数量x>24选择优惠方法②;当购买水性笔数量x=24时,选择优惠方法①,②均可;当购买水性笔数量4≤x<24选择优惠方法①.25.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.(1)求菱形ABCO边长;(2)求直线AC的解析式;(3)动点P从点A出发,沿折线ABC的方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式.【考点】一次函数综合题.【分析】(1)Rt△AOH中利用勾股定理即可求得菱形的边长;(2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC 的解析式;(3)根据S△ABC=S△AMB+S BMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.【解答】解:(1)Rt△AOH中,AO===5,所以菱形边长为5;(2)∵四边形ABCO是菱形,∴OC=OA=AB=5,即C(5,0).设直线AC的解析式y=kx+b,函数图象过点A、C,得,解得,直线AC的解析式y=﹣x+;(3)设M到直线BC的距离为h,当x=0时,y=,即M(0,),HM=HO﹣OM=4﹣=,由S△ABC=S△AMB+S BMC=AB•OH=AB•HM+BC•h,×5×4=×5×+×5h,解得h=,①当0≤t<时,BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,s=BP•HM=×(5﹣2t)=﹣t﹣,②当2.5<t≤5时,BP=2t﹣5,h=S=BP•h=×(2t﹣5)=t﹣.。
昆明市官渡区2015-2016学年八年级下期末考试数学试卷含答案官渡区2015-2016学年下学期学业评价检测八年级数学参考答案一、选择题(每题3分,共24分)1、乙2.643、14.576、无解二、解答题(每题4分,共32分)17、(1)解:原式=33-1+2/3=32)解:原式=(3+1)/(3+2)=4/53)解:原式=[4-(3-2)^2]/[4-3(2+1)]=-2-22=-2418、解:(1)S菱形ABCD=AC×BD=1/2×6×8=242)因为四边形ABCD是菱形,所以AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm3)在直角三角形AOB中,AB=√(32+42)=5cm4)DH=S菱形ABCD/AB=4.8cm19、证明:因为四边形ABCD是平行四边形,所以AD=BC,且AD∥BC。
又因为AE=CF,所以AD-AE=BC-CF,即ED=BF。
又ED∥BF,所以四边形EDFB是平行四边形,即EB∥DF。
20、解:(1)1002)中位数在第三组3)20.5~50.5年龄段的游客的比例是0.76,所以20.5~50.5年龄段的游客的人数是×0.76=答:20.5~50.5年龄段的游客的人数约为人。
21、解:连接AC,在Rt△ABC中,AC^2=AB^2+BC^2=7^2+24^2=625,所以AC=25.在△CAD中,AD^2+CD^2=400+225=625=AC^2,所以∠ADC=90°。
因此,S四边形ABCD=S△BAC+S△ADC。
答:已知四边形ABCD,其中AB=24,BC=15,AD=20,DC未知,求四边形面积。
根据四边形面积公式,可以得到:面积=1/2×对角线之积其中,对角线可以通过向量叉积求得,即AB×BC+AD×DCAB||BC|sin∠ABC+|AD||DC|sin∠ADC24×15sin∠ABC+20×DCsin∠ADC360sin∠ABC+20DCsin∠ADC因此,面积=1/2×(360sin∠ABC+20DCsin∠ADC)又根据余弦定理,可以得到cos∠ABC=(AB²+BC²-AC²)/(2×AB×BC)cos∠ADC=(AD²+DC²-AC²)/(2×AD×DC)将cos值代入,可以得到面积=1/2×(360×√(1-cos²∠ABC)+20×DC×√(1-cos²∠ADC)) 经过计算,可以得到四边形面积为234平方米。
2014—2015学年第二学期期末考试八年级数学试题参考答案及评分标准15题:解:∵O1为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=×1=,∵平行四边形AO1C2B的对角线交于点O2,∴平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形ABC3O2的面积=××1=,依此类推,平行四边形ABC2014O2015的面积=cm2.二、填空题(每小题2分,共10分)16.甲17.58xy=-⎧⎨=-⎩18.619.10 20.(31,16)20题:解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).∴B5的坐标是(25﹣1,24).即:B5的坐标是(31,16).三、解答题(本大题共6个小题;共60分)21.(本题满分8分)解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,-----------------------------3分在Rt△DCB中:CD2+BC2=BD2,2CD2=(100)2,CD=100(米),答:在直线L上距离D点100米的C处开挖.-----------------------------8分(第21题图)2014-2015学年第二学期期末八年级数学答案第1页(共3页)2014-2015学年第二学期期末八年级数学答案 第2页(共3页)22.(本题满分10分) 解:(1)设直线OA 的解析式为y=kx , 把A (3,4)代入得4=3k ,解得k=, 所以直线OA 的解析式为y=x ;------------2分 ∵A 点坐标为(3,4), ∴OA==5,∴OB=OA=5,∴B 点坐标为(0,﹣5), -----------------4分 设直线AB 的解析式为y=ax+b , 把A (3,4)、B (0,﹣5)代入得,解得,∴直线AB 的解析式为y=3x ﹣5;----------------------------------------------------8分 (2)△AOB 的面积S=×5×3=.-------------------------------------------------10分23. (本题满分10分) 证明:∵DE ∥AC ,∴∠DEC=∠ACB ,∠EDC=∠DCA , ∵四边形ABCD 是平行四边形, ∴∠CAB=∠DCA , ∴∠EDC=∠CAB , 又∵AB=CD ,∴△EDC ≌△CAB ,∴CE=CB , ----------------------------------7分 所以在Rt △BEF 中,FC 为其中线,所以FC=BC , ----------------------9分 即FC=AD .-------------------------------------10分24、(本小题满分10分)解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%, 被抽查的学生人数:240÷40%=600, 8天的人数:600×10%=60人,补全统计图如图所示:------------------ 4分(2)参加社会实践活动5天的最多, 所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;--------------------8分(3)1000×(25%+10%+5%)=1000×40%=400所以,填400人.----------------------------10分(第22题图)(第23题图)FED CBA25.(本题满分10分)(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;---------------------------------------5分(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF即CE=CF,在△COE和△COF中,,(第25题图)∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形∵AE=AF,∴平行四边形AEMF是菱形.--------------------------------------------------------------10分26.(本题满分12分)解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.----------------------------------------4分(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.--------------------------------------------8分(3)W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.--------------------------------------------------------------------12分2014-2015学年第二学期期末八年级数学答案第3页(共3页)。
2014-2015第二学期八年级下期末测试数学试卷(满分150分)一、选择(每题4分,计40分)1)A 、50B 、24C 、27D 、21 2.如果x 0≤,则化简x 1- ) A 、x 12- B 、x 21- C 、1- D 、13.长度分别为5cm 、9 cm 、12 cm 、13cm 、15 cm 、五根木棍首尾连接,最多可搭成直角三角形的个数为( )A .1个B .2个C .3个D .4个 4.方程)3(5)3(2-=-x x x 的根是( ) A .25=x B .x=3 C .25,321==x x D .25-=x 5.已知三角形两边长是4和7,第三边是方程055162=+-x x 的根,则第三边长是( )A .5B .11C .5或11D .66.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是 A .1.4(1+x )=4.5 B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5D .1.4(1+x )+1.4(1+x )2=4.5 7.直线l 过正方形ABCD 顶点B ,点A 、C 到直线l 距离分别是1和2,则正方形边长是( ) A .3 B .5 C .212D .以上都不对8根据上表中的信息判断,下列结论中错误..的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分5D .该班学生这次考试成绩的平均数是45分 9.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =1 2∠ADC D .∠ADE = 13∠ADC 10.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2 5B .3 5C .5D .6 二、填空(每题5分,计20分)11.在△ABC 中,AB=AC=41cm ,BC=80cm ,AD 为∠A 的平分线,则S △ABC =______。
云南省昆明市官渡区2024届八年级数学第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.已知一组数据1,l ,x ,7,3,5,3,1的众数是1,则这组数据的中位数是( ).A .1B .1.5C .3D .52.如图,在△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,则以下AE 与CE 的数量关系正确的是( )A .2CEB .3C .AE=32CED .AE=2CE3.如果关于x 的分式方程1222x m x x ++=--有非负整数解,且一次函数2y x m =++不经过四象限,则所有符合条件的m 的和是( ).A .0B .2C .3D .54.如果把分式22x y x y++中x 、y 的值都扩大为原来的2倍,则分式的值( ) A .扩大为原来的4 倍B .扩大为原来的2倍C .不变D .缩小为原来的125.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若24ABCD S =,则AOB S =( ) A .3 B .4 C .5 D .66.如图,在直角坐标系中,点A 在函数y=4x(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y=4x (x >0)的图象交于点D ,连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A .2B .3C .4D .437.如图,点A 是反比例函数6y x=-(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使B 、C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为( )A .1B .3C .6D .128.如图,将一个矩形纸片ABCD 折叠,使C 点与A 点重合,折痕为EF ,若AB=4,BC=8,则BE 的长是( )A .3B .4C .5D .69.下列属于最简二次根式的是( ) A 9B 7C 20 D 0.510.已知锐角三角形的边长是2,3,x ,那么第三边x 的取值范围是( )A .1<x 5B 513x <<C 135x <<D 515x <<二、填空题(每小题3分,共24分)11.已知一组数据x 1,x 2,x 3,x 4的平均数是5,则数据x 1+3,x 2+3,x 3+3,x 4+3的平均数是____.12.某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~ 90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.13.如图,在平行四边形纸片ABCD 中,AB =3,将纸片沿对角线AC 对折,BC 边与AD 边交于点E ,此时,△CDE14.已知关于x 的方程x 2+mx-2=0的两个根为x 1、x 2,若x 1+x 2-x 1x 2=6,则m=______.15.已知x =2时,分式31x k x ++的值为零,则k =__________. 16.在ABCD 中,120A C ∠+∠=︒,则B ∠=___.17.三角形的各边分别为8cm 、10cm 和12cm ,连结各边中点所成三角形的周长=_____18.如图,△ABC 是等边三角形,点A(-3,0),点B(3,0),点D 是y 轴上的一个动点,连接BD ,将线段BD 绕点B 逆时针旋转60°,得到线段BE ,连接DE ,得到△BDE ,则OE 的最小值为______.三、解答题(共66分)19.(10分)解方程(本题满分8分)(1)(x -5)2=2(5-x )(2)2x 2-4x -6=0(用配方法);20.(6分)解方程 ①2x (x -1)=x -1; ②(y+1)(y+2)=221.(6分)如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD 、.BFCG 又作平行四边形CFHD 、CGKE .求证:H ,C ,K 三点共线.22.(8分)若关于x 的一元二次方程()2222120x k x k --++=有实数根α,β. (1)求实数k 的取值范围;(2)设t k αβ+=,求t 的最小值. 23.(8分)关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.24.(8分)如图,已知Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,∠BAC 的平分线分别交BC ,CD 于E 、F . (1)试说明△CEF 是等腰三角形.(2)若点E 恰好在线段AB 的垂直平分线上,试说明线段AC 与线段AB 之间的数量关系.25.(10分)(1)计算:221(5)6128--⨯;(2)已知32a =-,32b =+,求22a b ab ++的值 26.(10分)解不等式组:22112x x x x ≤+⎧⎪⎨-<+⎪⎩,并把不等式组的解集在数轴上表示出来.参考答案一、选择题(每小题3分,共30分)1、B【解题分析】数据1,1,x ,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x =1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.故选B.2、D【解题分析】首先连接BE ,由在△ABC 中,∠C=90°,∠A=30°,可求得∠ABC 的度数,又由AB 的垂直平分线交AB 于点D ,交AC 于点E ,根据线段垂直平分线的性质,可得AE=BE ,继而可求得∠CBE 的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.【题目详解】连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选D.【题目点拨】此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.3、B【解题分析】依据关于x的一次函数y=x+m+2不经过第四象限,求得m的取值范围,依据关于x的分式方程有非负整数解,即可得到整数m的取值,即可得到满足条件的m的和.【题目详解】∵一次函数y=x+m+2不经过第四象限,∴m+2≥0,∴m≥-2,∵关于x的分式方程122x mx x++--=2有非负整数解∴x=3-m为非负整数且3-m≠2,又∵m≥-2,∴m=-2,-1,0,2,3,故选:B.【题目点拨】考查了一次函数的图象与性质以及分式方程的解.注意根据题意求得满足条件的m的值是关键.4、B【解题分析】根据x,y都扩大2倍,即可得出分子扩大4倍,分母扩大2倍,由此即可得出结论.【题目详解】解:∵分式22x yx y++中的x与y都扩大为原来的2倍,∴分式22x yx y++中的分子扩大为原来的4倍,分母扩大为原来的2倍,∴分式的值扩大为原来的2倍.故选:B.【题目点拨】此题考查分式的性质,解题关键在于掌握其性质5、D【解题分析】根据平行四边形的性质即可得到结论.【题目详解】解:∵四边形ABCD是平行四边形,∴S△AOB=14S四边形ABCD=14×24=6,故选:D.【题目点拨】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6、C【解题分析】解:设4()A aa,,可求出2(2)D aa,,由于对角线垂直,计算对角线乘积的一半即可.【题目详解】设A(a,4a),可求出D(2a,2a),∴S四边形ACBD=12AB∙CD=12×2a×4a=4,故选:C.【题目点拨】本题主要考查了反比例函数系数k的几何意义以及线段垂直平分线的性质,解题的关键是设出点A和点B的坐标.7、C【解题分析】作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S平行四边形ABCD=S矩形AHOD,再根据反比例函数y=kx(k≠0)系数k的几何意义得到S矩形AHOD=1,所以有S平行四边形ABCD=1.【题目详解】作AH⊥OB于H,如图,∵四边形ABCD是平行四边形ABCD,∴AD∥OB,∴S平行四边形ABCD=S矩形AHOD,∵点A是反比例函数y=−6x(x<0)的图象上的一点,∴S矩形AHOD=|-1|=1,∴S平行四边形ABCD=1.故选C.【题目点拨】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.8、A【解题分析】分析:根据翻折变换的性质可得AE=CE,设BE=x,表示出AE,然后在Rt△ABE中,利用勾股定理列方程求解即可.详解:∵矩形纸片ABCD折叠C点与A点重合,设BE=x,则AE=8−x,在Rt△ABE中,由勾股定理得,AB2+BE2=AE2,即42+x2=(8−x)2,解得x=3,即BE=3.故选A.点睛:本题考查了翻折变换的性质,主要利用了翻折前后对应线段相等,难点在于利用勾股定理列出方程.9、B【解题分析】直接利用最简二次根式的定义分析得出答案.【题目详解】解:A3,故此选项错误;BC=,故此选项错误;D=,故此选项错误;故选:B.【题目点拨】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.10、B【解题分析】由三角形三条边的关系得1<x<5,由于该三角形是锐角三角形,再结合勾股定理求出由锐角三角形变为直角三角形的临界值.【题目详解】首先要能组成三角形,由三角形三条边的关系得1<x<5;下面求该三角形为直角三角形的边长情况(此为临界情况):当3为斜边时,由勾股定理,22+x2=32,解得x当x为斜边时,由勾股定理,22+32=x2,解得xx故选B.【题目点拨】本题考查了三角形三条边的关系和勾股定理,解题的是由勾股定理求出x的临界值,再结合三角形三条边的关系求出x的取值范围.二、填空题(每小题3分,共24分)11、8【解题分析】根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数, 只要把数x1,x2,x3,x4的和表示出即可.【题目详解】解:x 1,x2,x3,x4的平均数为5∴x+x2+x3+x4=4⨯5=20,1∴ x+3,x2+3,x3+3,x4+3的平均数为:1=( x1+3+ x2+3+ x3+3+ x3+3)÷4=(20+12) ÷4=8,故答案为:8.【题目点拨】本题主要考查算术平均数的计算.12、1【解题分析】由题意直接根据频数=频率×总数,进而可得答案.【题目详解】解:由题意可得成绩在81~90这个分数段的同学有48×0.25=1(名).故答案为:1.【题目点拨】本题主要考查频数和频率,解题的关键是掌握频率等于频数除以总数进行分析计算.13根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.【题目详解】解:∵△CDE恰为等边三角形,∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,∴△AEB’为等边三角形,由四边形ABCD为平行四边形,且∠B=60°,∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,∴B’,A,B三点在同一条直线上,∴AC是对折线,∴AC垂直且平分BB’,∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=332,∴面积为319s=33=3224⨯⨯.【题目点拨】本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.14、-2【解题分析】利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.【题目详解】解:依题意得:x1+x1=-m,x1x1=-1.所以x1+x1-x1x1=-m-(-1)=6所以m=-2.故答案是:-2.【题目点拨】此题考查了一元二次方程根与系数的关系,一元二次方程ax1+bx+c=0(a≠0)的根与系数的关系为:x1+x1=-,x1•x1=.15、-6【解题分析】【方法点睛】本题目是一道考查分式值为0的问题,分式值为0:即当分子为0且分母不为0.从而列出方程,得解.16、120︒.【解题分析】根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°;再根据∠A+∠C=120°计算出∠A的度数,进而可算出∠B 的度数.【题目详解】四边形ABCD是平行四边形,A C∴∠=∠,180A B∠+∠=︒,120A C∠+∠=︒,60A∴∠=︒,120B∴∠=︒.故答案为:120︒.【题目点拨】本题是一道有关平行四边形的题目,掌握平行四边形的性质是解题关键.17、15 cm【解题分析】由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【题目详解】如图,D,E,F分别是△ABC的三边的中点,则DE=12AC,DF=12BC,EF=12AB,∴△DEF的周长=DE+DF+EF=12(AC+BC+AB)=12×(8+10+12)cm=15cm,故答案为15 cm.【题目点拨】本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理.18、3 2取BC中点G,连接DG,由“SAS”可证△BGD≌△BOE,可得OE=DG,当DG⊥OC时,DG的值最小,由含30°角的直角三角形的性质即可求出DG的值,即OE最小值.【题目详解】如图,取BC中点G,连接DG,OE,∵△ABC是等边三角形,点A(-3,0),点B(3,0),∴AO=BO=3,∠BCO=30°,∠ABC=60°,∴BC=AB=6,∵点G是BC中点,∴CG=BG=OA=OB=3,∵将线段BD绕点B逆时针旋转60°,∴∠DBE=60°,BD=BE,∴∠ABC=∠DBE,∴∠CBD=∠ABE,且BE=BD,BG=OB=3,∴△BGD≌△BOE(SAS),∴OE=DG,∴当DG⊥OC时,DG的值最小,即OE的值最小.∵∠BCO=30°,DG⊥OC∴DG=12CG=32,∴OE的最小值为3 2 .故答案为3 2【题目点拨】本题考查了全等三角形的判定和性质,等边三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.三、解答题(共66分)19、(1)x1=5,x2=3;(2)x1=3,x2=-1.【解题分析】试题分析:(1)先移项,再提取公因式(x-5),把原方程化为二个一元一次方程求解即可.(2)方程两边同除以2,再把常数项-3移到方程右边,方程两边同时加上一次项系数一半的平方,进行配方,方程两边直接开平方求出方程的解即可.试题解析:(1)移项得:(x-5)2+2(x-5)=0∴(x-5)(x-3)=0即:x-5=0,x-3=0解得:x1=5,x2=3;(2)方程变形为:x2-2x-3=0移项得:x2-2x=3配方得:x2-2x+1=3+1(x-1)2=4x-1=±2解得:x1=3,x2=-1.考点:1.解一元二次方程----因式分解法;2.解一元二次方程---配方法.20、(1)x1=1,x2=12; (2) y1=0,y2=-3【解题分析】【分析】()用因式分解法求解;(2)先去括号整理,再用因式分解法求解. 【题目详解】解:①2x(x-1)=x-1(2x-1)(x-1)=0所以,2x-1=0或x-1=0所以,x1=1, x2=1 2 ;②(y+1)(y+2)=2 y2+3y=0y(y+3)=0所以,y=0或y+3=0 所以,y1=0,y2=-3【题目点拨】本题考核知识点:解一元二次方程.解题关键点:用因式分解法解方程.21、证明见解析.【解题分析】如图,连接DE 交AC 于N ,连接EG 交KC 于M ,连接DF 交CH 于Q ,连接FG 交BC 于J ,连接MN ,NQ ,QJ ,JM ,.DG 想办法证明四边形MNQJ 是平行四边形即可解决问题;【题目详解】证明:如图,连接DE 交AC 于N ,连接EG 交KC 于M ,连接DF 交CH 于Q ,连接FG 交BC 于J ,连接MN ,NQ ,QJ ,JM ,DG .四边形AECD 是平行四边形,EN ND ∴=,同法可证:EM MG =,//MN DG ∴,12MN DG =, 同法可证://QJ DG ,12QJ DG =, //MN QJ ∴,MN QJ =,∴四边形MNQJ 是平行四边形,NJ ∴与MQ 互相平分,AC BC =,AN CN =,CJ BJ =,M ∴、C 、Q 共线,H ∴,C ,K 三点共线.【题目点拨】本题考查平行四边形的性质和判定,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.22、(1)k ≤−2;(2)t 的最小值为−1.【解题分析】(1)由一元二次方程存在两实根,可得△≥0,进而求得k 的取值范围;(2)将α+β化为关于k 的表达式,根据k 的取值范围得出t 的取值范围,即可求得t 的最小值.【题目详解】(1)∵一元二次方程x 2−2(2−k)x+k 2+12=0有实数根a ,β,∴△≥0,即:1(2−k)2−1(k 2+12)≥0,解得:k ≤−2;(2)由根与系数的关系得:a+β=−[−2(2−k)]=1−2k , ∴t k αβ+==4-2k k =4k−2, ∵k ≤−2,∴−2≤4k<0, ∴−1≤4k −2<−2, ∴t 的最小值为−1.【题目点拨】本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握20ax bx c ++=(a ≠0),有实数根a ,β时,则△≥0,a+β=b a -,aβ=c a,是解题的关键. 23、1m =,此时方程的根为121x x ==【解题分析】 直接利用根的判别式≥0得出m 的取值范围进而解方程得出答案.【题目详解】解:∵关于x 的方程x 2-2x+2m-1=0有实数根,∴b 2-4ac=4-4(2m-1)≥0,解得:m≤1,∵m 为正整数,∴m=1,∴此时二次方程为:x 2-2x+1=0,则(x-1)2=0,解得:x 1=x 2=1.【题目点拨】此题主要考查了根的判别式,正确得出m 的值是解题关键.24、(1)见解析(2)见解析【解题分析】(1)首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出答案;(2)线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B,由于AE是∠BAC的平分线,得到∠CAE=∠EAB,根据直角三角形的性质即可得到结论.【题目详解】解:(1)∵∠ACB=90°,∴∠B+∠BAC=90°,∵CD⊥AB,∴∠CAD+∠ACD=90°,∴∠ACD=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF,∴CF=CE,∴△CEF是等腰三角形;(2)∵点E恰好在线段AB的垂直平分线上,∴AE=BE,∴∠EAB=∠B,∵AE是∠BAC的平分线,∴∠CAE=∠EAB,∴∠CAB=2∠B,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠B=30°,∴AC=12 AB.【题目点拨】此题主要考查了等腰三角形的判定和性质,线段垂直平分线的性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.25、(1)52-;(2)11. 【解题分析】 (1)根据实数的性质进行化简即可求解;(2)根据完全平方公式与平方差公式即可求解.【题目详解】解:(1)原式2255222=--=-; (2)22a b ab ++ 2()a b ab =+-2(23)(32)(32)=--+12(32)=--11=【题目点拨】此题主要考查整式的运算,解题的关键是熟知实数的性质及乘法公式的应用.26、3x 2-<≤;数轴表示见解析.【解题分析】先把两个不等式分别求出来,然后根据不等式的解的口诀得到不等式的解集,然后把解集表示在数轴上即可.【题目详解】解:22112x x x x ≤+⎧⎪⎨-<+⎪⎩①②, 解不等式①,得:x 2≤,解不等式②,得:x 3>-,∴不等式的解集为:3x 2-<≤,在数轴上表示为:【题目点拨】本题考查了解一元一次不等式组,解题的关键是正确解出每一个不等式,然后掌握求解集的口诀.。
2014-2015学年八年级下学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列图形中,不属于中心对称图形的是()A.圆B.等边三角形C.平行四边形D.线段2.(3分)下列多项式中,能用公式法分解因式的是()A.﹣m2+n2B.a2﹣2ab﹣b2C.m2+n2D.﹣a2﹣b23.(3分)把分式,,进行通分,它们的最简公分母是()A.x﹣y B.x+y C.x2﹣y2D.(x+y)(x﹣y)(x2﹣y2)4.(3分)一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.105.(3分)下列语句:①每一个外角都等于60°的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式有意义的条件是分子为零且分母不为零.其中正确的个数为()A.1B.2C.3D.46.(3分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.9B.10 C.11 D.127.(3分)如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a >kx+b的解集正确的是()A.x>1 B.x>﹣1 C.x<1 D.x<﹣18.(3分)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.59.(3分)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm10.(3分)若不等式ax<b的解集为x>2,则一次函数y=ax+b的图象大致是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)分解因式:2m3﹣8m=.12.(3分)若分式的值为0,则x的值为.13.(3分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=.14.(3分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD 的周长为cm.15.(3分)已知关于x的方式方程=2﹣会产生增根,则m=.16.(3分)已知△ABC的顶点A的坐标为(1,2),经过平移后的对应点A′的坐标为(﹣1,3),则顶点B(﹣2,1)平移后的对应点B′的坐标为.17.(3分)对于非零的两个实数a、b,规定a⊕b=,若2⊕(2x﹣1)=1,则x的值为.18.(3分)已知点A的坐标为(1,1),点O是坐标原点,在x轴的正半轴上确定点P,使△AOP是等腰三角形,则符合条件的点P的坐标为.三、(本题共2小题,每小题7分,共14分)19.(7分)解不等式组并把它的解集在数轴上表示出来.20.(7分)先化简:(﹣1)÷,再选择一个恰当的x值代入求值.四、(本题共3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组满足x﹣y≤0,求k的最大整数值.22.(8分)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.23.(8分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C (﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.五、(本题共2小题,每小题9分,共18分)24.(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?25.(9分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE 于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.六、(本题共10分)26.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.。
2014-2015学年云南省昆明市官渡区八年级(下)期末数学试卷一、选择题(本题共9小题,每小题3分,共27分)1.(3分)下列二次根式是最简二次根式的是()A .B .C .D .2.(3分)下列各组数中,不能构成直角三角形的是()A.2,3,4 B.5,12,13 C.6,8,10 D.3,4,53.(3分)为鼓励市民珍稀每一滴水,某居民会表扬了100个节约用水模范户,6月份节约用水的情况如表:那么,6月份这100户平均节约用水的吨数为()A.1.20t B.1.15t C.1.05t D.1t4.(3分)下列二次根式中与是同类二次根式的是()A. B.C.D.5.(3分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B .AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC6.(3分)已知一次函数y=(1+2m)x﹣1中,函数值y随自变量x的增大而减小,那么m取值范围是()A.m<﹣B.m≥﹣C.m≤﹣ D.m>﹣7.(3分)菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分8.(3分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=2,则矩形的对角线AC的长是()A.2 B.4 C.2 D.49.(3分)如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x (件)之间的函数图象,下列说法:①买2件时甲、乙两家售价一样;②买1件时选乙家的产品合算;③买3件时选甲家的产品合算;④买1件时,售价约为3元.其中正确的说法是()A.①②B.②③C.①②④D.①②③二、填空题(本题共8小题,每小题2分,共16分)10.(2分)计算=.11.(2分)已知是二次根式,则x的取值范围是.12.(2分)若三角形的三边之比为3:4:5,则此三角形为三角形.13.(2分)如果正比例函数y=kx的图形经过点(1,﹣2),那么k的值为.14.(2分)平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为.15.(2分)某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为分,分,S甲2=201,S乙2=235,则成绩较为整齐的是(填“甲班”或“乙班”).16.(2分)如图,在菱形ABCD中,E是AB的中点,F是AC的中点,如果EF=4,那么CD=.17.(2分)如图,正方形ABCD的边长为2,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三、解答题(本题共8小题,共57分,解答应写出文字说明、证明过程或演算步骤)18.(8分)计算(1)(﹣)﹣(+)(2)(3﹣3)÷.19.(6分)如图是某处公路的示意图,AB=1500米,AC=900米,AC⊥BC,如果一辆农用车以18千米/小时的速度行驶.(1)求公路BC有多长?(2)该农用车从A直接到B与从A经过C到B相比较,可以节约多少时间?20.(6分)为了了解开展“尊敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用的时间,得到一组数据,并绘制制成下表,请根据下表完成下列各题:(1)填写表中未完成的部分; (2)这组数据的中位数是 小时,众数是 小时;(3)该班学生每周做家务的平均时间是多少小时(写出计算的过程)21.(6分)已知:如图,在▱ABCD 中,E 、F 是对角线AC 上的两点,且AF=CE ,求证:(1)DE=BF ;(2)DE ∥BF .22.(7分)某生物小组观察一植物生长,得到植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(CD ∥x 轴)(1)该植物从观察时起,多少天以后停止长高?(2)求线段AC 所在的直线解析式,并求该植物最高长多少厘米?23.(8分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一;①某用户某月上网的时间为x 小时,两种收费方式的费用分别为y A (元)、y B (元).写出y A 、y B 与x 之间的函数关系式;②在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?24.(8分)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论.25.(8分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.2014-2015学年云南省昆明市官渡区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共9小题,每小题3分,共27分)1.(3分)下列二次根式是最简二次根式的是()A .B .C .D .【解答】解:A 、=;B 、=2;D 、=2;因此这三个选项都不是最简二次根式,故选C.2.(3分)下列各组数中,不能构成直角三角形的是()A.2,3,4 B.5,12,13 C.6,8,10 D.3,4,5【解答】解:A、22+32≠42,不能构成直角三角形;B、52+122=132,能构成直角三角形;C、62+82=102,能构成直角三角形;D、32+42=52,能构成直角三角形.故选:A.3.(3分)为鼓励市民珍稀每一滴水,某居民会表扬了100个节约用水模范户,6月份节约用水的情况如表:那么,6月份这100户平均节约用水的吨数为()A.1.20t B.1.15t C.1.05t D.1t【解答】解:6月份这100户平均节约用水的吨数为:(52×1+30×1.2+18×1.5)÷100=1.15.故选:B.4.(3分)下列二次根式中与是同类二次根式的是()A. B.C.D.【解答】解:A、2=2与被开方数不同,故不是同类二次根式;B、与被开方数不同,故不是同类二次根式;C、=2与被开方数相同,故是同类二次根式;D、与被开方数不同,故不是同类二次根式.故选:C.5.(3分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选:D.6.(3分)已知一次函数y=(1+2m)x﹣1中,函数值y随自变量x的增大而减小,那么m取值范围是()A.m<﹣B.m≥﹣C.m≤﹣ D.m>﹣【解答】解:因为一次函数y=(1+2m)x﹣1中,函数值y随自变量x的增大而减小,可得1+2m<0,解得:m<,故选:A.7.(3分)菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.8.(3分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=2,则矩形的对角线AC的长是()A.2 B.4 C.2 D.4【解答】解:在矩形ABCD中,OA=OB=AC,∵∠AOD=120°,∴∠AOB=180°﹣∠AOD=180°﹣120°=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=2×2=4.故选:B.9.(3分)如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x (件)之间的函数图象,下列说法:①买2件时甲、乙两家售价一样;②买1件时选乙家的产品合算;③买3件时选甲家的产品合算;④买1件时,售价约为3元.其中正确的说法是()A.①②B.②③C.①②④D.①②③【解答】解:分析题意和图象可知:①售2件时甲、乙两家售价一样,都是4元,故①正确;②买1件时买乙家的合算,故②正确;③买3件时买甲家的合算,故③正确;④买乙家的1件售价约为1元,故④错误.故选:D.二、填空题(本题共8小题,每小题2分,共16分)10.(2分)计算=2.【解答】解:==2,故答案为:2.11.(2分)已知是二次根式,则x的取值范围是x≥3.【解答】解:依题意得:x﹣3≥0,解得x≥3.故答案是:x≥3.12.(2分)若三角形的三边之比为3:4:5,则此三角形为直角三角形.【解答】解:∵三角形的三边之比为3:4:5,∴32+42=52,∴此三角形是直角三角形,故答案为:直角.13.(2分)如果正比例函数y=kx的图形经过点(1,﹣2),那么k的值为﹣2.【解答】解:∵正比例函数y=kx的图形经过点(1,﹣2),∴﹣2=k,即k=﹣2.故答案为:﹣2.14.(2分)平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为70°.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠D=∠B=70°.故答案为:70°.15.(2分)某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为分,分,S甲2=201,S乙2=235,则成绩较为整齐的是甲班(填“甲班”或“乙班”).【解答】解:因为S2甲=201,S2乙=235,则甲的方差小于乙的方差,故成绩较为整齐的是甲班.故答案为:甲班.16.(2分)如图,在菱形ABCD中,E是AB的中点,F是AC的中点,如果EF=4,那么CD=8.【解答】解:∵点E、F分别是AB、AC的中点,EF=4,∴BC=2EF=8,∵四边形ABCD是菱形,∴CD=BC=8.故答案为8.17.(2分)如图,正方形ABCD的边长为2,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是2.【解答】解:由图知,阴影部分的面积等于正方形的面积减去△AQD和△BCP的面积.而点P到BC的距离与点Q到AD的距离的和等于正方形的边长,即△AQD和△BCP的面积的和等于正方形的面积的一半,故阴影部分的面积=×22=2.故答案为:2.三、解答题(本题共8小题,共57分,解答应写出文字说明、证明过程或演算步骤)18.(8分)计算(1)(﹣)﹣(+)(2)(3﹣3)÷.【解答】解:(1)原式=2﹣﹣2﹣=﹣3;(2)原式=(12﹣9)÷=3÷=3.19.(6分)如图是某处公路的示意图,AB=1500米,AC=900米,AC⊥BC,如果一辆农用车以18千米/小时的速度行驶.(1)求公路BC有多长?(2)该农用车从A直接到B与从A经过C到B相比较,可以节约多少时间?【解答】解:(1)∵AB=1500米,AC=900米,AC⊥BC,∴BC===1200(米);(2)900+1200﹣1500=600(米)=0.6千米,0.6÷18=(小时)=2分钟.20.(6分)为了了解开展“尊敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用的时间,得到一组数据,并绘制制成下表,请根据下表完成下列各题:(1)填写表中未完成的部分;(2)这组数据的中位数是 2.5小时,众数是3小时;(3)该班学生每周做家务的平均时间是多少小时(写出计算的过程)【解答】解:(1)50﹣(2+6+20+5)=17.填表如下:故答案为17;(2)将这组数据从大到小的顺序排列后中位数是:(2+3)÷2=2.5(小时).众数是一组数据中出现次数最多的数据,所以众数为3小时.即这组数据的中位数是2.5小时,众数是3小时.故答案为2.5,3;(3)该班学生每周做家务的平均时间是:(0×2+1×6+2×17+3×20+4×5)=×120=2.4(小时).21.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AF=CE,求证:(1)DE=BF;(2)DE∥BF.【解答】证明:(1)在▱ABCD中,AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴DE=BF;(2)∵△DEC≌△BFA(SAS),∴∠DEF=∠BFA,∴ED∥BF.22.(7分)某生物小组观察一植物生长,得到植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(CD∥x轴)(1)该植物从观察时起,多少天以后停止长高?(2)求线段AC所在的直线解析式,并求该植物最高长多少厘米?【解答】解:(1)∵CD∥x轴,∴从第50天开始植物的高度不变,答:该植物从观察时起,50天以后停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴,解得.所以,直线AC的解析式为y=x+6(0≤x≤50),当x=50时,y=×50+6=16cm.答:直线AC所在线段的解析式为y=x+6(0≤x≤50),该植物最高长16cm.23.(8分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一;①某用户某月上网的时间为x 小时,两种收费方式的费用分别为y A (元)、y B (元).写出y A 、y B 与x 之间的函数关系式;②在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?【解答】解:(1)y 1=3x (x >0),y 2=1.2x +54(x >0); (2)由y 1<y 2得,3x <1.2x +54,解得x <30; 由y 1=y 2得,3x=1.2x +54,解得x=30; 由y 1>y 2得,3x >1.2x +54,解得x >30;综上所述:当该用户上网时间少于30小时时,选择计时制上网省钱; 当上网时间等于30小时时选择计时制、全月制费用一样; 当上网时间超过30小时时选择全月制上网省钱.24.(8分)已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点. (1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论.【解答】(1)证明:∵四边形ABCD 是矩形, ∴∠A=∠D=90°,AB=DC , ∵M 是AD 的中点, ∴AM=DM ,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS);(2)解:四边形MENF是菱形;理由如下:由(1)得:△ABM≌△DCM,∴BM=CM,∵E、F分别是线段BM、CM的中点,∴ME=BE=BM,MF=CF=CM,∴ME=MF,又∵N是BC的中点,∴EN、FN是△BCM的中位线,∴EN=CM,FN=BM,∴EN=FN=ME=MF,∴四边形MENF是菱形.25.(8分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.【解答】解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S=×4×(4﹣t)=8﹣2t;△OCM=×4×(t﹣4)=2t﹣8;当t>4时,OM=AM﹣OA=t﹣4,S△OCM(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。
XXX 2014-2015学年八年级下学期期末数学试卷(含答案)XXX2014-2015学年度下学期期末质量监测八年级数学试卷一、选择题:本大题共12个小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列根式中,是最简二次根式的是()A。
$\frac{1}{2}$ $\sqrt{2}$ B。
3 $\sqrt{2}$ C。
8 D。
12 $\sqrt{2}$2.下列计算正确的是()A。
3+2=5 B。
3×2=6 C。
12-3=9 D。
8÷2=43.下列各点在函数y=2x的图象上的是()A。
(2,-1) B。
(-1,2) C。
(1,2) D。
(2,1)4.下列各数组中,能作为直角三角形三边长的是()A。
1,1,2 B。
2,3,4 C。
2,3,5 D。
3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A。
甲比乙的成绩稳定 B。
乙比甲的成绩稳定 C。
甲、乙两人的成绩一样稳定 D。
无法确定谁的成绩更稳定6.如图,矩形ABCD中,∠AOD=120,AB=3,则BD的长是()A。
$\sqrt{33}$ B。
6 C。
4 D。
$\sqrt{23}$7.若(-4,y1),(2,y2)两点都在直线y=-2x-4上,则y1与y2的大小关系是()A。
y1>y2 B。
y1=y2 C。
y1<y2 D。
无法确定8.如图,平行四边形ABCD中,对角线AC与BD交于点O,已知∠OAB=90,BD=10cm,AC=6cm,则AB的长为()A。
4cm B。
5cm C。
6cm D。
8cm9.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A。
4cm B。
5cm C。
6cm D。
8cm10.为了解某班学生每天使用零花钱的情况,XXX随机调查了该班15名同学,结果如下表:人数。