ISA总线
- 格式:doc
- 大小:50.50 KB
- 文档页数:7
PCI总线和ISA总线有什么区别?PCI,现在几乎看不到ISA了。
PCI总线是高速同步总线,具有32bit总线宽度,工作频率是33MHz,最大传输率为132Mbyte/s,远远大于ISA总线5Mbyte/s 的速率。
主板有两种扩展槽,黑色的为ISA,白色的短槽为PCI,PCI是现在比较先进的一种。
分别插入ISA卡和pci卡。
1、ISA总线ISA总线接口由于I/O速度较慢,随着上世纪90年代初PCI总线技术的出现,很快被淘汰了。
目前在市面上基本上看不到有ISA总线类型的网卡。
不过近期出现一种复古现象,就是在一些品牌的最新的i865系列芯片组主板中居然又提供了几条ISA插槽,真是令人费解!最普通的总线是ISA总线,即工业标准结构总线。
16位ISA总线频率为8MHz左右。
它的应用范围很广,几乎所有的主板都保留了ISA总线的扩展槽。
2、PCI总线PCI是Intel公司开发的一套局部总线系统,它支持32位或64位的总线宽度,频率通常是33MHz。
目前最快的PCI2.0总线速度是66MHz。
PCI总线允许十个接插件,同时它还支持即插即用。
是目前最主流的一种接口类型。
因为它的I/O速度远比ISA总线型的卡快(ISA最高仅为33MB/s,而目前的PCI 2.2标准32位的PCI接口数据传输速度最高可达133MB/s),所以在这种总线技术出现后很快就替代了原来老式的ISA总线。
PCI是Intel公司开发的一套局部总线系统,它支持32位或64位的总线宽度,频率通常是33MHz。
目前最快的PCI2.0总线速度是86MHz。
目前主流的PCI规范有PCI2.0、PCI2.1和PCI2.2三种,PC机上用的32位PCI网卡,三种接口规范的卡外观基本上差不多(主板上的PCI插槽也一样)。
服务器上用的64位PCI网卡外观就与32位的有较大差别,主要体现在金手指的长度较长。
ISA总线时序到本章为止,大家已经学会怎么读时序图。
ISA总线源于PC总线,其信号定义和8086CPU的信号十分接近。
我们着重分析ISA总线信号的一些特点。
ISA的16位数据传送是通过采样M16#或IO16#来确认的,在BCLK2的开始(上升沿),ISA总线控制器检测16位存储器传送信号M16#,如果该信号为0,意味着本次总线访问是16位存储器访问,将在3个BCLK之内完成。
如果M16#为1,表示本次总线访问是8位存储器访问,需要6个BCLK周期。
在16位ISA中,LA17~23是非锁存信号。
仅仅在第1个时钟周期有效,同样,要使扩展地址信号在整个ISA访问周期中保持,ISA扩展卡必须利用BALE信号锁存LA17~23上的地址。
注意,LA17~23上的地址信号有效时间是先于A0~15的。
LA17~23有效之后,与数据线分离的地址线A[15:0]上才发出地址信号,同时,数据线高位字节使能信号变为有效状态。
即SBHE#变成低电平,这样就可以通过SD8~15传送高8位数据,实现16位操作。
如果NOWS#为高,表示本周期仍为标准16位存储器访问周期,系统主板自动插入一个等待周期,即3个周期完成存储器访问。
如果采样到NOWS#为低,意味着所访问的存储器为高速存储器,主板可以撤除将要插入的等待周期,这样便形成了在2个总线时钟周期内完成的对存储器的快速访问。
ISA除了要在BCLK2的下降沿采样零等待周期信号以外,还将在BCLK3的上升沿(BCLK3的开始)采样I/O通道准备好信号IOCHRDY。
IOCHRDY信号是为慢速的存储器或I/O芯片准备的。
如果被访问的存储器不能在3个时钟周期内完成和主设备的数据交互,那么可以在扩展卡上设计产生请求插入等待周期的信号,即在总线采样IOCHRDY(BCLK3前沿)之前,令IOCHRDY为0,并根据需要插入等待周期的数目,决定IOCHRDY为低电平的持续时间。
需要注意的是,ISA总线规范规定,如产生NOWS#信号就不允许出现IOCHRDY 无效的情况,否则就会出现不可预知的情况。
ISA总线接口定义
ISA 为16 位系统总线,ISA 槽有98 个脚,数据线有16 条,地址线有27 条,其余为控制信号线,接地线,电源线和时钟。
其工作频率为8MHz,数据
传输速率为16MB/s。
ISA 管脚定义:1.Reset:复位,开机瞬间低高低。
2.IRQ:中断请求信号
3.DRQ:DMA 请求信号
4.OWS:零等待状态信号
5.SMEMW:存储器写指令。
6.SMEMR:存储器读指令。
7.IOW:I/O 写命令
8.IOR:I/O 读命令9.DACK:DMA 响应信号10.Refresh:刷新脉冲11.SLCK:系统时钟12.T/C:结束记数信号13.BALE:系统地址锁存允许信号14.OSC:基本时钟15.IO CH CK:I/O 通道检验16.IO CHRDY I/O 通道就绪17.AEN:地址允许脉冲18.I/O CS16:I/O 16 位片选信号19.Mester:主控信号20:SBHE:高字节允许信号21:MEM R:内存读信号22:MEM W:内存写信号23:SD7SD0 :8 条低位数据总路线SD3 到I/O 芯片上去了;SD2 与Bios 联系24:LA23LA17:7 条高位地址总线25:SA19SA0 :20 条低位地址总线(SA16-SA0 到BIOS 上去了)26:SD08SD15 :8 条高位数据总线ISA 总线管脚示意图tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
ISA总线ISA总线是IBM PC/AT机(CPU是80286)所用的系统总线:PC/AT总线经过标准化之后的名称,IEEE将ISA总线作为IEEE P996推荐标准,这是一个16位兼8位的总线标准。
如果忽略标准化细节,则可认为16位ISA总线就是PC /AT总线。
由于IBM PC/AT与IBM PC、IBM PC/XT机(CPU都是8088)所用的Pc总线兼容,所以可认为8位ISA总线(16位ISA总的低8位部分)就是PC 总线。
引脚信号图9.1所示为16位ISA总线板卡(又称I/O扩展板或接口板)及插槽外形示意图,元件面和焊接面共有31+18个引脚(A1~A31、B1~B31、C1~C18和D1~D18),其中A1~A31、Bl~B31是低8位部分即8位ISA总线所用的信号。
8位ISA总线板卡及插槽与该图的区别在于没有36个引脚(C1一C18和D1~D18)那部分。
显然,8位ISA总线板卡可以插在16位的插槽中。
表9.1给出了16位ISA总线前62个引脚(亦是8位ISA总线的全部引脚)信号定义,表9.2给出了16位ISA总线的后36个引脚信号定义。
下面对引脚信号做一些简要说明,首先是62线部分(8位ISA总线)。
①D7~DO:8位数据线,双向,三态。
对于16位ISA总线,它们是数据线的低8位。
②A19~A0:20位地址线,输出。
③SMEMR(上划线)、SMEMW(上划线):存储器读、写命令,输出,低电平有效。
④IOR(上划线)、IOW(上划线):I/O读、写命令,输出,低电平有效⑤AEN:地址允许信号,输出,高电平有效。
该信号由DMAC发出,为高表示DMAC正在控制系统总线进行DMA传送,所以它可用于指示DMA总线周期。
⑥BALE:总线地址锁存允许,输出。
该信号在CPU总线周期的Tl期间有效,可作为CPU总线周期的指示。
⑦I/O CH RAY:I/O通道准备好,输入,高电平有效。
该引脚信号与808 6的READY功能相同,用于插入等待时钟周期。
系统总线的分类系统总线是计算机内部各个硬件组件之间进行数据传输和通信的重要手段。
根据不同的标准和功能,系统总线可以分为以下几类:一、ISA总线ISA总线(Industry Standard Architecture)是一种较早的系统总线标准,它最早出现在IBM PC/AT机型上。
ISA总线采用了16位的数据路径,传输速率相对较低,仅为4.77 MHz。
ISA总线主要用于连接低速外设,如串口卡、并口卡等,随着计算机技术的发展,ISA总线已经逐渐被更为先进的总线所替代。
二、PCI总线PCI总线(Peripheral Component Interconnect)是一种较为常见的系统总线标准,它是由英特尔公司于1993年推出的。
PCI总线采用32位或64位的数据路径,传输速率较高,最高可达133 MHz。
PCI总线主要用于连接高速外设,如显卡、声卡、网卡等。
由于PCI总线具有良好的兼容性和扩展性,因此在现代计算机中被广泛应用。
三、AGP总线AGP总线(Accelerated Graphics Port)是一种专门用于图形显示的系统总线标准,它是由英特尔公司于1996年推出的。
AGP总线采用32位的数据路径,传输速率较高,最高可达266 MHz。
AGP总线的主要特点是为图形处理器提供了独立的高速通道,使得图形显示的性能得到了显著提升。
四、PCI-X总线PCI-X总线(Peripheral Component Interconnect eXtended)是一种对PCI总线进行扩展的系统总线标准,它是由PCI-SIG组织于1998年推出的。
PCI-X总线采用64位或32位的数据路径,传输速率较高,最高可达1333 MHz。
PCI-X总线主要用于连接高速外设和扩展卡,如RAID卡、高性能网卡等。
由于PCI-X总线具有较大的带宽和较高的传输速率,因此在服务器等高性能计算机中得到广泛应用。
五、PCI Express总线PCI Express总线(Peripheral Component Interconnect Express)是一种较新的系统总线标准,它是由PCI-SIG组织于2004年推出的。
解释isa总线,eisa总线及pci总线的工作特点
ISA、EISA和PCI总线的工作特点如下:
1.ISA总线:
•数据传输速率较慢,最大传输速率仅为8MB/s。
•允许多个CPU共享系统资源,但CPU资源占用较高,且数据传输带宽较小。
•基于ISA总线的扩展插槽颜色一般为黑色,长度比PCI接口插槽要长。
•已逐渐被淘汰,被PCI总线所取代。
2EISA总线:
•具有较大的带宽,约为32位数据总线,最高可达33MHz。
•传输速度较快,最高可达20MB/s。
•提供16个插槽,更好地支持外围设备的安装和升级。
•支持多种新技术和功能特性,如内存映射、DMA控制器、中断控制器等。
3PCI总线:
•具有地址数据多路复用的高性能的32位或64位同步总线。
•总线引脚数目和部件数量较少,降低了成本及布线的复杂度。
•支持线性突发传输模式,确保了总线不断满载数据进行高速传输。
•设计独立于处理器的,具有严格的总线规范和良好的兼容性。
•隐蔽的总线仲裁减小了仲裁开销,极小的存取延迟,采用总线主控和异步数据转移操作。
•提供数据和地址奇偶校验功能,保证了数据的完整性和准确性。
•与CPU的时钟频率无关,能支持多个外设,设备间通过局部总线可以完成数据的快速传递,有效解决了数据传输的瓶颈问题。
•对扩展卡和元件能够进行自动配置,实现设备的即插即用。
总的来说,PCI总线在数据传输速率、设计灵活性、兼容性和扩展性等方面具有优势,因此在现代计算机系统中得到广泛应用。
一、ISA插槽:基于ISA总线的扩展插槽ISA插槽ISA插槽是基于ISA总线(Industrial Standard Architecture,工业标准结构总线)的扩展插槽,其颜色一般为黑色,比PCI接口插槽要长些,位于主板的最下端。
其工作频率为8MHz左右,为16位插槽,最大传输率16MB/sec,可插接显卡,声卡,网卡以及所谓的多功能接口卡等扩展插卡。
其缺点是CPU资源占用太高,数据传输带宽太小,是已经被淘汰的插槽接口。
目前还能在许多老主板上看到ISA插槽,现在新出品的主板上已经几乎看不到ISA插槽的身影了,但也有例外,某些品牌的845E 主板甚至875P主板上都还带有ISA插槽,估计是为了满足某些特殊用户的需求。
最早的PC总线是IBM公司1981年在PC/XT 电脑采用的系统总线,它基于8b it的8088 处理器,被称为PC总线或者PC/XT总线。
在1984年的时候,IBM 推出基于16-bit Intel 80286处理器的PC/AT 电脑,系统总线也相应地扩展为16bit,并被称呼为PC/AT 总线。
而为了开发与IBM PC 兼容的外围设备,行业内便逐渐确立了以IBM PC 总线规范为基础的ISA(工业标准架构:Industry Standard Architect ure )总线。
ISA 是8/16bit 的系统总线,最大传输速率仅为8MB/s ,但允许多个CPU 共享系统资源。
由于兼容性好,它在上个世纪80年代是最广泛采用的系统总线,不过它的弱点也是显而易见的,比如传输速率过低、CPU占用率高、占用硬件中断资源等。
后来在PC‘98 规范中,就开始放弃了ISA 总线,而Intel 从i810 芯片组开始,也不再提供对ISA 接口的支持。
使用286和386SX以下CPU的电脑似乎和8/16bit ISA 总线还能够相处融洽,但当出现了32-bit 外部总线的386DX处理器之后,总线的宽度就已经成为了严重的瓶颈,并影响到处理器性能的发挥。
ISA(PC/104) 总线信号时序简介SBS Science & Technology Co., Ltd.APPN-002ISA(PC/104)总线信号时序简介目录1.0 ISA概况 2.0 ISA文献2.1 ISA规范 2.2 ISA书籍3.0 ISA结构形式 4.0 PC/104结构形式 5.0 ISA信号描述 6.0 ISA时序图 7.0 ISA信号用法 8.0 ISA连接器引脚 9.0 PC/104总线连接引脚盛博科技1APPN-002ISA(PC/104)总线信号时序简介1.0 ISA 概况ISA总线 即工业标准结构 Industry Standard Architecture 十世纪八十年代早期IBM在佛罗里达州Boca Raton研发实验室 出的个人电脑 其中包括了8位ISA总线 1984年 最早起源于二 IBM于1981年推IBM推出了PC-AT 这是第一个全面实现16位结构的ISA总线 IBM最初命名的 AT总线 首先被记录于IBM出版的 The PC-AT TechnicalReference 上 此书包括了图表和BIOS清单 这样类似于康柏的其它公司很容易 就生产出了IBM兼容的产品 由于IBM将 AT总线”作为一项商标进行保护 其它生产兼容IBM产品的公司就不能使用 AT总线 这个名称 结果 人们在行业 中创造了 ISA 并将其作为这种总线的新名称 这个名称最后被包括IBM在内的所有公司采用 尽管 The PC-AT Technical Reference 包含了详细的图表和BIOS清单 但其 因未包含严格的时序 规范及其它必要条件而未成为一个很好的总线规范 结果 对ISA各种各样的实现造成了一些产品之间的兼容性问题 的问题 迄今为止 渐渐形成了许多ISA总线规范 但是不幸的是 为了减轻因兼容造成 这些规范也不尽相同没有产生出一个完全统一的ISA总线规范2.0 ISA 文献2.1 ISA 规范有关ISA总线规范的文档有如下几篇 EISA Specification, Version 3.12――这篇文档包括ISA总线规范 并规定了 扩展工业标准结构 定义了ISA总线上32位扩展 IEEE Draft Standard P996 这篇文档描写了标准PC类系统的机械和电 子规范 通过/.付费可以向IEEE订购 PS/2 Technical Reference 这篇来自IBM的文档内容包括在一些IBM计 算机PS/2线上使用ISA总线的信号定义和时序图2.2 ISA书籍两本对ISA总线进行了详细描述的书是 ISA & EISA Theory and Operation, by Edward Solari. (Annabooks) (ISBN 0-929392-15-9) ISA System Architecture, by Don Anderson and Tom Shanley. (MindShare) (ISBN 0-201-40996-8)盛博科技2APPN-002ISA(PC/104)总线信号时序简介3.0 ISA结构形式8 位卡:(At the card)(At the computer)16 位卡:(At the card)(At the computer)盛博科技3APPN-002ISA(PC/104)总线信号时序简介4.0 PC/104结构形式与ISA板不同 义相同PC/104 8位/16位总线模块具有同样尺寸 全为地 Gnd与ISA板总线信号定但多A32/B32;C0/D0;C19/D19引脚盛博科技4APPN-002ISA(PC/104)总线信号时序简介5.0 ISA 信号描述SA19-SA0System Address 地址位19:0用于对系统中内存和I/O设备的寻址 内存寻址时 使用SA19:SA0配合LA23:LA17 能寻址多达16兆的内存 低16位,可以用来定位64K的I/O地址 号在BALE为高时有效 持有效 SA19是最高位 I/O寻址中 只使用 地址信SA0为最低位而由BALE的下降沿锁定通过读或写命令使信号保 但也可以由ISA这些信号通常由系统微处理器或DMA控制器驱动扩展板的Bus Master 来取得ISA总线的控制权LA23-LA17Unlatched Address 23:17位是系统中内存地址 址多达16兆的内存 它们和SA19:SA0可以共同寻 由于它们是非锁存的 当BALE为高时这些信号才有效故在整个总线周期中它们并不总是保持有效状态 用BALE下降沿锁存这些信 号的译码AENAddress Enable 用于DMA传送过程中关闭总线系统微处理器和其它设备的 传送通道 制 当AEN有效时 总线上的地址 数据和读写信号由DMA控制器控 以防止DMA周期中出现不正确ISA扩展板的片选译码应包含AEN信号的片选BALEBuffered Address Latch Enable 用来锁存LA23:LA17信号或者译码这些信号 BALE下降沿用于锁存LA23:LA17 在DMA周期中BALE被强制为高 此信号 与AEN并用时表明一个有效的微处理器或DMA地址CLKSystem Clock 是一个自行运转的时钟 它的频率一般在7MHz到10MHz之间 系统时钟在一些ISA板的应用中保证与 该频率值在ISA标准中并未严格定义 系统微处理器的同步工作盛博科技5APPN-002ISA(PC/104)总线信号时序简介SD15 - SD0System Data SD15:SD0是ISA总线上的数据总线 最低位 8位设备的数据传送通过SD7:SD0来完成 其中SD15是最高位 SD0是 SD15:SD0则用于传送16位设备的数据 当16位设备向8位设备传送数据时 需将16位信号转换成两个8位 周期通过SD7:SD0来进行传送-DACK0 to -DACK3 and -DACK5 to -DACK7DMA Acknowledge 0:3和5:7分别被用来确认DRQ0:DRQ3和DRQ5:DRQ7的 DMA请求DRQ0 to DRQ3 and DRQ5 to DRQ7DMA Requests 用于ISA板向DMA控制器提出服务请求 或者Bus Master设备 申请总线控制权的请求 多个DMA请求可能同时断定有效 发出请求的设备必须保持请求信号有效直到系统板发出相应的DACK信号-I/O CH CKI/O Channel Check I/O CH CK由ISA板生成进而引发非屏蔽中断 时表明发现了不可恢复的错误 当它有效I/O CH RDYI/O Channel Ready 允许较慢速ISA板通过插入等待状态 延长I/O或内存读写 周期 好 I/O CH RDY通常处于高 以插入等待状态 就绪 ISA板将I/O CH RDY拉低 未准备使用I/O CH RDY插入等待状态的设备需可以完成读写周期时 地址译码和读/写信号有效后立即使I/O CH RDY信号为低 当设备释 放 I/O CH RDY回高-IORI/O Read 线上 由总线控制设备驱动 并且指令所选的I/O设备将数据读到数据总-IOWI/O Write 由总线控制设备驱动 指令所选的I/O设备从数据总线上获取数据盛博科技6APPN-002ISA(PC/104)总线信号时序简介IRQ3 to IRQ7 and IRQ9 to IRQ12 and IRQ14 to IRQ15Interrupt Requests 向系统微处理器发出信号 提示来自ISA板的请求 当IRQ 线由低向高跳变时产生中断请求 请求必须一直保持为高直到CPU通过其中断 服务程序确认了这个请求 请求有不同的优先权 来自IRQ9:IRQ12 而来自IRQ3:IRQ 7IRQ14 :IRQ15的请求优先被处理 的请求较后处理 IRQ7优先级最低IRQ9优先级最高-SMEMRSystem Memory Read 指令一个所选定的Memory设备将数据送到数据总线 该信号仅在对1M以内的Memory空间读时才有效 SMEMR来源于MEMR及低 于1兆的存储译码-SMEMWSystem Memory Write 指令将当前数据总线上的数据写入一个所选定的 Memory设备 该信号仅在对1M以内的Memory空间写时才有效 SMEMR来源 于MEMR及低于1兆的存储译码-MEMRMemory Read 指令将一个所选定的Memory设备数据读出送到数据总线 它在 整个Memory存储读周期中都有效-MEMWMemory Write 指令将当前数据总线上的数据存储到一个所选定的Memory设 备中 它在整个Memory存储写周期中都有效-REFRESHMemory Refresh 该信号为低时表明正在进行内存刷新操作OSCOscillator 是一个时间段为70毫微秒的时钟(14.31818 MHz) 该信号与系统时 钟不同步盛博科技7APPN-002ISA(PC/104)总线信号时序简介RESET DRVReset Drive在电源开启或系统复位时来复位或初始化系统逻辑 高电平有效TCTerminal Count 在DMA通道操作中当计数完成时产生的终端计数信号-MASTERMaster 和DRQ线一起获得ISA板上ISA总线的控制权 后 权 设备将MASTER信号拉低 在此状态下 使得其获得系统地址 当接收到一个DACK 数据和控制线的控制 在读/设备将在驱动地址和数据线之前等待一个时钟周期写命令之前等待两个时钟周期-MEM CS16Memory Chip Select 16 ISA板将该信号拉低以指示这是一个16位的Memory读 写操作 它由LA23:LA17地址线译码来驱动-I/O CS16I/O Chip Select 16 I/O设备将该信号拉低以指示这是一个16位的Memory读写操 作 它由SA15:SA0地址线译码来驱动-0WSZero Wait State 由一个总线从设备驱动使其拉低 状态即可完成一个总线周期 由地址译码产生 说明不插入任何额外等待 -OWS 完成一个无需等待的16位Memory周期-SBHESystem Byte High Enable 该信号为低时表明数据在数据总线高位部分传送(D15 至 D8)盛博科技8APPN-002ISA(PC/104)总线信号时序简介6.0 ISA总线时序图8位 I/O 总线周期BALE SA(15:0) -SBHE -IOR/W SD(7:0) (READ) SD(7:0) (WRITE) I/OCHRDY ________ __| |_________________________________________ _ ______________________________________________ __ _><______________________________________________><__ ______________ _______ |______________________________| _____________ -------------------------------------<_____________>__________________________________ ----------------<__________________________________>__________________ _ _ _ _ _ _ _ _ _ _ _ _ _________ |________________________|8 位 Memory 总线循环_____ ________| |______________________________________ _ ________________ ________________________________ LA(23:17) _><________________><________________________________ _______ ________________________________________ __ SA(19:0) _______><________________________________________><__ ______________ _______ -MEMR/W |______________________________| _____________ SD(7:0) -------------------------------------<_____________>(READ) __________________________________ SD(7:0) ----------------<__________________________________>(WRITE) __________________ _ _ _ _ _ _ _ _ _ _ _ _ _________ I/OCHRDY |________________________| BALE盛博科技916位I/O总线周期________BALE ______________| |_____________________________ _____________ __________________________________ __ SA(15:0) _____________><__________________________________><__ _________________ ___ -IOCS16 |_______________________________|_____________________ ______ -IOR/W |________________________|__________________SD(15:0) -----------------------------<__________________>---- (READ)________________________SD(15:0) -----------------------<________________________>---- (WRITE)_______________________ _ _ _ _ _ _ _ _ _ _ ______I/OCHRDY |___________________|16位Memory总线周期1个或多个等待状态______BALE _________________| |____________________________ ___ ________________________ ______________________ LA(23:17) ___><________________________><______________________ ________________ ________________________________ _ SA(19:0) ________________><________________________________><_ _______ ______________________ -MEMCS16 |______________________|________________________ ______ -MEMR/W |_____________________|_______________SD(15:0) --------------------------------<_______________>---- (READ)_____________________SD(15:0) --------------------------<_____________________>---- (WRITE)__________________________ _ _ _ _ _ _ _ _ __________ I/OCHRDY |_______________|6位Memory总线周期0等待状态______BALE _________________| |____________________________ ___ ________________________ ______________________ LA(23:17) ___><________________________><______________________ ________________ _________________________ ________ SA(19:0) ________________><_________________________><________ _______ ______________________ -MEMCS16 |______________________|_________________________ ______________________ -0WS |____|________________________ ________________ -MEMR/W |___________|______SD(15:0) --------------------------------<______>------------- (READ)____________SD(15:0) --------------------------<____________>------------- (WRITE)DMA读______________DRQ(n) __| |___________________________________ _______________ __________ -DACK(n) |__________________________|____________________________________AEN,BALE ________| |_______ _______________ ___________________________ _______ SA(15:0) _______________><___________________________><_______ -SBHE________________ ________________________ _________ SA(19:16) ________________><________________________><_________ LA(23:17)____________________ __________ -MEMR |_____________________|____________SD(15:0) -------------------------------<____________>-------- ______________________ ___________ -IOW |__________________|__________TC _______________________________| |__________ ________________________ _____________________ I/OCHRDY |______|DMA写______________DRQ(n) __| |___________________________________ _______________ __________ -DACK(n) |__________________________|____________________________________AEN,BALE ________| |_______ _______________ ___________________________ _______ SA(15:0) _______________><___________________________><_______ -SBHE________________ ________________________ _________ SA(19:16) ________________><________________________><_________ LA(23:17)____________________ __________ -IOR |_____________________|____________SD(15:0) -------------------------------<____________>-------- ______________________ ___________ -MEMW |__________________|__________TC _______________________________| |__________ ________________________ _____________________ I/OCHRDY |______|Bus Master周期___________________________________DRQ(n) __| |______________ _______________ __________ -DACK(n) |__________________________|__________________ _______ -MASTER |__________________________|__________________ _______ AEN ________| |__________________________| |_ _____________________________________________________ BALE ________| |_ ________________________ ___________ ______________ SA(19:0) ________________________><___________><_______________ -SBHE________________________ ___________ ______________ LA(23:17) ________________________><___________><___________________________________________ _________________ -IOR,-IOW |_____|-MEMR,-MEMW_____SD(15:0) -------------------------------<_____>---------------内存刷新周期_______________ _______________ -REFRESH |_____________________|_________________ ____________ ____________________ SA(9:0) _________________><____________><____________________ ______________________ ________________ -SMEMR |_____________|_________________________ _ _ _ _ ___________________ I/OCHRDY |_______|7.0 ISA信号用法图例I/O = 输入/输出I = 输入O = 输出- = 不需要的信号I/O出现在括号里表明这个信号是可选信号下表是ISA系统板上典型的信号使用情况Signal Name System Board Usage Signal Name System BoardUsageAEN O-MEM CS16 I/O BALE O-MEMR I/O CLK O-MEMW I/O -DACK O OSC O DRQ I-REFRESH I/O -IO CS16 I RESET DRV O -I/O CH CK I SA I/O I/O CH RDY I/O SD I/O -IOR I/O-SBHE I/O -IOW I/O-SMEMR I/O IRQ I-SMEMW I/O LA I/O TC I/O -MASTER I-0WS I下表是ISA扩展板上典型的信号使用的情况Signal Name ISA BusMasterISA 16-bitMem SlaveISA 16-bitI/O SlaveISA 8-bitMem SlaveISA 8-bitI/O SlaveISA DMADeviceAEN --I-I-BALE -I-(I)--CLK (I)(I)(I)(I)(I)(I) -DACK I----I DRQ O----O -IO CS16 I-O----I/O CH CK(O)(O)(O)(O)(O)(O) I/O CH DY I(O)(O)(O)(O)--IOR O-I-I I -IOW O-I-I I IRQ (O)(O)(O)(O)(O)(O) LA(23:17) O I-(I)---MASTER O------MEM CS16 I0-----MEMR O I-(I)---MEMW O I-(I)--OSC (I)(I)(I)(I)(I)(I) -REFRESH (O)I-I--RESET DRV I I I I I I SA(16:0) O I I I I-SA(19:17) -(I)-(I)--SD(7:0) I/O I/O I/O I/O I/O I/O SD(15:8) I/O I/O I/O--(I/O) -SBHE O I I----SMEMR ---I---SMEMW ---I--TC -----(I) -0WS -(O)-(O)(O)-8.0 ISA 连接引脚Signal Name Pin Pin Signal Name Ground B1A1-I/O CH CK RESET DRV B2A2SD7+5 V dc B3A3SD6IRQ 9B4A4SD5-5 V dc B5A5SD4DRQ2B6A6SD3-12 V dc B7A7SD2-0WS B8A8SD1+12 V dc B9A9SD0Ground B10A10I/O CH RDY -SMEMW B11A11AEN-SMEMR B12A12SA19-IOW B13A13SA18-IOR B14A14SA17-DACK3B15A15SA16DRQ3B16A16SA15-DACK1B17A17SA14DRQ1B18A18SA13-REFRESH B19A19SA12 CLK B20A20SA11IRQ7B21A21SA10IRQ6B22A22SA9IRQ5B23A23SA8IRQ4B24A24SA7IRQ3B25A25SA6-DACK2B26A26SA5TC B27A27SA4BALE B28A28SA3+5 V dc B29A29SA2OSC B30A30SA1Ground B31A31SA0Key Signal Name Pin Pin Signal Name -MEM CS16D1C1-SBHE-IO CS16D2C2LA23IRQ10D3C3LA22IRQ11D4C4LA21IRQ12D5C5LA20IRQ15D6C6LA19IRQ14D7C7LA18-DACK0D8C8LA17DRQ0D9C9-MEMR -DACK5D10C10-MEMWDRQ5D11C11SD08-DACK6D12C12SD09DRQ6D13C13SD10-DACK7D14C14SD11DRQ7D15C15SD12+5 V dc D16C16SD13-MASTER D17C17SD14Ground D18C18SD159.0 PC/104总线引脚引脚信号名用途In/OutA1 -IOCHCK Bus NMI input INA2 SD7 Data Bit 7 I/OA3 SD6 Data Bit 6 I/OA4 SD5 Data Bit 5 I/OA5 SD4 Data Bit 4 I/OA6 SD3 Data Bit 3 I/OA7 SD2 Data Bit 2 I/OA8 SD1 Data Bit 1 I/OA9 SD0 Data Bit 0 I/OA10 IOCHRDY Processor Ready Ctrl INEnable I/O A11 AEN AddressA12 SA19 Address Bit 19 I/OA13 SA18 Address Bit 18 I/OA14 SA17 Address Bit 17 I/OA15 SA16 Address Bit 16 I/OA16 SA15 Address Bit 15 I/OA17 SA14 Address Bit 14 I/OA18 SA13 Address Bit 13 I/OA19 SA12 Address Bit 12 I/OA20 SA11 Address Bit 11 I/OA21 SA10 Address Bit 10 I/OA22 SA9 Address Bit 9 I/OA23 SA8 Address Bit 8 I/OA24 SA7 Address Bit 7 I/OA25 SA6 Address Bit 6 I/OA26 SA5 Address Bit 5 I/OA27 SA4 Address Bit 4 I/OA28 SA3 Address Bit 3 I/OA29 SA2 Address Bit 2 I/OA30 SA1 Address Bit 1 I/OA31 SA0 Address Bit 0 I/OA32 GND Ground N/APC/104总线接口P1A引脚信号名用途In/OutB1 GND Ground N/AReset OUT B2 RESET SystemPower N/A B3 +5V +5vB4 IRQ9 Int Request 9 INPower N/A B5 -5V -5vB6 DRQ2 DMA Request 2 INPower N/A B7 -12V -12vB8 ENDXFR Zero wait state INPower N/A B9 +12V +12vPin N/A B10 N/A KeyB11 -SMEMW Mem Wrt, Io 1M I/OB12 -SMEMR Mem Rd, Io 1M I/OWrite I/O B13 -IOW I/Oread I/O B14 -IOR I/OB15 -DACK3 DMA Ack 3 OUTB16 DRQ3 DMA request 3 INB17 -DACK1 DMA Ack 1 OUTB18 DRQ1 DMA request 1 INB19 -REFRESH MemoryRefresh I/OClock OUTB20 SYSCLK SysB21 IRQ7 Int Request 7 INB22 IRQ6 Int Request 6 INB23 IRQ5 Int Request 5 INB24 IRQ4 Int Request 4 INB25 IRQ3 Int Request 3 INB26 -DACK2 DMA Ack 2 OUTCount OUT B27 T/C TerminalB28 BALE Addrs Latch En OUTPower N/A B29 +5V +5vClk OUT B30 OSC 14.3MHzB31 GND Ground N/A B32 GND Ground N/APC/104总线接口P1B引脚信号名用途In/OutC0 GND Ground N/A C1 SBHE Bus High Enable I/OC2 LA23 Address bit 23 I/OC3 LA22 Address bit 22 I/OC4 LA21 Address bit 21 I/OC5 LA20 Address bit 20 I/OC6 LA19 Address bit 19 I/OC7 LA18 Address bit 18 I/OC8 LA17 Address bit 17 I/ORead I/O C9 -MEMR MemoryWrite I/OC10 -MEMW MemoryC11 SD8 Date Bit 8 I/OC12 SD9 Date Bit 9 I/OC13 SD10 Date Bit 10 I/OC14 SD11 Date Bit 11 I/OC15 SD12 Date Bit 12 I/OC16 SD13 Date Bit 13 I/OC17 SD14 Date Bit 14 I/OC18 SD15 Date Bit 15 I/OPin N/AC19 Key KeyPC/104总线接口P2C引脚信号名用途In/OutD0 GND Ground N/A D1 -MEMCS16 16-bit Mem Access IND2 -IOCS16 16-bit I/O Access IND3 IRQ10 Interrupt Request 10 IND4 IRQ11 Interrupt Request 11 IND5 **D6 IRQ15 Interrupt Request 15 IND7 IRQ14 Interrupt Request 14 IND8 -DACK0 DMA Acknowledge 0 OUTD9 DRQ0 DMA Request 0 IND10 -DACK5 DMA Acknowledge 5 OUTD11 DRQ5 DMA Request 5 IND12 -DACK6 DMA Acknowledge 6 OUTD13 DRQ6 DMA Request 6 IND14 -DACK7 DMA Acknowledge 7 OUTD15 DRQ7 DMA Request 7 INPower N/A D16 +5V +5VD17 -MASTER Bus Master Assert IND18 GND Ground N/A D19 GND Ground N/APC/104总线接口P2D。
ISA总线接口ISA总线又称AT总线,是在PC/AT微机上所配备的扩展系统总线。
PC/AT的扩展总线系统设计的最大速度为...(Industry Standard Architecture),即ISA总线标准。
EISA总线是由COMPAQ等兼容机厂商联合于1988年9月推出的一种与IBM的MCA总线抗衡的增强型总线。
EISA总线是对ISA总线的扩展,除了保留符合ISA标准的98个引脚外,又增加了90个引脚,这90个引脚包括16条数据线、27条地址线、12条控制线、26条电源线和地线、5条保留线和4条系统制造商专用线。
EISA总线本质上是32位的ISA总线,插槽与所有ISA卡完全兼容。
与MCA类似的是,它也可以允许通过软件来配置EISA卡PCI总线接口PCI总线的英文全称为Peripheral Component Interconnect。
即外部设备互联总线,是于1993年推出的PC局部总线标准。
PCI总线的主要特点是传输速度高,目前可实现66M 的工作频率,在64位总线宽度下可达到突发(Burst)传输速率533MB/s。
可以满足大吞吐量的外设的需求。
VESA(video electronics standard association)总线标准是1992年由60家附件卡制造商联合推出的一种局部总线,简称为VL(VESA local bus)总线。
它的推出为微机系统总线体系结构的革新奠定了基础。
VESA总线主要目的是用于视频插卡,以提高视频性能。
VESA总线系统考虑到CPU与主存和Cache 的直接相连,通常把这部分总线称为CPU总线或主总线,其他设备通过VL总线与CPU总线相连,所以VL总线被称为局部总线。
并行外部设备总线SCSI第6章系统总线接口本章介绍了微机主板的各种标准系统总线和通用,专用接口的技术规格特点,也介绍了它们的使用方法等. 6.1 主板上的系统总线6.2 系统I/O总线的标准6.3 系统设备接口退出6.1 主板上的系统总线6.1.1 总线原理主板上的系统总线是传输数据的通道,就物理特性而言就是一些并行的印刷电路导线,通常根据传送信号的不同将它们分别称为地址(address bus),数据(data bus)和控制(Control bus)三大总线.在数字电路中,逻辑信号1,0是采用电平的高低来表示的,假如高电平表示1,低电平就表示0,由此抽象为二进制数的1和0,并以数位二进制数组成各种代码,来表示各种信息,如用7位二进制数的ASCII码表示英文字符.系统处理各种信息,实际上就是处理一组组二进制数,进一步说,就是在总线上不断传送高,低电平信号.由于元器件性能所限,电路的工作速度也是有限的,即不可能在一秒钟内开关任意多次.我们把系统总线电路每秒钟电平转换的最高次数,称为总线频率f,单位为MHz.频率f的倒数1/f称为总线时钟周期.6.1.2 总线分类总线大致可以分为四类:1.片内总线片内总线也称为CPU总线.它位于CPU处理器内部,是CPU内部各功能单元之间的连线,片内总线通过CPU 的引脚延伸到外部与系统相连.2.片间总线片间总线也称为局部总线(Local BUS).它是主板上CPU与其它一些部件间直接连接的总线.3.系统总线:系统总线也称为系统输入输出总线(System I/O Bus).它是系统各个部件连接的主要通道,它还具有不同标准的总线扩展插槽对外部开放,以便各种系统功能扩展卡插入相应的总线插槽与系统连接.4.外部总线外部总线也称为通信总线.它是电脑与电脑之间的数据通信的连线,如网络线,电话线等.外部总线通常是借用其它电子工业已有的标准,如RS-232C,IE1364标准等.6.1.3 总线构成这里主要介绍的是系统总线,即主板的系统I/O总线和总线扩展插槽.系统I/O总线是数据总线,地址总线和控制总线的总称.数据总线传送的是数据信号,可双向传送.它的线数即总线宽度取决于系统采用的CPU的字长指标.系统总线的宽度是指其数据线的位数.地址总线传送的是内存(或I/O接口)的地址信号,单向传送.它的线数与系统采用的CPU的地址线宽度一致,它决定了CPU直接寻址的内存容量.控制总线传送的是CPU和其它控制芯片发出的各种控制信号,如:读/写周期W/R,指令/代码传送D/C,存储器或IO口访问M/IO和系统复位Reset等.系统中的各个局部电路均需通过这三大总线互相连接,实现了全系统电路的互连.在主板上,系统I/O总线还连接到一些特定的插槽上去对外开放,以便于外部的各种扩展电路板连入系统.这些插座被称为系统I/O总线扩展插槽(System Input/Output Bus Expanded Slot).系统I/O总线的示意图如图6-1.图6-1 微机的系统I/O总线6.2 系统I/O总线的标准PC机主板上采用最多的系统I/O总线标准有ISA,VESA,PCI和AGP等,目前仍保留着ISA,但主要是使用PCI和AGP.主板上的系统总线插槽如图6-2所示.图6-2 主板上的系统I/O总线插槽6.2.1 以往的总线标准1.PC总线和ISA总线PC总线最初用于IBM PC/XT机主板,并在以后的PC/AT和各种286,386兼容机主板上继续使用,目的是便于保留老的PC扩展卡.在后来制定的ISA总线标准中被称为8位ISA总线,目前已被淘汰.PC总线是配合Intel 8088处理器的,因此是8位总线,具有8位数据线和20位地址线,直接内存寻址能力为220即1MB.它的扩展插槽是黑色的,有62个触点,分列两边,每边31个.PC总线扩展插槽的引脚配置如图6-3所示.图6-3 PC总线扩展插槽的引脚配置ISA总线标准来源于IBM PC/AT机主板使用的系统I/O总线和扩展插槽,所以也称为AT总线(AT Bus),87年成为国际通用总线标准ISA(Industry Standard Architecture)即工业标准结构总线.ISA是针对Intel 80286 CPU设计的,因此是16位总线,数据线16位和地址线24位,即直接内存寻址为16MB.它的工作时钟是8.33MHz,数据传输率为8.33MB/S.16位ISA总线是在8位ISA总线插槽的沿伸方向上增加了一个双排共36触点的插槽,新增的插槽引脚把8位数据和20位地址扩展成16位数据线和24位地址线.因此16位ISA插槽同8位ISA插槽保持了互换性,即16位ISA槽也可以使用8位ISA卡.低速ISA标准与高速的32位386,486和Pentium CPU形成了一定的矛盾,但为了允许保留使用老的ISA 卡,主板仍保留至少一个ISA插槽.ISA总线扩展插槽的引脚配置如图6-4所示,插槽的触点信号定义如表6-1.图6-4 ISA总线扩展插槽表6-1 ISA总线插槽的信号定义2.MCA和EISA总线这两种总线由于特定的原因,在PC机上很少采用.MCA(Micro Channel Architecture)即微通道结构总线来源于IBM PS/2机,是为32位的Intel 80386 CPU设计的.MCA是32位总线,数据线32位,地址线32位,直接内存寻址为4GB.它工作时钟为33MHz,数据传输率提高到20MB/S.它可以接16个外设.由于MCA技术不开放,且与ISA不兼容,以后在微机上很少使用.EISA(Extend Industry Standard Architecture)即扩展ISA总线,它是Compaq等兼容机厂商为对抗IBM的32位MCA总线和保持对ISA总线的兼容性而推出的.EISA支持386CPU,是32位总线.它的32位地址也可直接寻址4GB内存.EISA的工作时钟与ISA一样是8.33MHz,数据传输率是33MB/S.EISA的插槽外形与ISA一样,但在槽内的底部又增加了一排触点,用以扩充32位数据,32位地址和控制信号等.这样EISA既可用于32位扩展卡,又可兼容老的8位,16位ISA扩展卡.在EISA插槽上,EISA卡可以更深地插入,以便与下一排触点连接,取得32位支持.EISA的结构用当时的工艺技术制做是比较复杂的,因而成本很高,通常用于服务器和工作站.EISA总线扩展插槽的引脚配置如图6-5所示.图6-5 EISA总线扩展插槽3.VESA总线VESA(Video Electronic Standard Association)总线是以视频电子标准协会制定而得名,也叫VL BUS(VESA Local Bus)即VESA局部总线.它是专门为Intel 80486 CPU系统的高速视频信号处理而设计的.VESA是32位高速总线,也允许扩展到64位.它的工作时钟为33MHz,最大允许到66MHz,数据传输率高达133MB/S.VESA是在ISA总线的黑色插槽的延伸方向上增加了一个新的浅色插槽,它有双排共116个触点,单独提供32位数据线和32位地址线.因此32位的VESA总线槽同16位的ISA总线槽保持了互换性,即在VESA 扩展槽上也可以插ISA扩展卡,只是VESA扩展卡比较长.只有使用VL BUS扩展卡才能发挥它的32位高速总线的优势.最典型的VESA显示卡是ET-4000 VGA 和Trident 9440 VL-BUS Graphics Adaptor等.VL BUS还允许在32位插槽上再延长一个50引脚的插槽,从而扩展为64位的VESA总线.32位的VESA 总线扩展插槽的引脚配置如图6-6所示.图6-6 VESA总线扩展插槽6.2.2 目前主流总线标准6.2.2.1 PCI总线PCI(Peripheral Component Interconnect)即外部设备互联总线,顾名思义,它的初衷就是使外设主芯片能快捷地连入系统.PCI是专门为Intel Pentium处理器设计的,它也是一种高性能的PC机局部总线(Local Bus).PCI是32位总线,工作时钟是33MHz,数据传输率为133MB/S.PCI的高速性能使之能支持各种高速设备,特别是3D图形加速卡.目前PCI扩展卡已成为微机高速扩展卡的主流,包括显示卡,声卡,Modem卡,网卡和视频卡等.目前在一些高档机上也有64位PCI总线,工作时钟提高到66MHz,数据传输率可达528MB/S.PCI还有如下优点:1.PCI支持PnP(Plug and Play)即插即用功能.2.PCI总线支持猝发数据传送方式,大大提高了总线的数据传输率.3.PCI支持总线主控和同步操作.4.PCI采用多路复用技术,可以在有限的空间里加大总线宽度,提高总线利用率.5.PCI总线通过局部总线控制器与CPU相连,因此PCI可以不依赖于CPU的主频和种类,接入的PCI设备也不影响CPU.6.主板的芯片组内含PCI桥(PCI Bridage),通过这个缓冲控制器,可以实现6个PCI扩展槽同时工作.PCI 是白色插槽独立结构,与ISA扩展卡不兼容.它的插槽每边62线,共124线.64位的PCI总线扩展槽是在32位PCI插槽上延长,每边增加32线而成.PCI总线插槽分为5V供电电源和3.3V供电电源两种,为避免这两种不同的扩展卡插错,3.3V的插槽的定位挡片Key的位置改设在12,13引脚处.电源为3.3V和5V的32位PCI总线扩展插槽的引脚配置如图6-7所示.插槽的触点信号定义如表6-2.图6-7 5V和3.3V电源的PCI扩展槽的引脚配置6.2.2.2 AGP总线AGP(Accelerate Graphic Port)即加速图形接口,它是Intel专门为Pentium Ⅱ系统的图形控制器设计的系统总线结构,它十分默契地配合着Pentium Ⅱ的高速浮点运算能力和MMX技术,目前几乎垄断了3D 图形加速卡的接口.AGP是32位数据总线,工作时钟是66MHz,数据传输率为264MB/S,是PCI的二倍.第二代增强AGP 2×的工作时钟是133MHz,数据传输率达到532MB/S,是PCI的四倍.目前奔腾III主板已采用了AGP 4×,数据宽度扩展到64位,工作时钟133MHz,数据传输率高达1GB/S.AGP总线将显示卡与主板的芯片组直接相连,进行点对点传输,所以它不是那种通用性的总线,它只用于支持AGP图形加速卡.Intel公司推出了支持AGP的440LX和BX等芯片组.Pentium II CPU,440BX和AGP的系统结构如图6-8.图6-8Pentium Ⅱ,440BX和AGP系统结构AGP加速图形接口在PC图形控制器和系统内存之间提供了高速通道,可使图形控制器直接从主内存执行纹理映射,而不必局限于少量的显示缓存中.AGP还有助于加速从CPU到图形控制器的解码视频流,不需要将预取的纹理缓存到显存中,这使得3D程序运行更快.AGP插槽完全独立于原系统总线,且与以前的图形控制芯片,PCI控制芯片和CPU不兼容.AGP插槽为棕色,124个触点分列两边和上下两排,结构较复杂.AGP扩展插槽的引脚配置如图6-9所示.Intel还推出了一种AGP Pro插槽,目的是解决显示卡的电源供应和散热问题.它比原来的AGP插槽加长,并且要占用与其相邻的PCI插槽.图6-9 AGP扩展插槽6.3 系统设备接口6.3.1 主板上的设备接口主机的重要性前面已经充分说明了,但是作为一个有效的计算机系统,外部设备也是不可或缺的.如果没有最基本的外存设备和输入输出设备,计算机主机系统就无法运行和与用户交互.微型计算机的外部设备主要包括外存设备和输入输出设备(I/O设备),常用的外部存储器有软盘和软盘驱动器,硬盘,光盘和光盘驱动器,磁带和磁带机等,常用的输入设备有键盘,鼠标,扫描仪,麦克风,数码相机,摄像机和光笔等,常用的输出设备有显示器,打印机,功放扬声器和绘图仪等.在安装新硬件时,常常要为其配置I/O口地址(I/O Port Address),端口地址是CPU访问,区别各个不同硬件设备的标志,任何设备占用的I/O口地址都不相同,而一个设备也可能占用几个连续或不连续的I/O口地址.比如声卡就可能占用0220-022FH这16个连续的I/O口地址.如果几个硬件分配了相同的I/O口地址,CPU就无法正确访问它们,这些硬件也就无法正常工作,这种故障叫做I/O口地址冲突.由于外部设备各自的特点,主机与外设间交换的信息载体形式(模拟,数字,电压,电流),数据传送的速率和方式(串行,并行)等都会有所不同,因此必须在它们之间建立多种数据转换和缓冲的界面,这就是各种规格的输入输出接口(Input/Output Interface Port),简称I/O接口.微机采用的通信接口标准有计算机专用的也有电器设备领域通用的,有某一类外设专用的也有不同外部设备通用的.专用接口如硬盘接口IDE,键盘鼠标接口PS/2和显示器接口(VGA口)等.通用I/O通信接口按其数据传送的形式不同可以分为串行接口和并行接口两大类.串行接口是用一条线路将二进制数据按顺序一位位地传送,每个时钟传送一位,至少8个时钟才能传送1字节二进制数据.它的特点是线路简单但速度较慢,适合于慢速远距离的数据传送.例如RS-232C串行接口就用于鼠标器,Modem和终端等.并行接口是用8条线路同时分别传送1字节二进制数据的8位,1个时钟就可以传送1字节二进制数据.它的特点是线路复杂(8条数据线)但速度较快,适合于快速近距离的数据传送.例如通用并行接口就用于打印机,扫描仪等外设.软盘,硬盘和光盘等也都采用专门的并行接口.在早期的PC机上,各个I/O接口都集中做在一块"I/O多功能卡"上,包括1个软盘口,1或2个硬盘口,2个通用串口,1个通用并口和1个游戏棒口,将此卡插入ISA槽便使系统增加了各个接口的功能.到了586机,就把接口的控制芯片集成到主板上,进一步地又把接口控制功能集成到南桥芯片中,把各个接口插座直接做到主板后沿,形成标准ATX主板.这样就简化了结构,提高了接口性能和可靠性,还降低了成本.6.3.2 硬件I/O接口的系统资源1.硬件设备的I/O端口地址CPU与外设之间的访问要通过硬件的I/O接口,相互交换的数据要在I/O接口电路的数据缓冲寄存器中暂存,CPU控制硬件工作方式和速度的命令也要存入I/O接口电路的控制寄存器,这些寄存器统称为I/O端口.CPU正是通过访问硬件设备的各个I/O端口来控制该设备工作的,因此所有设备的I/O端口寄存器都必须统一编码,并且不能重复.系统会自动(或用户手工)为每个设备的各个端口分配相应的I/O口地址.下面是在Windows 98系统工具的"系统信息"窗口中摘录的某一台微机从0000-04D1H段的I/O口地址的硬件占用情况:x0000-xFFFF……(也可以见:控制面板,系统,设备管理,计算机属性)要求熟悉几个基本硬件的I/O口地址:串口1(COM1)3F8-3FF,串口2(COM2)2F8-2FF,并口1(LPT1)即打印机378-37B,声卡的游戏棒,声音SB16,MIDI(MPU401)和声音WSS,显示卡,标准IDE硬盘控制器170-177和370-377,标准软盘控制器3F0-3F5.2.硬件设备的IRQ号一些硬件设备除了占用I/O端口地址外,还具有向CPU申请硬件中断的能力,因此还占有中断请求(IRQ)号的系统资源.PC系统的IRQ中断号共有16个(IRQ 0-15),可以分配给16个设备使用,每个设备单独占用一个IRQ号.当某个设备向CPU发出中断申请,CPU可以根据其IRQ号加以响应,运行相应的中断处理程序.下面是在Windows 98系统工具的"系统信息"窗口中摘录的某一台微机的16个IRQ中断申请号的分配情况:IRQ0-15(也可以见:控制面板,系统,设备管理,计算机属性)3.硬件设备的DMA通道号DMA(Direct Memory Access)是某些数据量大的硬件设备与主机快速交换数据的特殊工作方式,如软盘,硬盘,声卡等.在DMA控制器的控制下,设备与内存直接交换数据,并不占用CPU时间,CPU再与内存交换数据.因此DMA方式比CPU直接访问速度较慢的设备的方式要高效得多.PC系统的DMA通道共有8个(DMA0-7),DMA通道号不一定被一个设备独占,几个硬件设备可以共用一个DMA通道,只要它们不是同时使用它.下面是在Windows 98系统工具的"系统信息"窗口中摘录的某一台微机的8个DMA通道号的分配情况:DMA0-7(也可以见:控制面板,系统,设备管理,计算机属性)6.3.3 标准串行接口和并行接口1.串行接口PC机通常配置有两个RS-232C异步串行通信接口和一个并行接口.串口一的逻辑名为COM1/COM3,9针D型插座,通常用来接鼠标.串口二的逻辑名为COM2/COM4,25针D型插座,连接Modem,数码相机和磁卡机等外设.串行接口的9针和25针插座针孔配置见图6-10,各针孔的信号定义如表6-3.图6-10 串口插座针孔配置2.并行接口标准并行接口的逻辑名为LPT1,也叫打印机接口(Printer),是一个25针的D型插座,用来连接打印机和扫描仪等外设.并行接口插座针孔配置见图6-11.各针孔的信号定义如表6-4.图6-11 并口的引脚配置在BIOS Setup中,并行接口有Normal,EPP和ECP三种模式供选择.Normal接口是一种低速的并口模式,也叫SPP(Singl Parallel Port)即单向并口,它的数据传输率为40Kb/S,适合将结果输出到普通打印机上,所有并口外设都支持此种模式.EPP接口(Enhanced Parallel Port)即增强并行接口,在外部设备间进行双向通信,数据传输率在400Kb/S 以上.目前多数打印机和扫描仪都支持EPP模式.ECP接口(Extended Capabilities Port)即扩展并行接口,具有和EPP一样高的速率和双向通信能力,但在多任务环境下,它能使用直接存储器访问方式(DMA),所需缓冲区也不大.但ECP模式容易引起冲突.许多新型的并行设备,如激光打印机,扫描仪等要求EPP,ECP或EPP+ECP模式.因此在CMOS Setup中应根据设备的要求适当选择并口模式.6.3.4 新型串口USBUSB(Universal Serial Bus)是通用串行总线,是一种新型高速串行接口.USB仅用一个4针方形标准插座,采用菊花链的形式就可以把许多外设逐一连接起来,并且不会损失信号带宽.USB的推出使得接口性能大大提高,主机与外设的连接变得非常简单和有效,它正在逐步取代PC机上原有的串行,并行等各种接口.目前USB能支持的外设有扫描仪,数码相机,打印机,显示器,键盘,鼠标等.要使用USB设备,就要求主板和操作系统都支持USB接口.Pentium以上的主板一般都采用了支持USB 的芯片组和BIOS程序,主板上也都有USB插座.Windows 97,98和NT4.0等都支持USB接口.如果使用早期的Windows 95和NT 3.0等,就需要安装USB接口驱动程序.最后还需在安装了USB设备后安装相应的设备驱动程序.目前市场上有USB扩展卡,将其插到PCI插槽上,引导Windows 98后就可以方便地为系统增加两个USB.Pentium MMX主板上一般有一个10针的双USB接口,需要用USB转接电缆将两个USB插座引出. 与以往的接口相比,USB有许多优点:B的12Mb/s的数据传输率比以前的串口快100倍,比并口快10倍,即使多个设备接在一个USB口上,也能获得满意的操作速度.B接口允许带电"热插拔"设备,无须关机.而且USB接口控制器可以立即感知拔去或插上的设备,直接驱动,无须重新启动系统.因此只有USB设备才算是真正意义的即插即用设备.B接口设备可采用"级联"方式连接,即每个接入设备也提供一个USB插座供下一个设备连接.一个USB控制器可以支持最多127个设备,每个设备的连接电缆可长达5米.B接口可以向外部提供+5V,0.5A电源,这使得一些小功率的外设可以省去自身的电源电路.B接口简单可靠,4个连线分别是:+5V电源,信号1(-),信号2(+)和接地GND.6.3.5 新型串口IEEE 1394IEEE 1349是一种新型高效的串行接口,它与USB有不少相似之处.它使用六芯电缆,包括两对双绞线信号线和两根电源线.它的最大传输电流可达1.5A,传输数据的直流电压可以在8到40V之间变换.1394与USB一样,也可以"热插拔",是真正的即插即用接口.它也向外设提供电源,也采用串行链接方式,可以连接多台设备.1394与USB的主要差别在于它无须Hub就可以连接63台设备.1394还规定了两种传输模式,一种是传输速率为12.5,25或50Mb/S的底版模式(Backplane Mode),另一种是传输速率为100,200或400Mb/S的电缆模式(Cable Mode).在400Mb/S时只要用50%的带宽就可以支持高质量的数字化视频信息流.IEEE1394的传输速率远高于USB,它支持的产品范围也涵盖了USB,所以IEEE1394应该比USB更具前景.但是由于IEEE1394的技术要求和生产成本较高,目前价格昂贵,还很少被家用和商用PC采用.习题1.微机系统有哪几类总线,总线的三个组成部分是什么2.掌握ISA,VESA,PCI和AGP总线的规格和特点.3.掌握串口,并口的规格,特点和系统资源.4.掌握USB接口的规格和特点.。