输电线路杆塔接地分析
- 格式:docx
- 大小:53.67 KB
- 文档页数:8
输电线路杆塔接地问题分析及对策摘要:本文首先简要分析了输电线路杆塔接地存在的问题,研究了输电线路杆塔接地问题的对策,以供参考。
关键词:输电线路;杆塔接地;对策分析引言:输电线路实际运行中,经常会出现“雷击跳闸”的情况,给输电线路整体的稳定安全运行造成一定不良影响,杆塔接地装置的建设能够在一定程度上加强输电线路对于雷击的抵抗能力。
但针对输电线路杆塔进行接地处理时,通常存在接地网设计问题、接地体敷设施工未达要求等不足,导致杆塔接地较大的电阻,运行维护需要投入高昂成本,对其实际的运行效益造成一定影响。
因此,应做好杆塔接地相关问题的分析工作。
一、输电线路杆塔接地问题分析(一)接地网设计问题设计输电线路杆塔接地时,工作人员没有对接地所采用分段形式和工程施工地点电阻率加以充分考虑,导致接地电阻和接地体面积时常发生不对应的情况,一定程度上加大了后续接地体实际运行中电阻较高情况的出现几率。
(二)接地体敷设施工未达要求输电线路具体施工中,所设计的接地形式和具体情况差别相对偏大,需要在具体施工中根据工程施工的实际情况加以调整,然而部分工作人员责任意识不足,相关工程监理单位没有做好自身本职工作,工程施工中出现回填土和工程要求不相契合,接地引下线和接地体及其接地体相互之间的焊接和工程设计规定不相契合的情况,导致接地电阻值相对偏大[1]。
另外,由于施工不规范,破坏接地引下线镀锌层,导致接地引下线腐蚀,运行寿命变短。
(三)接地引下线与接地体腐蚀因为杆塔接地装置所处的运行环境通常较为恶劣,长期运行中极为容易出现空气腐蚀、土壤腐蚀、电化学腐蚀等接地装置腐蚀情况,加之一些接地体所选用的工程材料质量没有达到工程施工标准,或是内部存在部分金属元素,而土壤是由固、液、气三相物质构成的电解质,空气中的氧气扩散到土壤中,土壤中的部分氧气溶解在水中,与接地引下线构成一个氧化还原电池,给接地装置的导电性造成一定不良影响。
二、输电线路杆塔接地问题的对策(一)优化接地设计具体设计输电线路杆塔接地装置时,工作人员需要根据工程施工的情况,将减小土地使用面积和高土坡电阻率,针对接地装置形式加以科学选用。
输电线路接地电阻问题和降阻措施浅析架空输电线路杆塔接地对电力系统的安全稳定运行至关重要,降低杆塔接地电阻是提高线路耐雷水平,减少线路雷击跳闸率的主要措施。
由于杆塔接地电阻高而产生的雷击闪络事故相当多。
由于在大部分位于高原山区,工程地质条件复杂,多数杆塔的接地电阻过高,且锈蚀严重,造成线路耐雷水平低,经常发生雷电绕击、反击,使线路跳闸,进而影响电网的安全稳定运行。
本文结合某高原山区220kV输电线路工程杆塔接地施工为例,论述了工程施工过程中接地电阻偏高的影响因素,经采用多种降阻方法,使之达到合格范围,对防止雷击跳闸、保证电网安全意义重大,以期为类似工程提供参考。
标签:电力系统;输电线路;接地电阻;影响因素;降阻方法1前言随着我国超高压、特高压电网的快速发展,输电线路防雷接地的重要性日益突出,但是高土壤电阻率地区的接地问题多年来一直没有彻底解决。
一方面,随着电力系统的发展,由雷击输电线路引起的事故时有发生,尤其在雷电活动频繁、土壤电阻率高和地形复杂的高原山区,雷击输电线路而引起的事故率更高。
另一方面,随着电力系统容量的迅速增加,输电线路发生单相接地故障时的短路电流也越来越大,从而流经地线的短路电流也越来越大,为了满足地线热稳定的需要,就要采用单位长度电阻较小的地线,从而导致地线的截面过大。
特别是随着OPGW复合光缆在电力系统中的广泛使用,这一问题越来越突出。
特别是在我国西北地区,气候干燥,降水稀少,输电线路路径又大多选择在高寒山区,工程区出露基岩类型较多,而位于山区的送电线路,由于土壤电阻率高、地形、地势复杂,交通不便施工难度大,杆塔接地电阻普遍偏高。
因此,如何有效地解决高原山区接地电阻超标的问题,降低高海拔山区复杂地形条件下输电线路接地电阻接地电阻是电网工程设计、施工、运行、验收共同面临的问题,降低杆塔接地装置的接地电阻具有非常重要的现实意义。
2 影响接地电阻的主要因素2.1 地质条件因素输电线路所处的地质条件对接地电阻影响较大,通过对不同地质条件下输电线路接地电阻大小的研究,主要表现在一下三个结论:①土壤电阻率和输电线路的杆塔接地电阻是正比例关系,所以土壤电阻率偏高是导致杆塔接地电阻超标的一个主要原因。
35kV输电线路杆塔接地存在的问题及改造措施的探讨关键词:35kv输电线路杆塔接地问题改造措施对于输电线路而言,杆塔接地的核心价值在于:当雷电击中避雷线或杆塔的过程当中,雷电流能够经由杆塔、接地网流入大地,避免电力线路受到雷击作用力的影响,从而保障整个电力线路运行的安全性与可靠性。
从这一角度上来说,接地网设计质量的水平高低会直接对整个电力线路的防雷效果产生至关重要的影响。
结合相关实践工作经验来看,大量的输电线路都曾经出现过雷电绕击、反击、以及跳闸等方面的安全事故,由此所引发的经济性损失。
人身损失都是不可预估的。
而产生以上问题的最根本原因就在于:接地电阻过大,接地网设计不够合理。
从这一角度上来说,对35kv输电线路而言,研究其杆塔接地存在的主要问题,探究相应的改造措施是至关重要的。
本文即针对以上相关问题作详细分析与说明。
1 35kv输电线路杆塔接地存在的问题分析1.1 接地网设计存在一定的不合理之处。
杆塔线路接地网设计不合理主要体现在:二十世纪八九十年代设计投运的35kv输电线路有很多目前仍在使用,当时我国接地系统设计及建设标准偏低,接地网大多利用扁钢作为接地体材料,不耐腐蚀,运行时间长后,造成接地电阻过大,引起接地电阻不符合要求。
1.2 施工达不到工程要求。
接地网施工作业属于隐蔽工程,施工质量极易达不到工程要求。
高压输电线路施工线长面广,各处土壤、地质环境又不相同,加上施工人员责任心不强,监督不到位,造成接地体埋深不够,有的甚至部分裸露;回填土未达要求,使得接地电阻过大,腐蚀严重,有的甚至断开,不能很好起到泄流作用。
1.3 接地网腐蚀严重。
接地网由于常年埋于地下,极易发生腐蚀,造成接地电阻增大。
通常接地网呈现局部腐蚀状态,碳钢材料变脆、起层、松散,甚至会出现多处断裂,特别是埋设在酸碱性较强土壤中的接地体,腐蚀更是严重。
在开挖检查中发现所有被锈蚀的接地网,其锈蚀最严重的部位是在接地引下线、垂直接地体入土处至水平接地体弯曲处,有的接地引下线竟被锈断。
输电线路的接地装置存在的问题分析及对策
架空输电线路的杆塔接地,对电力线路的安全运行至关重要,降低接地电阻,减少雷击率的主要措施。
由于杆塔接地电阻高而产生的雷击闪络事故相当多,再加上有些线路地质较差,许多接地电阻不合格。
影响了电网安全稳定运行。
因此,降低接地电阻,对防止雷击,保证电网安全运行是十分重要。
.
一、杆塔接地电阻超标
输电线路接地装置存在问题最多的是电阻超标,特殊地段又是雷活动频繁的山区。
山区地势复杂,多是岩石,土壤电阻率较高,接地装置施工困难。
500kV线路接地电阻超标的原因有以下几点。
1、土壤电阻率高,地质复杂,大多是岩石地区,少见土。
2、由于塔基地质复杂,施工难度高,致使接地装置先天性留下隐患。
3、接地体的埋深浅,外力破坏,雨水冲刷。
4、接地引下线和接地体腐蚀。
因此,对输电线路的杆塔接地加强维护,发现问题,及时整改,对输电线路的接地装置一般采取下面措施进行维护:
1、定期对杆塔接地引下线进行巡视检查,看接地引下线有无被盗和断开现象,检查接地引下线和连接处是否锈蚀。
2、每年要全面检查杆塔的接地电阻值,如发现接地电阻超标要进行改造。
3、对杆塔的接地电阻装置要周期的进行开挖检查,检查接地体的锈
蚀情况。
4、定期检查接地螺栓是否生锈,与接地体的连接是否完好,螺丝是否松动,保证接地线有可靠的接触。
总体来说,我们对输电线路杆塔接地装置应定期检查维护,把腐蚀严重、偷盗、和外力破坏的及时处理。
以保证输电线路安全稳定运行。
输电铁塔接地阻值报告1. 引言输电铁塔是电力系统中的重要组成部分,对于确保电力传输的安全性和稳定性起着关键的作用。
为了保证输电铁塔的正常运行,接地系统是必不可少的。
接地系统的一个重要参数是接地阻值,它反映了接地系统对于电流的导通能力。
本报告旨在分析输电铁塔接地阻值的测量方法和相关因素,以及提出相应的改进措施。
2. 接地阻值测量方法2.1 直接测量法直接测量法是一种常用的测量接地阻值的方法。
具体步骤如下:1.准备测量仪器:包括接地电阻测量仪和测量线缆等设备。
2.在需要测量接地阻值的铁塔附近选择合适的测量点。
3.使用测量线缆将接地电阻测量仪与铁塔接地系统连接。
4.打开接地电阻测量仪,按照其说明书进行操作,进行测量。
5.记录测量结果,并进行数据分析。
2.2 等效电路法等效电路法是另一种常用的测量接地阻值的方法。
它将接地系统等效为一个电路,并通过测量该电路的参数来间接计算接地阻值。
具体步骤如下:1.根据铁塔的接地系统特点,选择合适的等效电路模型。
2.测量等效电路模型中的各个参数,如电阻、电感等。
3.根据测量结果计算接地阻值。
3. 影响接地阻值的因素接地阻值受到多种因素的影响。
以下是一些常见的影响因素:3.1 地壤电阻率地壤电阻率是地壤对电流导通的阻碍程度,是影响接地阻值的重要因素。
地壤电阻率与土壤的类型、湿度等因素有关。
3.2 接地体数量和布置接地体的数量和布置方式影响着接地系统的导通能力。
合理的接地体数量和布置可以降低接地阻值。
3.3 接地体长度和直径接地体的长度和直径也会对接地阻值产生影响。
长而细的接地体通常具有较大的接地阻值,而短而粗的接地体阻值较小。
4. 接地阻值改进措施为了降低输电铁塔接地阻值,可以采取以下改进措施:4.1 土壤改良针对土壤电阻率较高的情况,可以进行土壤改良工程,降低土壤电阻率,从而减小接地阻值。
4.2 增加接地体数量增加接地体的数量可以提高接地系统的导通能力,降低接地阻值。
4.3 优化接地体布置合理的接地体布置方式可以提高接地系统的均匀性,进一步降低接地阻值。
输电线路杆塔接地体的电流和能量负荷特性研究发布时间:2022-12-25T06:41:29.993Z 来源:《中国电业与能源》2022年16期作者:杨东张梁[导读] 为确保在雷击、短路等故障下杨东张梁云南电网有限责任公司昆明供电局云南昆明 650000摘要:为确保在雷击、短路等故障下,接地设备应具备充分的通流能力,接地电阻小,耐腐蚀能力强。
在实际操作中,因输电线路杆塔接地截面和通流能量密度的选取不当,造成了通流不足熔断等事故,对电网的安全运行产生了重大影响。
传统上,关于杆塔接地体的研究多以减少接地电阻为重点,很少考虑其通流能力;其次,不同电压等级的输电线路,不同故障位置、不同故障类型,对接地导线的电流需求也不同。
针对不同电压等级的输电线路,对杆塔接地系统的通流需求进行了分析,分析了各电压等级输电线路的主要参数,并选择了具有代表性的线路参数;采用ATP-EMTPEMTP模拟软件对110~1000kV的直流输电线路进行了模拟;其次,选择了输电线路中最常见的雷击和短路故障,均匀地选择11座杆塔作为故障发生点,并对不同杆塔位置接地故障、雷击杆塔时注入接地的电流、能量负载等进行了数值模拟,得到了故障情况下各杆塔接地的通流特征。
关键词:杆塔接地体;注入电流;通流能量;能量负荷;沿线分布特性研究发现,当单相接地短路时,随着电压等级和输送能量的增加,流过塔地的电流和能量也随之增加;在变电所出口杆塔受雷击时,输入到地面的电流和能量最少;在相同电压等级下,在不同地点的杆塔发生单相接地故障时,通过杆塔的电流和能量沿着杆塔呈“∪”形分布,通过导线中部的杆塔接地电流和能量最少;在不同地点受雷击的杆塔,其雷电流的绝对值为“∩”形分布,而能量则呈“∩”形分布。
由此可以看出,由于线路短路或遭受雷击的地点不同,输入到塔中的电流、能量也会有很大的差别,因此,接地的剖面和布局要有差别。
为不同电压等级、不同线路位置的杆塔进行不同的差异性设计提供了依据。
架空输电线路杆塔接地电阻不合格原因剖析及应对方法摘要:在电力建设的领域中,保障输电线路的平稳运行是最为基本的电力工作内容。
而在实际的架空输电线路杆塔的施工与运行过程中,接地电阻由于各种主客观原因,时常出现杆塔接地电阻值不合格,不满足设计及运行要求的问题。
本文基于对架空输电线路杆塔接地电阻不合格的原因分析,明确了由于不同原因导致架空输电线路杆塔接地电阻不合格的根源,继而提出了基于开展科学降阻测试的基础,有效实施架空输电线路杆塔接地电阻改良对策的具体途径。
希望能够为广大电力工作同仁,提供一定的参考与借鉴。
关键词:输电线路;接地电阻;电力工程在电力基础设施建设的领域中,架空输电线路杆塔接地电阻不合格的原因,主要集中在“土壤原因”、“施工原因”以及“运行原因”三个方面。
电力工程人员在展开架空输电线路杆塔建设与维护的过程中,需要在找准问题原因的基础上,进行有效地问题解决,以此确保架空输电线路杆塔接地电阻能够合乎使用标准。
通过本文的研究,能够为广大电力工作者进一步明确电力基础设施的日常建设及养护方法,降低输电线路跳闸概率,促使电力基础建设事业更好地服务于人民群众的日常生活以及经济社会的发展建设。
以下结合具体电力工作情况,进行详细介绍。
一、架空输电线路杆塔接地电阻不合格的原因剖析导致架空输电线路杆塔接地电阻不合格的原因,主要分为“土壤原因”、“施工原因”以及“运行原因”三个方面。
在解决架空输电线路杆塔接地电阻不合格问题的过程中,电力工程人员需要找准具体的原因,针对性地加以应对,从而达到有效降阻的目的。
以下分别介绍。
(一)土壤原因由于架空输电线路杆塔是建立在土壤之上的,很多架空输电线路杆塔出现电阻不合格的原因,是由于土壤本身的电阻而导致的。
在一些土壤中,电阻率普遍偏高,特别是在沙地土壤之上,电阻率就会更高。
根据相关的统计得出,在很多沙地土壤上建设的输电线路塔杆,土壤电阻率都达到了120Ω·m以上。
此外,由于土壤干燥的问题,很多处于干燥土壤环境中的输电线路塔杆,也出现了相应的电阻不合格问题。
110kV输电线路杆塔接地装置分析【摘要】杆塔接地装置作为110kv输电线路的重要组成部分,是确保输电线路运行安全的重要举措。
本文结合笔者多年实践经验,介绍了输电线路接地装置的主要形式,重点围绕放射性接地装置和闭合环形接地装置的应用进行探讨,并提出一些个人见解,以供实践参考。
【关键词】输电线路;接地装置;放射性;闭合环形1.引言随着我国国民经济建设的快速发展,城乡各种电压级别的配电站数量日益增加,对电站输电线路施工质量要求也越来越高。
杆塔接地装置是输电线路的重要装置之一,也是输电线路安全运行必备的技术之一,对确保雷电流可靠流入大地,保护输电线路设备绝缘,减少线路雷击跳闸率和提高线路运行可靠性方面发挥着重要的作用。
但输电线路一般需要经过地理环境比较恶劣、土壤电阻率高和土壤腐蚀性强的山区,若施工人员没有根据杆塔所在山地的实际情况来选择接地装置,就可能导致输电线路杆塔接地装置无法将雷电导入大地,造成绝缘子损坏,严重威胁到线路的安全稳定运行。
因此,施工人员必须认识到各种杆塔接地装置的利弊,选择适合输电线路所在山区的装置,以确保输电线路的安全。
2.接地装置形式及其应用根据《电力工程高压输电线路设计手册》,在土壤电阻率ρ≤100ω·m的潮湿地区,可利用铁塔和钢筋混凝土杆的自然接地,不必另设人工接地装置。
在1002000ω·m的地区,可采用水平敷设的放射形接地装置。
另外,居民区和水田中的接地装置可以采用闭合环形接地装置。
在雷季干燥时,每基杆塔的接地装置工频接地电阻不大于《电力工程高压输电线路设计手册》规定的数值。
如果土壤电阻率超过2000ω·m,接地电阻很难降到30ω时,采用6~8根总长不超过500m的放射形接地体,其接地电阻不受限制。
基岩裸露的塔位,若距塔位不远有土壤电阻率较低的地方,则尽量采用引外接地。
根据地质条件及运行维护习惯,大部分110kv输电线路工程主要采用水平敷设的放射形接地装置,在一些土壤电阻率高的地区添加降阻剂或者添加接地模块,一般仅在水田和部分居民区采用闭合环形接地装置。
输电线路的杆塔接地方法图文根据电网故障分类统计表明,在我国跳闸率较高地区的高压线路运行总跳闸次数中因雷击引起的事故次数占40%~70%。
同时对雷击输电线路杆塔进行分析,降低杆塔接地装置的接地电阻,无疑是降低输电线路故障的一个有效途径。
遵循这一思路,在设计输电线路杆塔地网时,主要指标为接地电阻。
根据杆塔所处的不同土壤电阻率,选取不同的接地电阻值。
但是土壤会随温度、湿度、含离子量等不同变化,接地电阻并不稳定,有时会出现超标现象,最终造成雷击事故的发生。
现以四川省甘孜州九龙县某220kV线路12基杆塔接地网的改造为案例,提出一种降低杆塔地网接地电阻、地电位和接触电压的方法,为输电线路杆塔接地设计提供参考。
1 工程概况:本线路位于XX,起于某水电站,止于XX500kV 变电站,同塔双回路架设,线路全长9.473km。
同时该线路还承担了其他两水电站的电力送出任务,线路重要性高。
全线海拔高程在1988~2688m之间;为高山大岭和峡谷地形;沿线工程地质主要为半坚硬、坚硬岩类和松散岩类工程地质区;线路区域内年平均雷暴日为70天。
线路于2016年开始设计,导线型号为LGJ-500/45,架设双底线,其中一根地线为OPGW光缆复合地线,另一根分区段分别采用LBGJ-100-30AC及GJ-80地线。
线路于2018年中旬建成投运,在2019年7月30日以及9月28日两次出现雷击跳闸。
根据对线路地理情况和雷击事故的分析,初步判定为杆塔接地网电阻偏高所致。
2 现场信息收集2019年11月对该线路每基杆塔处土壤电阻率和接地电阻进行测试,发现有12基杆塔地网电阻不满足设计要求。
测试时,将塔腿处断接卡与接地网断开进行测试。
测试结果如表1。
表1 各基杆塔土壤电阻率和接地电阻测试值3 接地解决方案技术分析对现场踏勘后,查阅了以上12基杆塔的接地型式以及接地材料,提出以下三种解决方案。
方案1:将原地网圆钢找出来,在其周围浇灌降阻剂;方案2:在原地网水平射线末端继续增加水平射线,其增加的长度需满足雷电流有效泄流长度,并增加一定数量的接地模块;方案3:采用新接地技术——降阻剂多层施工方法和增加水平射线、抑制环的接地技术。
浅析输电线路杆塔接地装置摘要:输电线路的杆塔接地是输电线路中最重要的一环,是防止雷电危害不可或缺的措施之一。
为保证输电系统安全稳定运行,降低杆塔接地电阻是提高线路耐雷水平、减少线路雷击跳闸率的主要措施。
文章通过分析杆塔接地装置的一般要求、杆塔接地电阻超标的原因,从而探讨有效降低杆塔接地电阻的措施。
关键词:架空输电线路;杆塔;接地装置;接地电阻输电线路的杆塔接地是线路防雷的主要措施之一,其可靠性对保证电力系统的安全稳定运行具有重大的意义。
其中接地电阻是指接地引下线、接地散流电阻和接触电阻,它是用来确保外来雷电流入地面,绝缘线路的设备,以便减少线路被雷击的跳闸率,避免跨步电压对人体产生伤害和提高运行可靠性。
降低杆塔接地电阻是提高线路耐雷水平、降低线路雷击跳闸率的主要措施。
1雷电对输电线路的危害架空输电线路在运行中,由于杆塔接地不良而引发的雷害事故占线路故障率的比例较高,这主要是由于雷击杆顶或地线(避雷线)时,当雷电流通过杆塔接地装置泄流入地,由于接地电阻偏高,从而产生了较高的反击过电压所致。
这种由于线路遭受雷击时产生的过电压称为大气过电压,会使线路设备及其绝缘受到破坏而产生事故,若变电站防雷措施不良,甚至会造成变电站设备的损坏。
2杆塔接地装置的要求(DL/ T5092-1999)中9.0.11根据《110-500 kV架空送电线路设计技术规程》节的要求:有地线的杆塔应接地。
在雷季干燥时,每基杆塔不连地线的工频接地电阻。
在常规的输电线路工程中,高压架空线路杆塔的接地装置一般要求采用以下几种形式:(1)在土壤电阻率P≤100Ω•m的潮湿地区,可利用铁塔和钢筋混凝土杆自然接地。
对发电厂、变电站的进线段应另设雷电保护接地装置。
在居民区,当自然接地电阻符合要求时,可不设人工接地装置。
(2)在土壤电阻率100Ω•m<P<300Ω•m的地区,除利用铁塔和钢筋混凝土杆的自然接地外,应增设人工接地装置,接地极埋设深度不宜小于0.6 m。
输电线路杆塔接地分析来源:乌海电力勘测设计院时间:2010-09-28 阅读:215次标签:线路输电接地杆塔分析摘要:针对输电线路杆塔的接地电阻与是否架设避雷线有关;杆塔的接地形式同杆塔所处土质的不同而不同等问题,结合乌海电力勘测设计院设计的输电线路,详细分析了每基杆塔的接地情况。
关键词:输电线路;接地;线路杆塔信息来源:对架空线路杆塔的接地电阻和型式在电力行业标准DL/T620-1997《交流电气装置的过电压保护和绝缘配合》、L/T6 21-1997《交流电气装置的接地》中都提出了具体的要求。
是设计、安装和改造架空线路杆塔接地的依据。
1 杆塔的接地电阻信息来源:1.1 有避雷线线路杆塔的接地电阻有避雷线的线路,每基杆塔不连避雷线时的工频接地电阻,在雷季干燥时,不宜超过表1所列数值。
雷电活动强烈的地方和经常发生雷击故障的杆塔和线段,应改善接地装置,适当提高绝缘水平或架设耦合地线。
1.2 无避雷线线路杆塔的接地电阻对于中雷区及多雷区35kV及66kV无避雷线线路,宜采用措施,减少雷击引起的多相线短路和两相异地接地引起的断线事故,钢筋混凝土杆和铁塔应充分利用自然接地作用,在土壤电阻率不超过100Ω·m或有运行经验的地区,可不另设人工接地装置。
需要说明的是,作为通用行业标准,对杆塔接地电阻的要求是比较宽松的。
在多雷区,如是联络线路或重要线路,杆塔接地电阻最好能处理到10Ω以下,因为只有这样才能提高线路的耐雷水平,有效地限制雷击跳闸率,从而保证电网的安全稳定运行。
2 杆塔接地型式L/T621-1997《交流电气装置的接地》的6.3条还对高压架空线路杆塔接地装置的型式做了具体的要求如下:①在土壤电阻率ρ≤100Ω·m的潮湿地区,可利用杆塔和钢筋混凝土杆自然接地对发电厂、变电站的进线路应另设雷电保护接地装置。
在居民区,当自然接地电阻符合要求时,可以不设人工接地装置;②在土壤电阻率100Ω·m<ρ≤300Ω·m的地区,除利用铁塔和钢筋混凝土杆的自然接地外,并应增设人工接地装置,接地极埋设深度不宜小于0.6m;③在土壤电阻率300Ω·m<ρ≤2000Ω·m的地区,可采用水平敷设的接地装置,地极埋设深度不宜小于0.5m;④在土壤电阻率ρ>2000Ω·m地区,可采用6~8根总长不超过500m的放射形接地极或连续伸长接地极。
放射形接地极可采用长短结合的方式。
接地极埋设深度不宜小于0.3m ;⑤居民区和水田中的接地装置,宜围绕杆塔基础敷设成闭合环形;⑥放射形接地极的最大长度,应符合表2的要求。
⑦在高土壤电阻率地区采用放射形接地装置时,当在杆塔基础的放射形接地地极每根长度的1.5倍范围内有土壤电阻率较低的地带时,可部分采用引外接地或其他措施;⑧雷电活动强烈的地方和经常发生雷击故障的杆塔和线段,应改善接地装置,架设避雷线,适用加强绝缘或架设耦合地线;⑨钢筋混凝土杆铁横担和钢筋混凝土横担线路的避雷线支架、导线横担与绝缘子固定部分或瓷横担固定部分之间,宜有可靠的电气连接并与接地引下线相连。
主杆非预应力钢筋如上、下以用绑扎或焊接连成电气通路,则可兼作接地引下线。
利用钢筋兼作接地引下线的钢筋混凝土电杆,其钢筋与接地螺母,铁横担间应有可靠的电气连接;⑩35 kV及以上线路互相交叉或与较低电压线路、通信线路交叉时,交叉挡两端的钢筋混凝土或铁搭(上、下方线路共4基)不论有无避雷线,均应接地。
信息来源:3 落-乌220kV输电线路铁塔接地型式信息来源:该线路所在地区的土壤为含砂粘土、砂土,该地区为少雨地区,比较干燥,落-乌220kV 所在土层的土壤电阻率一般在1 000Ω·m~1 200Ω·m之间,属于高土壤电阻率地区。
按照相关规程规定,对此条线路进行了如下接地形式的设计,经过比较选定下面接地型式作为线路的接地,目前运行结果良好,在雷雨季节未发生一起雷击跳闸事故:信息来源:如图1所示,铁塔接地示意图,水平接地体采用φ10的圆钢,埋深0.8m,根据每基铁塔处的土壤电阻率,适当调整d的长度,用以保证杆塔的接地电阻满足要求,即每基杆塔的工频接地电阻不宜超过25Ω。
信息来源:图1所示接地形状为风车式接地电阻,其计算方法为:信息来源:式中:RP——杆塔的工频接地电阻;信息来源:ρ——土壤电阻率,Ω.m;信息来源:l——水平接地体的总长度,(图中为8+d),m;信息来源:c——水平接地体的直径或等效直径,m;信息来源:D——单根接地体正方形部分边长(图中为8),m;信息来源:d——单根接地体射线部分长度,m;信息来源:t——水平接地体的埋设深度,m;信息来源:根据计算,该220kV线路工程1#-12#杆的接地电阻如下表所示:信息来源:输电线路杆塔的接地在土壤电阻率ρ≤1OOΩ·m的潮湿地区,可利用铁塔和钢筋混凝土杆的自然接地,接地电阻低于10Ω。
发电厂、变电站进线段应另设雷电保护接地装置。
在居民区,当自然接地电阻符合要求时,可不另设人工接地装置。
信息来源:在土壤电阻率100Ω·m<ρ≤500Ω·m的地区,除利用铁塔和钢筋混凝土杆的自然接地,还应增设人工接地装置,接地极埋设深度不宜小于0.6m,接地电阻低于15Ω。
信息来源:在土壤电阻率500Ω·m<ρ≤2000H·m的地区,可采用水平敷设的接地装置,接地极埋设深度不宜小于O.5m。
500Ω.m<ρ≤1000Ω·m的地区,接地电阻不超过20Ω。
1000Ω·m信息来源:在土壤电阻率ID>2000Ω·m的地区,接地极埋设深度不宜小于0.3m,接地电阻不超过30Ω;若接地电阻很难降到30Ω时,可采用6~8根总长度不超过500m的放射形接地极或连续伸长接地极。
信息来源:放射形接地极可采用长短结合的方式,每根的最大长度应符合表的要求; 信息来源:放射形接地极每根的最大长度土壤电阻率(Ω·m)≤500≤1000≤2000≤5000最大长度(m) 40 60 80 100这几条是参照现行电力行业标准《交流电气装置的接地》DL/T 621制定的。
分别针对不同土质情况和土壤电阻率,规定了高压输电线路杆塔接地装置的几种形式,接地极埋设深度以及对杆塔接地装置接地电阻值的要求。
对于土壤电阻率ρ超过2000Ω·m的高土壤电阻率地区,当经过技术经济比较,接地电阻很难降到30Ω时,规定可采用6~8根总长度不超过500m的放射形接地极或连续伸长接地极。
信息来源:接地装置采用放射形接地极时,放射形接地极长度太长,将影响降阻(尤其是冲击接地电阻)和散流效果,本条规定了几种土壤电阻率下,每根放射形接地极的最大长度。
信息来源:本条规定了在高土壤电阻率地区杆塔接地装置降阻的若干方法。
在居民区和水田中的接地装置易受外力破坏,敷设成闭合环形一方面是形成连通的接地网,同时也起到了提高可靠性的作用。
信息来源:室外山区等特殊地形情况下,特别是放射形接地极很难按照设计的直线进行敷设,因此,应该画上简图记录实际走向,方便运行维护。
信息来源:本条是对在山坡等倾斜地形敷设水平接地体的专门要求,主要目的是考虑线路长期的运行维护工作,防止接地体的外露腐蚀生锈和外力破坏。
信息来源:接地线与杆塔的连接,既要考虑施工又要考虑运行维护,所以应同时考虑接触良好可靠和便于测量接地电阻。
信息来源:因为在室外,尤其是耕地、水田、山区等易受外力破坏的地方,经常发生接地引下线被破坏等情况,所以要求架空线路杆塔的每一腿都与接地体引下线连接,通过多点接地以保证可靠性。
请登陆: 浏览更多信息本条款是对混凝土电杆的接地引下方式的要求,直接从架空避雷线引下是为了保证电气通路更加顺畅。
请登陆: 浏览更多信息在高土壤电阻率地区采用放射形接地装置时,当在杆塔基础的放射形接地极每根长度的1.5倍范围内有土壤电阻率较低的地带时,可部分采用外引接地或其他措施。
信息来源:居民区和水田中的接地装置,宜围绕环形。
请登陆: 浏览更多信息对于室外山区等特殊地形,不能按设计图形敷设计接地体时,应根据施工实际情况在施工记录上绘制接标明相对位置和尺寸,作为竣工资料移交。
原设计方形等封闭环形时,应按设计施工,以便于检修维护。
信息来源:在山坡等倾斜地形敷设水平接地体时宜沿等高线开挖,接地沟底面应平整,沟深不得有负误差,并应清除应接触的杂物,以防止接地体受雨水冲刷外露,体敷设应平直,以保证同土壤更好接触。
信息来源:接地线与杆塔的连接应接触良好可量接地电阻。
信息来源:架空线路杆塔的每一腿都应与接地多点接地以保证可靠性。
信息来源:混凝土电杆宜通过架空避雷线直接爬梯接地。
当接地线直接从架空避雷线引下,也可通过金属爬梯接地,当接地线直接众架空避雷线引下时,引下线应紧靠杆身,并每隔一定距离与杆身固定一次,以保证电气通路顺畅。
信息来源:调度楼、通信站和微波站二次系统的接地信息来源:调度通信综合楼内的通信站应与同一楼内的动力装置、建筑物避雷装置共用一个接地网。
调度通信综合楼及通信机房接地引下线可利用建筑物主体钢筋和金属地板构架等,钢筋自身上、下连接点应采用搭焊接,且其上端应与房顶避雷装置、下端应与接地网、中间应与各层均压网或环形接地母线焊接成电气上连通的笼式接地系统。
请登陆: 浏览更多信息位于发电厂、变电站或开关站的通信站的接地装置应至少用2根规格不小于40mm×4mm 的镀锌扁钢与厂、站的接地网均压相连。
位于地带时,可部分采用外引接地或其他措施。
信息来源:居民区和水田中的接地装置,宜围绕杆塔基础敷设成闭合环形。
对于室外山区等特殊地形,不能按设计图形敷设接地体时,应根据施工实际情况在施工记录上绘制接地装置敷设简图,并标明相对位置和尺寸,作为竣工资料移交。
原设计为方形等封闭环形时,应按设计施工,以便于检修维护。
信息来源:在山坡等倾斜地形敷设水平接地体时宜沿等高线开挖,接地沟底面应平整,沟深不得有负误差,并应清除影响接地体与土壤接触的杂物,以防止接地体受雨水冲刷外露,腐蚀生锈;水平接地体敷设应平直,以保证同土壤更好接触。
接地线与杆塔的连接应接触良好可靠。
并应便于打开测量接地电阻。
信息来源:架空线路杆塔的每一腿都应与接地体引下线连接,通过多点接地以保证可靠性。
混凝土电杆宜通过架空避雷线直接引下,也可通过金属爬梯接地。
当接地线直接从架空避雷线引下时,引下线应紧靠杆身,并每隔一定距离与杆身固定一次,以保证电气通路顺畅。
信息来源:通信机房房顶上应敷设闭合均压网(带)并与接地装置连接,房顶平面任一点到均压带的距离均不应大于5m。
信息来源:通信机房内应围绕机房敷设环形接地母线,截面应不小于90mm2的铜排或120mm2的镀锌扁钢。