函数与方程-2021届高三数学一轮高考总复习课件
- 格式:ppt
- 大小:1.05 MB
- 文档页数:41
2021年高考数学一轮复习 第二章 函数概念与基本初等函数1 第8讲 函数与方程习题 理 新人教A 版一、填空题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点为________. 解析 由已知得b =-2a ,所以g (x )=-2ax 2-ax =-a (2x 2+x ).令g (x )=0,得x 1=0,x 2=-12. 答案 0,-122.(xx·青岛统一检测)函数f (x )=2x +x 3-2在区间(0,2)内的零点个数是________. 解析 因为函数y =2x ,y =x 3在R 上均为增函数,故函数f (x )=2x +x 3-2在R 上为增函数,又f (0)<0,f (2)>0,故函数f (x )=2x +x 3-2在区间(0,2)内只有一个零点. 答案 13.函数f (x )=|x |-k 有两个零点,则实数k 的取值范围是________.解析 函数f (x )=|x |-k 的零点就是方程|x |=k 的根,在同一坐标系内作出函数y =|x |,y =k 的图象,如图所示,可得实数k 的取值范围是(0,+∞).答案 (0,+∞)4.(xx·昆明三中、玉溪一中统考)若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是________.解析 当a =0时,f (x )=1与x 轴无交点,不合题意,所以a ≠0;函数f (x )=3ax +1-2a 在区间(-1,1)内是单调函数,所以f (-1)·f (1)<0,即(5a -1)(a +1)>0,解得a <-1或a >15. 答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞ 5.已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是________.解析 依据零点的意义,转化为函数y =x 分别和y =-2x,y =-ln x ,y =x +1的交点的横坐标大小问题,作出草图(图略),易得x 1<0<x 2<1<x 3.答案 x 1<x 2<x 36.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 解析 求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.答案 2 7.(xx·湖北卷)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.解析 f (x )=4cos 2x 2sin x -2sin x -|ln(x +1)|=2sin x ·⎝⎛⎭⎪⎫2cos 2x 2-1-|ln(x +1)|=sin 2x -|ln(x +1)|,令f (x )=0,得sin 2x =|ln(x +1)|.在同一坐标系中作出两个函数y =sin 2x 与函数y =|ln(x +1)|的大致图象如图所示.观察图象可知,两函数图象有2个交点,故函数f (x )有2个零点.答案 28.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1).答案 (0,1)二、解答题9.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解 (1)法一 ∵g (x )=x +e 2x ≥2e 2=2e ,图1等号成立的条件是x =e ,故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点.法二 作出g (x )=x +e 2x(x >0)的大致图象如图1. 可知若使y =g (x )-m 有零点,则只需m ≥2e.图2(2)若g (x )-f (x )=0有两个相异实根,即y =g (x )与y =f (x )的图象有两个不同的交点,在同一坐标系中,作出g (x )=x +e 2x(x >0)与f (x )=-x 2+2e x +m -1的大致图象如图2.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,y =g (x )与y =f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).10.已知关于x 的二次方程x 2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解 由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图所示,得⎩⎪⎨⎪⎧ f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒ ⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.即-56<m <-12. 故m 的取值范围是⎝ ⎛⎭⎪⎫-56,-12. 能力提升题组(建议用时:20分钟)11.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的取值为________.解析 当a =0时,函数f (x )=-x -1为一次函数,则-1是函数的零点,即函数仅有一个零点;当a ≠0时,函数f (x )=ax 2-x -1为二次函数,并且仅有一个零点,则一元二次方程ax 2-x -1=0有两个相等实根.∴Δ=1+4a =0,解得a =-14. 综上,当a =0或a =-14时,函数仅有一个零点. 答案 0或-1412.(xx·苏州调研)已知函数f (x )=⎩⎨⎧4,x ≥m ,x 2+4x -3,x <m ,若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数m 的取值范围是________.解析 由题意得g (x )=⎩⎨⎧4-2x ,x ≥m ,x 2+2x -3,x <m , 又函数g (x )恰有三个不同的零点,所以方程g (x )=0的实根2,-3和1都在相应范围上,即1<m ≤2.答案 (1,2]13.(xx·湖南卷)已知函数f (x )=⎩⎨⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.解析 函数g (x )有两个零点,即方程f (x )-b =0有两个不等实根,则函数y =f (x )和y =b 的图象有两个公共点.①若a <0,则当x ≤a 时,f (x )=x 3,函数单调递增;当x >a 时,f (x )=x 2,函数先单调递减后单调递增,f (x )的图象如图(1)实线部分所示,其与直线y =b 可能有两个公共点.②若0≤a ≤1,则a 3≤a 2,函数f (x )在R 上单调递增,f (x )的图象如图(2)实线部分所示,其与直线y =b 至多有一个公共点.③若a >1,则a 3>a 2,函数f (x )在R 上不单调,f (x )的图象如图(3)实线部分所示,其与直线y =b 可能有两个公共点.综上,a <0或a >1.答案 (-∞,0)∪(1,+∞)14.(xx·南通阶段检测)是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9⎝ ⎛⎭⎪⎫a -892+89>0恒成立,即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,∴a ≤-15或a ≥1. 检验:(1)当f (-1)=0时,a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15, 此时f (x )=x 2-135x -65. 令f (x )=0,即x 2-135x -65=0, 解得x =-25或x =3. 方程在[-1,3]上有两个实数根,不合题意,故a ≠-15. 综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-15∪(1,+∞).。
函数与方程基础练一、选择题1.[2021·河南濮阳模拟]函数f (x )=ln2x -1的零点所在区间为( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)2.函数f (x )=x 2+ln x -2021的零点个数是( )A .3B .2C .1D .03.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0) B .C .(1,2) D .(2,3)4.[2021·四川绵阳模拟]函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.[2021·大同调研]已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >03x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]二、填空题6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________. 7.[2021·新疆适应性检测]设a ∈Z ,函数f (x )=e x +x -a ,若x ∈(-1,1)时,函数有零点,则a 的取值个数为________.8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 三、解答题9.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围.10.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.能力练11.[2021·天津部分区质量调查]已知函数f (x )=若关于x 的方程f (x )=m (m ∈R )恰有三个不同的实数根a ,b ,c ,则a +b +c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫34,1C.⎝⎛⎭⎫34,2D.⎝⎛⎭⎫32,212.[2021·长沙市四校高三年级模拟考试]已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤01x ,x >0,若方程f (x )=a (x +3)有四个不同的实数根,则实数a 的取值范围是( )A .(-∞,4-23)B .(4-23,4+23)C .(0,4-23]D .(0,4-23)13.[2021·山西省六校高三阶段性测试]函数y =5sin ⎝⎛⎭⎫π5x +π5(-15≤x ≤10)的图象与函数y=5(x +1)x 2+2x +2图象的所有交点的横坐标之和为______.参考答案:1.解析:由f (x )=ln2x -1,得函数是增函数,并且是连续函数,f (1)=ln2-1<0,f (2)=ln4-1>0,根据函数零点存在性定理可得,函数f (x )的零点位于区间(1,2)上,故选D.答案:D2.解析:由题意知x >0,由f (x )=0得ln x =2021-x 2,画出函数y =ln x 与函数y =2021-x 2的图象(图略),即可知它们只有一个交点.故选C.答案:C3.解析:设f (x )=e x -(x +2),则f (1)=-0.28<0,f (2)=3.39>0,故方程e x -x -2=0的一个根在区间(1,2)内.故选C.答案:C4.解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C 项. 答案:C5.解析:h (x )=f (x )+x -a 有且只有一个零点,即方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.在同一坐标系中作出函数f (x )的图象和直线y =-x +a ,如图所示,若函数y =f (x )的图象与直线y =-x +a 有且只有一个交点,则有a >1,故选B.答案:B 6.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-127.解析:根据函数解析式得到函数f (x )是单调递增的.由零点存在性定理知若x ∈(-1,1)时,函数有零点,需要满足⎩⎪⎨⎪⎧f (-1)<0,f (1)>0⇒1e -1<a <e +1,因为a 是整数,故可得a 的可能取值为0,1,2,3.答案:48.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.解析:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧ g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧ 5+m >0,2-2m <0,10-4m >0,解得1<m <52.所以m 的取值范围为⎝⎛⎭⎫1,52. 11.解析:假设a <b <c ,通过作图可得a ∈⎝⎛⎭⎫-12,0,b +c =2,所以a +b +c ∈⎝⎛⎭⎫32,2,故选D 项.答案:D12.解析:方程f (x )=a (x +3)有四个不同的实数根可化为函数y =f (x )与y =a (x +3)的图象有四个不同的交点,易知直线y =a (x +3)恒过点(-3,0),作出函数y =f (x )的大致图象如图所示,结合函数图象,可知a >0且直线y =a (x +3)与曲线y =-x 2-2x ,x ∈[-2,0]有两个不同的公共点,所以方程x 2+(2+a )x +3a =0在[-2,0]上有两个不等的实数根,令g (x )=x 2+(2+a )x +3a ,则实数a 满足⎩⎪⎨⎪⎧ Δ=(2+a )2-12a >0-2<-2+a 2<0g (0)=3a ≥0g (-2)=a ≥0,解得0≤a <4-23,又a >0,所以实数a 的取值范围是(0,4-23),故选D.答案:D 13.解析:函数y =5sin ⎝⎛⎭⎫π5x +π5(x ∈R )的图象关于点(-1,0)对称.对于函数y =5(x +1)x 2+2x +2,当x =-1时,y =0,当x ≠-1时,易知函数y =5(x +1)x 2+2x +2=5x +1+1x +1在(-1,0)上单调递增,在(0,+∞)上单调递减,且当x ∈(-1,+∞)时,y =5(x +1)x 2+2x +2的最大值为52,函数图象关于点(-1,0)对称.对于函数y =5sin ⎝⎛⎭⎫π5x +π5,当x =0时,y =5sin π5>5sin π6=52,所以在(-1,0)内两函数图象有一个交点.根据两函数图象均关于点(-1,0)对称.可知两函数图象的交点关于点(-1,0)对称,画出两函数在[-15,10]上的大致图象,如图,得到所有交点的横坐标之和为-1+(-2)×3=-7.答案:-7。
2021高考一轮复习 第四讲 函数及其表示一、单选题(共11题;共55分)1.(5分)若定义在R 的奇函数f(x)在 (−∞,0) 单调递减,且f(2)=0,则满足 xf(x −1)≥0 的x 的取值范围是( ) A .[−1,1]∪[3,+∞) B .[−3,−1]∪[0,1] C .[−1,0]∪[1,+∞)D .[−1,0]∪[1,3]2.(5分)已知函数 f(x)={x 3,x ⩾0,−x,x <0.若函数 g(x)=f(x)−|kx 2−2x| (k ∈R) 恰有4个零点,则k 的取值范围是( ) A .(−∞,−12)∪(2√2,+∞)B .(−∞,−12)∪(0,2√2)C .(−∞,0)∪(0,2√2)D .(−∞,0)∪(2√2,+∞)3.(5分)已知函数 f(x)={lgx,x ≥1−lg(2−x),x <1, g(x)=x 3 ,则方程 f(x)=g(x −1) 所有根的和等于( ) A .1B .2C .3D .44.(5分)设函数 y =f(x) 在R 上有意义,对给定实数N ,定义函数 f N (x)={f(x),f(x)≤NN,f(x)>N,则称函数 f N (x) 为 f(x) 的“孪生函数”,若给定函数 f(x)=2−x 2 , N =−1 ,则 y =f N (x) 的值域为( ) A .[1,2]B .[−1,2]C .(−∞,1]D .(−∞,−1]5.(5分)已知函数 f(x)=1−x 2 , g(x)=msin(π6x)+2−m(m >0) ,若存在 x 1,x 2∈[0,1] ,使得 f(x 1)≥g(x 2) 成立,则m 的取值范围是( ) A .(0,1]B .[1,4)C .[1,+∞)D .(0,4)6.(5分)已知函数 f(x)={log 2x,x >03x ,x ≤0,则 f[f(14)] 的值是( ) A .14B .4C .19D .√37.(5分)下列各组函数中,表示同一个函数的是( )A .y =x 2−1x−1 与 y =x +1B .y =1 与 y =x 0C .y =√x 2−1 与 y =x −1D .y =x 与 y =log a a x (a >0且a ≠1)8.(5分)已知函数f (x+2)=x 2,则f (x )等于( )A .x 2+2B .x 2-4x+4C .x 2-2D .x 2+4x+49.(5分)函数 f(x) 的图象如图所示,则它的解析式可能是( )A .f(x)=x 2−12xB .f(x)=2x (|x|−1)C .f(x)=|ln|x||D .f(x)=xe x −110.(5分)设函数 f(x)={x 2−2(x ≥2)log 2x(x <2),若 f(m)=7 ,则实数m 的值为( )A .0B .1C .-3D .311.(5分)下列与函数 y =1√x定义域和单调性都相同的函数是( ) A .y =2log 2xB .y =log 2(12)xC .y =log 21xD .y =x 14二、填空题(共7题;共7分)12.(1分)函数 f(x)=1x+1+lnx 的定义域是 . 13.(1分)函数f (x )= √e x −1 的定义域为 。