通常将它们记为: 正弦函数 y sin x, x R
余弦函数 y cosx, x R
正切函数 y tanx, x k (k Z )
2
注意:
y
的终边
(1)正弦就是交点的纵坐标, 余弦就是交点的横坐标 正切就是交点的纵坐标与横坐标的比值.
(x, y)
x o
(2) 正弦函数、余弦函数总有意义.当α 的终边在y 轴上时,点P 的
单位圆半径不变,点P的横、纵坐标只与α的大小有关, α确定时,p的坐标能唯一确定。
任意角的三角函数定义
设 α是一个任意角, R ,它的终边与单位圆交于点 P(x, y)
那么:(1) y 叫做 α的正弦函数,记作 sin α 即 y = sin α
(2) x 叫做 α的余弦函数,记作 cos α 即 x = cos α
.
证明:如图,设角 的终边与单位圆交于点 P0 (x0 , y0 )
分别过点P, P0 作 x 轴的垂线PM , P0M 0 ,垂足分别为 M , M0
则 | P0M0 || y0 |,| PM || y |,| OM0 || x0 |,| OM || x |,
OMP ∽ OM0P0
于是,| P0M 0 | | PM
P c
b
O
a
M
b
sin c
a
cos c
b
tan a
问题引入
问题:匀速圆周运动是现实生活中周期现象的代表,在前面的 学习中,我们知道函数是描述客观世界变化规律的重要数学模 型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?
新课学习
如图,以单位圆的圆心O 为坐标原点,以射线OA为 x轴的非负半轴,建立直角坐标系 xOy,点 A的坐标是