利用复化梯形公式、复化simpson 公式计算积分
- 格式:doc
- 大小:105.50 KB
- 文档页数:4
第三章习题答案1.分别用梯形公式、Simpson公式、Cotes公式计算积分1,I=⎰并估计误差。
解:1)用梯形公式有:()()110.51[10.5]10.42678242f f⎛-≈+=+≈⎝⎭⎰()()()333333220.512.6042107.36571012124Tb aE f fηηη-----⎛⎫''=-=--=⨯≤⨯⎪⎝⎭事实上,()()()()()()110.430964410.50.510.4267767210.50.510.00418772Tf x II f fE f f f===-≈+=⎡⎤⎣⎦-∴=-+=⎡⎤⎣⎦⎰⎰2)Simpson公式()110.53111410.43093 642122f f f⎛-⎡⎤⎛⎫⎛⎫≈++=+=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭⎰[]()()44744211111522 1.1837710180218028Sb a b aE f fηη--⎛⎫--⎪⎛⎫--⎛⎫=-=--≤⨯⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭3122()''()48T f fb aE事实上,()()()10.510.50.510.5410.000030462SE f f f f-⎡+⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦⎰3)由Cotes公式有:()() ()111537270.5321232719084814.9497525.2982210.3923029.9332670.43096180f f f f f-⎡⎤⎛⎫⎛⎫⎛⎫≈++++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=++++=⎰15732127)18088()6116211294522 2.697410945464C E f η--⎛⎫⨯ ⎪⎛⎫=-⨯-≤⨯ ⎪ ⎪⎝⎭⎪⎝⎭7(6)945*42()()82Cf b aEf事实上,()0.0000003C E f =2.证明Simpson 公式()2.8具有三次代数精度。
1习题 三1. 用辛普森求积公式计算积分dx e x ∫−10,并估计误差。
2. 给定数据表x 1.8 2.0 2.2 2.4 2.6)(x f 3.12014 4.042569 6.04241 8.03014 10.46675分别用复化梯形求积公式和复化辛普森求积公式计算积分.)(6.28.1dx x f ∫3. 分别用变步长求积方法和龙贝格求积方法计算下列积分,并估计误差:(1);sin 40dx xx ∫π(2);1)1ln(102dx x x ∫++ (3);)1ln(110dx x x ∫+ (4).110∫+xdx 4. 确定下列求积公式的待定参数,使其代数精度尽量高,并指出其代数精度的准确次数:(1));()0()()(210h f A f A h f A dx x f hh ++−≈∫− (2));()0()()(21022h f A f A h f A dx x f hh ++−≈∫−(3)).0()1()0()(21010f A f A f A dx x f ′++≈∫ 5. 证明求积公式 )]()([12)]()([2)(0121010x f x f h x f x f h dx x f x x ′−′++≈∫ 具有3次代数精度,其中01x x h −=.6. 利用高斯-勒让德公式计算积分)(14102π=+∫dx x 的近似值. 7. 利用高斯-切比雪夫求积公式计算积分dx x x ∫−−−112211 的近似值。
8. 已知函数)(x f y =的如下数据:x 0.8 0.9 1 1.1 1.2 1.4)(x f 0.8365 0.9095 1 1.1105 1.2446 1.6017利用李查逊外推法计算)1(y ′.。
1、 利用复化梯形公式、复化simpson 公式计算积分2、 比较计算误差与实际误差取n=2,3,…,10分别利用复化梯形公式、复化simpson 公式计算积分1 I = x 2dx ,并与真值进行比较,并画出计算误差与实际误差之间的曲线。
利用复化梯形公式的程序代码如下: function f=fx(x) f=x.A 2;R=on es(1,9)*(-(b-a)/12*h.A 2*2); %积分余项(计算误差)true=quad(@fx,0,1); %积分的真实值A=T-true; %计算的值与真实值之差(实际误差)x=li nspace(0,1,9);plot(x,A,'r',x,R,'*')%将计算误差与实际误差用图像画出来 注:由于被积函数是x.A2,它的二阶倒数为 2,所以积分余项为:(-(b-a)/12*h.A 2*2) 实 验 原 理 ( a=0; b=1; T=[]; for n=2:10; %积分下线 %积分上线 %用来装不同n 值所计算出的结果 h=(b-a)/n; %步长 x=zeros(1, n+1); for i=1: n+1 x(i)=a+(i-1)*h; end y=x.A2; t=0; for i=1: n t=t+h/2*(y(i)+y(i+1)); end T=[T,t]; end%给节点定初值 %给节点赋值 %给相应节点处的函数值赋值 %利用复化梯形公式求值 %把不同n 值所计算出的结果装入 T 中 实验目的或 %首先建立被积函数,以便于计算真实值。
2法二:a=0;b=1;T=[];for n=2:10h=(b-a)/(2* n); x=zeros(1,2* n+1);for i=1:2* n+1x(i)=a+(i-1)*h;endy=x.A4;t=y(1)+y(2* n+1);for i=1: nt=t+4*y(2*i)+2*y(2*i-1);endT=[T,h/3*t];endtrue=quad(@fx1,0,1);A=T-true;x=li nspace(0,1,9);plot(x,A)此法与第一种一样,只是所用的表达式不同。
复化梯形公式,复化辛普森公式,复化柯特斯公式
复化梯形公式、复化辛普森公式和复化柯特斯公式都是用来计算定积分的近似值的方法。
1. 复化梯形公式:将积分区间分成若干个小区间,在每个小区间上用梯形面积近似代替该小区间的曲边梯形面积,然后将这些梯形面积相加,得到积分的近似值。
2. 复化辛普森公式:将积分区间分成若干个等分小区间,在每个小区间上用矩形面积近似代替该小区间的曲边梯形面积,然后将这些矩形面积相加,得到积分的近似值。
3. 复化柯特斯公式:将积分区间分成若干个等分小区间,在每个小区间上用切线段长度近似代替该小区间的曲边梯形面积,然后将这些切线段长度相加,得到积分的近似值。
这三种方法都是通过将积分区间分成若干个小区间,然后在每个小区间上用近似方法计算该小区间的曲边梯形面积,最后将这些近似值相加得到积分的近似值。
它们的精度和误差都与分区间的大小有关。
第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
(一) 实验目的熟悉并掌握数值积分的方法,重要训练复化梯形公式,复化simps on 公式以及 romberg 积分。
问题三数值积分椭圆周长的计算。
考虑椭圆其周长,只要计算其第一象限的长度即可.用参数方程可以表示为X acost (0 t /2), y bs int计算公式为.a 2 sin 21 b 2 cos 2 tdt0 为计算方便,我们可以令a 1,即计算下面的积分0 Ja 2sin 2t~ t a 0 <si n 2t (b )2cos 2 tdt 可以归结为上面的形式)采用复化梯形公式,复化Simpson 公式以及Romberg 积分的方法 计算积分I (b )「J 1 (b 2 1)cos 2tdt给出通用程序,该通用程序可以计算任何一个函数在任意一个区 间在给定的精度下的数值积分。
程序输出为计算出的数值积分值以及 计算函数值的次数。
(三)算法介绍首先利用给出的各迭代公式,设计程序。
在matlab 对话框中输入要计算的函数,给出区间和精度。
问题描述b 2 1,为计算 sin 21 2 2 b cos tdt复化梯形的迭代公式为:J b f (x) dx 二h/2 f(已)+ 2X°二+ f (b);章L. J * ' 』,复化simps on迭代公式为:J;f (x)dx 二h/3p(a) + 辽負1(x2j) + 4斗g〔fgj - i) + f (b)Romberg迭代公式为:削」- 1 h - 1. j - 1n _ n(四)程序对于复化梯形公式和复化simpson公式,我们放在中(転记后的程序可用来把b看为变量时的算法实现) %复化梯形公式function y=jifenn(f,n,a,b) (说明:f表示任一函数,n精度,a, b为区间)fi=f(a)+f(b);h=(b-a)/n;d=1;%fun cti on f=jife n(n ,a,b,c)%syms t%y=sqrt(1+(c A2-1)*cos(t)A2);%ya=subs(y,t,a);%yb=subs(y,t,b);%fi=ya+yb;for i=1:n-1x=a+i*h;fi=fi+2*f(x);d=d+1;%yx=subs(y,t,x);%fi=fi+2*yx;endf4=h/2*fi,d%复化simposon公式f仁0;f2=0;dd=1;for i=1:n-1dd=dd+1;if rem(i,2)~=0;x1=a+i*h; f1=f1+f(x1);else rem(i,2)==0; x2=a+i*h; f2=f2+f(x2) ;endendf3=(h/3)*(f(a)+4*f1+2*f2+f(b)),dd对于romberg积分,建立文件。
数值计算考题五1. 分别用复合梯形求积公式与复合辛普森求积公式求积分I=⎰102x e sinx dx 的近似值,要求误差不超过ε=0.5⨯10-5.解:方法一: 复合梯形求积公式复合梯形求积公式是将积分区间划分为n 个很小的区间,然后将各个小区间的面积相加而得到在整个积分区间上的积分,当分成的小区间数n →∞时,求得的面积就等于积分的精确值。
由复合梯形求积公式的余项R n T 可得满足精度要求≤ε0.5⨯10-5时区间()b a ,被分成的区间数n 的最小值为700,所以在编程时循环次数应大于等于这个值,方可满足精度要求。
以下是编写的C 语言程序:#include<stdio.h>#include<math.h>void main(){int n=700,i;double x,f=0.0,t,h,T=0.0,c=2.0,a=0.0,b=1.0;h=(b-a)/n;for(i=0;i<n;i++){x=a+i*h;f=f+exp(pow(x,c))*sin(x);}t=(h/2)*(2*f+sin(1)*exp(1));printf("T=%f\n",t);}输出结果为T=0.778746.方法二:复合辛普森求积公式:复合辛普森求积法是将积分区间分割之后,在每个小区间[x i ,x i+1]上运用辛普森求积公式。
以下是编写的c 语言程序:#include<stdio.h>#include<math.h>void main(){int n=700,i;double x1,x2,f1=0.0,f2=0.0,t,h,T=0.0,c=2.0,a=0.0,b=1.0;h=(b-a)/n;for(i=0;i<n;i++){x1=a+i*h;x2=a+(i+0.5)*h;f1=f1+exp(pow(x1,c))*sin(x1);f2=f2+exp(pow(x2,c))*sin(x2); }t=(h/6)*(2*f1+sin(1)*exp(1)+4*f2); printf("T=%f\n",t);}程序输出结果为0.778745.2. 用高斯求积法求上述积分的近似值。