北京四中2020-2021学年上学期高一适应性测试数学试题
- 格式:pdf
- 大小:1.14 MB
- 文档页数:3
高一数学(必修1)期中模拟卷一、选择题:(每小题5分,共12小题,合计60分) 1、 下列几个关系中正确的是( )A 、0{0}∈B 、 0{0}=C 、0{0}⊆D 、{0}∅=2、设:f M N →是集合M 到集合N 的映射,下列说法正确的是( )a 、M 中每一个元素在N 中必有输出值。
b 、N 中每一个元素在M 中必有输入值。
c 、N 中每一个元素在M 中的输入值是唯一的。
d 、N 是M 中所有元素的输出值的集合。
3、下列函数与y x =有相同图象的一个是( )A、y B 、2x y x= C 、log (0,a x y a a =>且1)a ≠ D 、log (0,x a y a a =>且1)a ≠ 4、集合11{|,},{|,}2442k k M x x k Z N x x k Z ==+∈==+∈,则( ) A 、M N = B 、M N ⊆ C 、N M ⊆ D 、M N =∅5、已知53()2f x x ax bx =-++且(5)17f -=,则(5)f 的值为( ) A 、19 B 、 13 C 、 -19 D 、 -136、若0a <,则函数(1)1x y a =--的图象必过点( ) A 、(0,1) B 、(0,0) C 、(0,-1) D 、(1,-1)7、要得到函数(2)1y f x =-+的图象,只需将函数()y f x =的图象( )a 向右平移2个单位,向下平移1个单位。
b 向左平移2个单位,向下平移1个单位。
c 向右平移2个单位,向上平移1个单位。
d 向左平移2个单位,向上平移1个单位。
8、定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ) A .9 B. 14 C.18 D.21 9、已知函数()312f x ax a =+-在区间(-1,1)上存在0x ,使得0()0f x =,则( )A 、115a -<<B 、15a >C 、1a <-或15a > D 、1a <- 10、对任意实数x 规定y 取14,1,(5)2x x x -+-三个值中的最小值,则函数y (A 、有最大值2,最小值1,B 、有最大值2,无最小值,C 、有最大值1,无最小值,D 、无最大值,无最小值。
北京四中2021-2022学年上学期高中一班级期中考试数学试卷试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,共计150分 考试时间:120分钟 卷(Ⅰ)一、选择题:(本大题共10小题,每小题5分,共50分) 1. 设集合A={1,2,6},B={2,4},则A ∪B= A. {2}B. {1,2,4}C. {1,2,4,6}D. {2,4}2. 函数y=224x -的定义域为A. (-2,2)B. (-∞,-2)∪(2,+∞)C. [-2,2]D. (-∞,-2] ∪[2,+∞)3.43662log 2log 98+-=A. 14B. -14C. 12D. -124. 若函数f (x )= 2312325x x x x ⎧--≤≤⎪⎨-<≤⎪⎩,则方程f (x )=1的解是A.2或2B.2或3C.2或4 D. ±2或45. 若函数f (x )=x 3,则函数y=f (-2x )在其定义域上是A. 单调递增的偶函数B. 单调递增的奇函数C. 单调递减的偶函数D. 单调递减的奇函数 6. 若432a =,b=254,c=3log 0.2,则a ,b ,c 的大小关系是A. a<b<cB. c<b<aC. b<a<cD. c<a<b7. 函数2343x xy -+-=的单调递增区间是A. (-∞,2]B. [2,+∞)C. [1,2]D. [1,3]8. 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽搁了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请同学画出自行车行进路程s (千米)与行进时间x (秒)的函数图象的示意图,你认为正确的是9. 已知(10)xf x =,则f (5)= A. 510B. 105C.5log 10D. lg510. 某同学在争辩函数()||1xf x x =+(x ∈R)时,分别给出下面几个结论:①函数f (x )是奇函数;②函数f (x )的值域为(-1,1);③函数f (x )在R上是增函数;其中正确结论的序号是 A. ①② B. ①③ C. ②③ D. ①②③二、填空题:(本大题共6小题,每小题4分,共24分) 11. 若集合A=[0,2],集合B=[1,5],则A ∩B=_________. 12. 函数y=2x-4的零点是_________. 13. 函数f (x )=3log (21)x -(x ∈[1,2])的值域为______________.14. 函数f (x )=3x-1,若f[g (x )]=2x+3,则一次函数g (x )=______________.15. 若函数f (x )= (0,1)x a a a >≠的反函数的图象过点(2,-1),则a=_______.16. 若函数21()2x xf x a +=-是奇函数,则使f (x )>3成立的x 的取值范围是_______.三、解答题(本大题共3小题,共26分) 17. (本小题满分6分)已知:函数f (x )=(x-2)(x+a )(a ∈R),f (x )的图象关于直线x=1对称. (Ⅰ)求a 的值;(Ⅱ)求f (x )在区间[0,3]上的最小值.18. (本小题满分10分)某家庭进行理财投资,依据长期收益率市场猜测,投资债券类稳健型产品的收益与投资额成正比,投资股票类风险型产品的收益与投资额的算术平方根成正比,已知两类产品各投资1万元时的收益分别为0.125万元和0.5万元,如图:(Ⅰ)分别写出两类产品的收益y(万元)与投资额x(万元)的函数关系;(Ⅱ)该家庭有20万元资金,全部用于理财投资,问:怎么安排资金能使投资获得最大收益,最大收益是多少万元?19. (本小题满分10分)已知:函数f(x)= log(1)log(1)a ax x+--(a>0且a≠1).(Ⅰ)求函数f(x)的定义域;(Ⅱ)推断函数f(x)的奇偶性,并加以证明;(Ⅲ)设a=12,解不等式f(x)>0.卷(Ⅱ)1. 设集合A=2{|0}x x x-=,B={x|x-2=0},则2{|(x)(2)0}x x x--≠=A.)(BACR⋂ B.BACR⋃)( C. )(BCAR⋃ D. )(BACR⋃2. 已知函数f(x)=21311log[()2()2]33-⋅-x x,则满足f(x)<0的x的取值范围是A. (-∞,0)B. (0,+∞)C. (-∞,-1)D. (-1,+∞)3. 下表是某次测量中两个变量x,y的一组数据,若将y表示为关于x的函数,则最可能的函数模型是x 2 3 4 5 6 7 8 9y 0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99A. 一次函数模型B. 二次函数模型C. 指数函数模型D. 对数函数模型4. 用二分法求方程213x x+=0,1),则下一步可确定这个根所在的区间为_________.5. 已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)= 22x x-,假如函数g(x)=f(x)-m恰有4个零点,则实数m的取值范围是________.6. 函数f(x)=(1)xaa log x++(a>0且a≠1)在区间[0,1]上的最大值与最小值之和为a,则a的值是___________.7. 已知函数f(x)=2x bx c-+,若f(1-x)=f(1+x),且f(0)=3.(Ⅰ)求b,c的值;(Ⅱ)试比较()f(c)m mf b与(m∈R)的大小.8. 集合A是由满足以下性质的函数f(x)组成的:对于任意x≥0,f(x)∈[-2,4]且f(x)在[0,+∞)上是增函数.(Ⅰ)试推断1()2f x x=与21()46()2=-⋅xf x(x≥0)是否属于集合A,并说明理由;(Ⅱ)对于(Ⅰ)中你认为属于集合A的函数f(x),证明:对于任意的x≥0,都有f(x)+f(x+2)<2f (x+1).【参考答案】 卷(Ⅰ)CABCDBACDD11. [1,2]; 12. 2; 13. [0,1];14. 2433x +; 15. 12;16. (0,1)17. 解:2()(2)()(2)2f x x x a x a x a =-+=---, (Ⅰ)函数f (x )图象的对称轴为x=22a-=1,则a=0;3分(Ⅱ)由(Ⅰ)得22()2(1)1f x x x x =-=--, 由于x=1∈[0,3],所以min()f x =f (1)=-1.6分18. 解:(Ⅰ)投资债券类稳健型产品的收益满足函数:y=kx (x>0), 由题知,当x=1时,y=0.125,则k=0.125,即y=0.125x ,2分投资股票类风险型产品的收益满足函数:y=k(x>0), 由题知,当x=1时,y=0.5,则k=0.5,即4分(Ⅱ)设投资债券类稳健型产品x 万元(0≤x ≤20),则投资股票类风险型产品20-x 万元, 由题知总收益0≤x ≤20),6分2222t 2011510.125(20t )0.5(2)3,8228t x t y t t t t =≤≤=-=-+=-++=--+令则max 2,16,y 3()t x ===当即时万元9分答:投资债券类稳健型产品16万元,投资股票类风险型产品4万元,此时受益最大为3万元.10分19. 解:(Ⅰ)由题知:1010x x +>⎧⎨->⎩,解得:-1<x<1,所以函数f (x )的定义域为(-1,1);3分(Ⅱ)奇函数,证明:由于函数f (x )的定义域为(-1,1),所以对任意x ∈(-1,1), f (-x )=log (1)log (1())a a x x -+---=[log (1)log (1)]a a x x -+--=-f (x )所以函数f (x )是奇函数;6分(Ⅲ)由题知:1122log (1)log (1),x x +>-即有101011x x x x +>⎧⎪->⎨⎪+<-⎩,解得:-1<x<0,所以不等式f (x )>0的解集为{x|-1<x<0}.10分卷(Ⅱ)D CD4.1(0,)2; 5. 0<m<1;6. 12;7. 解:(Ⅰ)由已知,二次函数的对称轴x=2b=1,解得b=2,又f (0)=c=3, 综上,b=2,c=3;4分(Ⅱ)由(Ⅰ)知,f (x )=x 2-2x+3,所以,f (x )在区间(-∞,1)单调递减,在区间(1,+∞)单调递增. 当m>0时,3m>2m>1,所以f (2m)<f (3m).当m=0时,3m =2m =1,所以f (2m )=f (3m). 当m<0时,3m<2m<1,所以f (2m)>f (3m).10分8. 解:(Ⅰ)1f ()/∈x A,2f ()x A∈,理由如下:由于1f (49)=5>4,1f (49)∉[-2,4],所以1f (x )∉A.对于21f ()46()(0),2=-⋅≥x x x由于1()2xy =在[0,+∞)上是减函数,且其值域为(0,1], 所以21()46()2=-⋅xf x 在区间[0,+∞)上是增函数. 所以2()f x ≥f (0)=-2,且2()f x =146()2-⋅x<4, 所以对于任意x ≥0,f (x )∈[-2,4]. 所以2()f x ∈A 6分(Ⅱ)由(Ⅰ)得:2131(2)46()4()222++=-⋅=-⋅x x f x ,f (x+1)=4-116()2+⋅x =4- 3·1()2x,所以2f (x+1)-[f (x )+f (x+2)]=2[4-3·1()2x ]-[4-6·1()2x +4-32·1()2x ]=32·1()2x>0,所以对于任意的x ≥0,都有f (x )+f (x+2)<2f (x+1).10分。
北京四中2020-2021高一上学期期中考试一.选择题1.已知全集U ,集合{1,2,3,4,5},{3,2}A B ==-,则图中阴影部分表示的集合为A.{3} B.{3,2}- C.{2} D.{2,3}-2.不等式201x x -≤+的解集是A.(,1)(1,2]-∞-⋃- B.[1,2]- C.(,1)[2,)-∞-⋃+∞ D.(1,2]-3.下列函数中,在区间(0,)+∞上为减函数的是A.22y x x =- B.||y x = C.21y x =+ D.y =4.已知函数2()51f x x x =-+,则下列区间中一定包含()f x 零点的区间是A.(2,1)-- B.(1,0)- C.(0,1) D.(1,2)5.若函数()f x 是偶函数,且在区间[0,3]上单调递增,则A.(1)(2)(3)f f f ->> B.(3)(1)(2)f f f >->C.(2)(1)(3)f f f >-> D.(3)(2)(1)f f f >>-6.已知12,x x 是方程220x -+=的两根,则2212x x +=A.2 B.3 C.4 D.57.已知,,a b R ∈且,a b >则下列结论中正确的是A.1a b > B.11a b< C.||||a b > D.33a b >8.“2a =”是“函数()||f x x a =-在区间上[2,)+∞为增函数”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.向某容器中匀速注水时容器水面高度h 随时间t 变化的函数()t f h =的图像如右图所示,则容器的形状可以是A B C D10.若一系列函数的解析式相同、值域相同,但定义域不同,则称这些函数为“同族函数”.函数解析式为()12+=x x f ,值域为{}3,1的同族函数有A.1个B.2个C.3个D.4个二.填空题11.设全集R U =,集合{}2|<=x x A ,集合{}1|<=x x B ,则集合=A C U ____________集合()B A C U ⋃=____________.12.命题“1<∀x ,11>x”的否定是_____________.13.某班共38人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,16人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为__________.14.函数()()111>-+=x x x x f 的最小值是________,此时=x ________.15.能够说明“设a ,b ,c 是任意实数.若c b a >>,则c b a >+”是假命题的一组整数a ,b ,c 的值依次为____________.三.解答题16.已知0>a ,记关于x 的不等式()()01<+-x a x 的解集为P ,不等式11≤-x 的解集为Q .(1)若3=a ,求集合P ;(2)若P Q ⊆,求a 的取值范围.17.(本小题9分)已知定义在R 上的奇函数()21x m f x x +=+,m R ∈。
2022-2023学年北京四中高一(上)月考数学试卷(10月份)1. 全集U ={0,1,2,3},若∁U A ={2},则集合A 是( ) A. {2} B. {0,1}C. {0,1,2}D. {0,1,3}2. 下列命题中的真命题是( )A. 2≤3B. 集合N 中最小的数是1C. x 2+1=2x 的解集可表示为{1,1}D. x 2+|y|=0 3. 已知集合A ={−1,0,1},集合B ={x ∈Z|x 2−2x ≤0},那么A ∪B 等于( ) A. {−1}B. {0,1}C. {0,1,2}D. {−1,0,1,2}4. 命题“∃x ∈R ,使得x 2+2x <0”的否定是( ) A. ∃x ∈R ,使得x 2+2x ≥0 B. ∀x ∈R ,使得x 2+2x ≥0 C. ∃x ∈R ,使得x 2+2x >0 D. ∀x ∈R ,使得x 2+2x <05. 下列四个集合中,是空集的是( ) A. {x|x +3=3} B. {(x,y)|y 2=−x 2,x,y ∈R} C. {x|x 2≤0} D. {x|x 2−x +1=0,x ∈R}6. 设a ,b 是实数,则“a +b >0”是“ab >0”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知集合M ={(x,y)|x +y =0},N ={(x,y)|x 2+y 2=2,x ∈R,y ∈R},那么M ∩N =( )A. {(−1,1),(1,−1}B. {(1,1),(−1,−1)}C. {(−2,2),(2,−2)}D. {(−2,−2),(2,2)}8. 不等式1−x x≥2的解集为( )A. (−∞,13)B. (0,13]C. [0,13]D. (−∞,0)∪(13,+∞)9. 对于实数a ,b ,c 有下列命题:①若a >b ,则ac <bc ; ②若ac 2>bc 2,则a >b ; ③若a <b <0,则a+b2<−√ab ; ④若c >a >b >0,则ac−a >bc−b . 则其中真命题的个数是( )A. 1B. 2C. 3D. 410. 已知集合A={x|y=√4−x2},B={x∈R|a≤x≤a+l},若A∩B=⌀,则实数a的取值范围为( )A. [−3,2]B. (−∞,−3)∪(2,+∞)C. [−2,1]D. (−∞,−3]∪[2,+∞)11. 已知a∈Z,关于x的一元二次不等式x2−6x+a≤0的解集中有且仅有3个整数,则所有符合条件的a的值之和是( )A. 13B. 18C. 21D. 2612. 如图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口A.B,C的机动车辆数如图所示,图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车数(假设:单位时间内,在上述路段中同一路段上驶入与驶出的车辆数相等),则( )A. x2>x3>x1B. x1>x3>x2C. x1>x2>x3D. x3>x2>x113. 不等式x2−5x−6<0的解集为______ .14. 已知集合A={1,2},B={a,a+3},若A∩B={1},则满足条件的实数a的集合为______.15. 命题“∀x∈R,ax2−2ax+3>0恒成立”是真命题,则实数a的取值范围是______.16. 设a,b∈R,写出一个使a<b和1a <1b同时成立的充分条件,可以是______.17. 当两个集合中一个集合为另一集合的子集时,称这两个集合构成“全食”;当两个集合有公共元素,但互不为对方子集时,称这两个集合构成“偏食”.对于集合A={−1,12,1},B={x|x2=a},若集合A与集合B构成“全食”时,a的取值集合为______;若集合A与集合B构成“偏食”,则a的取值集合为______.18. 某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为(1) .②该小组人数的最小值为(2) .19. 已知全集U=R,A={x|x2−x−6<0},B={x|x2+2x−8>0}. (Ⅰ)求A∩B;(Ⅰ)若集合C={x|x2−4ax+3a2<0}且A∩B⊆C,求实数a的取值范围.20. 关于x的方程x2−2(m+2)x+m2−1=0,设x1,x2为方程的两根.(Ⅰ)若m=2,求1x1+1x2的值;(Ⅰ)若x1,x2,满足x12+x22=18,试求m的值;(Ⅰ)若x1,x2均大于0,求m的取值范围.21. 已知集合A={a1,a2,a3,a4}中a1<a2<a3<a4,且A∩N∗=A.(Ⅰ)若集合B={y|y=x2,x∈A},满足A∩B={a1,a4},a1+a4=10,试求a1,a4的值;(Ⅰ)若集合C={z|z=uv,u∈A,v∈A},问是否存在一组a1,a2,a3,a4值,使得C= {3,4,9,12,36,51},若存在试找出,若不存在,试说明理由.答案和解析1.【答案】D【解析】解:∵全集U={0,1,2,3},若∁U A={2},∴A={0,1,3},故选:D.利用补集的运算求解即可.本题主要考查了补集的运算,属于基础题.2.【答案】A【解析】解:对于A:2≤3为真命题,故A正确;对于B:集合N中最小的数为0,故B错误;对于C:x2+1=2x的解为x=1,故解集可表示为{1},故C错误;对于D:x2+|y|=0不是命题,故D错误.故选:A.直接利用集合的表示方法,常见的集合,方程的解法,来判断命题真假.本题考查的知识要点:集合的表示方法,常见的集合,方程的解法,命题真假的判断,主要考查学生的运算能力和数学思维能力,属于基础题.3.【答案】D【解析】【分析】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,属于基础题.先分别求出集合B,再由并集定义能求出A∪B.【解答】解:∵集合B={x∈Z|x2−2x≤0}={x∈Z|0≤x≤2}={0,1,2},又集合A={−1,0,1},∴A∪B={−1,0,1,2}.故本题选D.4.【答案】B【解析】解:命题“∃x∈R,使得x2+2x<0”的否定是“∀x∈R,使得x2+2x≥0”.故选:B.直接利用含有一个量词的命题的否定方法进行否定即可.本题考查了命题的否定,要掌握含有一个量词的命题的否定方法:改变量词,然后否定结论.5.【答案】D【解析】解:根据题意,由于空集中没有任何元素,对于选项A ,x =0; 对于选项B ,(0,0)是集合中的元素; 对于选项C ,由于x =0成立; 对于选项D ,方程无解. 故选:D.根据空集的定义,分别对各个选项进行判断即可. 本题考查了集合的概念,是一道基础题.6.【答案】D【解析】 【分析】本题考查充分、必要、充要条件的判断,属于基本知识的考查. 利用特例结合充分、必要、充要条件的判断方法,判断正确选项即可. 【解答】解:a ,b 是实数,如果a =−1,b =2,则“a +b >0”,但是“ab >0”不成立. 如果a =−1,b =−2,则”ab >0“,但是”a +b >0“不成立,所以设a ,b 是实数,则“a +b >0”是“ab >0”的既不充分也不必要条件. 故选:D.7.【答案】A【解析】解:解{x +y =0x 2+y 2=2得,{x =−1y =1或{x =1y =−1,∴M ∩N ={(−1,1),(1,−1)}.故选:A.可解方程组{x +y =0x 2+y 2=2即可得出M ∩N.本题考查了交集的定义及运算,集合的描述法和列举法的定义,考查了计算能力,属于容易题.8.【答案】B【解析】解:由1−xx ≥2得1−xx −2=1−3x x≥0,可转化为(3x −1)x ≤0且x ≠0,解得0<x≤13.故选:B.利用移项,通分,转化为二次不等式求解即可.本题考查分式不等式的解法,属于基础题.9.【答案】C【解析】解:①若a>b,当c=0时,ac=bc,故错误,②若ac2>bc2,则c2>0,所以a>b,故正确,③若a<b<0,则a+b2−(−√ab)=a+b+2√ab2=−(√−a+√−b)22<0,即a+b2<−√ab,故正确,④ac−a −bc−b=c(a−b)(c−a)(c−b),因为c>a>b>0,则c(a−b)>0,c−a>0,c−b>0,所以ac−a −bc−b>0,即ac−a>bc−b,故正确,故正确的命题个数为3个,故选:C.利用不等式的性质以及作差比较大小的方法对各个问题逐个化简即可判断求解.本题考查了不等式的性质以及命题的真假,考查了学生的运算能力,属于基础题.10.【答案】B【解析】解:A={x|4−x2≥0}={x|−2≤x≤2},B={x|a≤x≤a+1},且A∩B=⌀,∴a>2或a+1<−2,∴a<−3或a>2,∴a的取值范围为(−∞,−3)∪(2,+∞).故选:B.可求出A={x|−2≤x≤2},然后根据A∩B=⌀可得出a的范围.本题考查了一元二次不等式的解法,交集和子集的定义,交集的运算,考查了计算能力,属于基础题.11.【答案】C【解析】解:设f(x)=x2−6x+a,其图象是开口向上,对称轴是x=3的抛物线,如图所示.若关于x的一元二次不等式x2−6x+a≤0的解集中有且仅有3个整数,则{f(2)≤0f(1)>0,即{22−6×2+a ≤012−6×1+a >0, 解得5<a ≤8,又a ∈Z ,∴a =6,7,8. 则所有符合条件的a 的值之和是6+7+8=21. 故选:C.设f(x)=x 2−6x +a ,其图象是开口向上,对称轴是x =3的抛物线,如图所示.利用数形结合的方法得出,若关于x 的一元二次不等式x 2−6x +a ≤0的解集中有且仅有3个整数,则{f(2)≤0f(1)>0,从而解出所有符合条件的a 的值之和.本题考查了有特殊要求的一元二次不等式的解法,考查了推理能力和计算能力,属于难题.12.【答案】A【解析】解:由图可知:{x 1=x 3−55+50x 2=x 1−20+30x 3=x 2−35+30,即{x 1=x 3−5x 2=x 3+5, 所以x 2>x 3>x 1, 故选:A.先对图表数据进行分析处理得:{x 1=x 3−55+50x 2=x 1−20+30x 3=x 2−35+30,再结合数据进行简单的合情推理得:{x 1=x 3−5x 2=x 3+5,所以x 2>x 3>x 1,得解 本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题13.【答案】(−1,6)【解析】解:不等式变形得:(x −6)(x +1)<0, 可化为{x −6>0x +1<0或{x −6<0x +1>0,解得:−1<x <6, 则不等式的解集为(−1,6). 故答案为:(−1,6)不等式左边分解因式后,利用两数相乘积为负,得到两因式异号转化为两个一元一次不等式组,求出不等式组的解集即可.此题考查了一元二次不等式的解法,利用了转化的思想,是一道基本题型.14.【答案】{−2,1}【解析】解:∵A ∩B ={1}, ∴1∈B ,2∉B , ∴a =1或a +3=1, ∴a =1或a =−2, ∴实数a 的集合为{−2,1}. 故答案为:{−2,1}.根据条件得出1∈B ,从而得出a =1或a +3=1,然后解出a 的值即可.本题考查了交集的定义及运算,元素与集合的关系,考查了计算能力,属于容易题.15.【答案】0≤a <3【解析】解:若命题“∀x ∈R ,ax 2−2ax +3>0恒成立”是真命题, 则a =0,或{a >0△=4a 2−12a <0,解得:0≤a <3, 故答案为:0≤a <3.若命题“∀x ∈R ,ax 2−2ax +3>0恒成立”是真命题,则a =0,或{a >0△=4a 2−12a <0,解得实数a 的取值范围.本题以命题的真假判断与应用为载体,考查了全称命题和特称命题,二次函数的图象和性质,难度中档.16.【答案】a =−1,b =1,(不唯一)【解析】解:∵1a<1b, ∴1a −1b =b−aab <0,∴ab <0, ∵a <b ,∴a <0<b ,∴使a <b 和1a <1b 同时成立的充分条件可以是a =−1,b =1, 故答案为:a =−1,b =1,(不唯一).先利用不等式的性质得到a <0<b ,再利用充要条件的定义判定即可.本题考查了不等式的性质,充要条件的判定,考查了推理能力与计算能力,属于基础题.17.【答案】{a|a <0或a =1}{14}【解析】解:根据题中定义,当集合A ={−1,12,1},B ={x|x 2=a}时,若集合A 与集合B 构成“全食”时,B ⊆A ,则a <0,即B =⌀,符合题意,或a =1,即B ={−1,1},符合题意,故a 的取值组成的集合为{a|a <0或a =1}; 若集合A 与集合B 构成“偏食”时, 当a =1时,B ={−1,1},不符合题意, 当a =14时,B ={−12,12},符合题意, 故a 的取值组成的集合为{14}, 故答案为:{a|a <0或a =1};{14}.根据题中新定义结合子集与交集的概念可解.本题考查集合的运算,以及对新定义的理解,属于基础题.18.【答案】612【解析】 【分析】本题考查的知识点是推理和证明,简易逻辑,线性规划,难度中档.①设男学生女学生分别为x ,y 人,若教师人数为4,则{x >yy >42×4>x ,进而可得答案;②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x ,进而可得答案;【解答】解:①设男学生女学生人数分别为x ,y 人, 若教师人数为4,则{x >y y >42×4>x ,即4<y <x <8, 即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则{x >yy >z 2z >x ,即z <y <x <2z 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,12.19.【答案】解:因为A ={x|x 2−x −6<0}={x|−2<x <3},B ={x|x 2+2x −8>0}={x|x <−4或x >2}.(Ⅰ)A ∩B ={2<x <3},(Ⅰ)因为集合C ={x|x 2−4ax +3a 2<0}={x|(x −a)(x −3a)<0},且A ∩B ⊆C , 当a =0时,C 为空集,不合题意,当a <0时,C =(3a,a),则3a ≤2且a ≥3,无解,不合题意, 当a >0时,C =(a,3a),则a ≤2且3a ≥3,则1≤a ≤2, 则实数a 的取值范围为[1,2]. 【解析】(Ⅰ)根据交集的定义可解. (Ⅰ)根据集合的包含关系可解.本题考查交集的定义以及集合间的包含关系,属于基础题.20.【答案】解:(Ⅰ)当m =2时,x 2−8x +3=0,由韦达定理有,x 1+x 2=8,x 1x 2=3, 则1x 1+1x 2=x 1+x 2x 1x 2=83;(Ⅰ)由Δ=4(m +2)2−4(m 2−1)≥0,解得m ≥−54, 由韦达定理有,x 1+x 2=2(m +2),x 1x 2=m 2−1,又x 12+x 22=(x 1+x 2)2−2x 1x 2=4(m +2)2−2(m 2−1)=18,即m 2+8m =0,解得m =0或m =−8(舍), 故m 的值为0;(Ⅰ)由(Ⅰ)可知,m ≥−54,又x 1,x 2均大于0,则{2(m +2)>0m 2−1>0,解得{m >−2m >1或m <−1,综上,实数m 的取值范围为[−54,−1)∪(1,+∞).【解析】(Ⅰ)将m =2代入,可得x 1+x 2=8,x 1x 2=3,进而得解;(Ⅰ)由韦达定理可得,x 1+x 2=2(m +2),x 1x 2=m 2−1,结合题意可得m 2+8m =0,由此得解; (Ⅰ)根据题意建立关于m 的不等式组,解出即可.本题主要考查一元二次方程根与系数的关系,考查运算求解能力,属于基础题.21.【答案】解:(Ⅰ)已知集合A ={a 1,a 2,a 3,a 4}中a 1<a 2<a 3<a 4,且A ∩N ∗=A ,若集合B ={y|y =x 2,x ∈A},则B ={a 12,a 22,a 32,a 42}, 因为a 1<a 2<a 3<a 4,所以a 12<a 22<a 32<a 42,由A∩N∗=A可知,1≤a1<a2<a3<a4,若a1>1,则a1<a12<a22<a32<a42,显然A∩B≠{a1,a4},所以a1=1,又因为a1+a4=10,所以a4=9,因为9∈B,所以a22=9或a32=9,当a22=9,即a2=3时,a3可以取4,5,6,6,7,8,所以a42>a32>9,所以A∩B={1,9},满足题意;当a32=9,即a3=3时,此时A={1,2,3,9},B={1,4,9,81},满足A∩B={1,9},综上,a1=1,a4=9;(Ⅰ)若存在a1,a2,a3,a4值,使得C={3,4,9,12,36,51},则由a1<a2<a3<a4可知a1a2=3,因为a1,a2∈N∗,所以a1=1,a2=3,则a1a3=4,可得a3=4,因为36∈C,所以a4=36或3a4=36或4a4=36或a42=36,即a4=36或a4=12或a4=9或a4= 6,所以A={1,3,4,6}或A={1,3,4,9}或A={1,3,4,12}或A={1,3,4,36},易知上述四种情况均不存在u∈A,v∈A,使得uv=51.故不存在a1,a2,a3,a4值,使得C={3,4,9,12,36,51}.【解析】(Ⅰ)先求出集合B,然后根据元素之间的大小关系,结合交集结果可求出a1,然后可解;(Ⅰ)根据元素间的大小关系可先求a1,然后依次确定其他元素,最后验证可知.本题考查了集合的综合应用,属于中档题.第11页,共11页。
北京市第四中学2024-2025学年高三上学期期中测试数学试卷一、单选题1.已知全集R U =,集合{}240A x x =-<,{}1B x x =≥,则()U A B ⋂=ð()A .()1,2B .()2,2-C .(),2∞-D .()2,1-2.不等式111xx >-的解集为()A .(0,)+∞B .(1,)+∞C .(0,1)D .10,2⎛⎫ ⎪⎝⎭3.已知边长为2的正方形ABCD 中,AC 与BD 交于点E ,则AE BC ⋅=()A .2B .2-C .1D .1-4.已知函数()23f x x x=--,则当0x <时,()f x 有()A .最大值3+B .最小值3+C .最大值3-D .最小值3-5.设,a b R ∈,则“a b >”是“22a b >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.在平面直角坐标系xOy 中,角α与角β的终边关于y 轴对称.若2cos 23α=,则cos β=()A .19B .19-C D .7.近年来,人们越来越注意到家用冰箱使用的氟化物的释放对大气臭氧层的破坏作用.科学研究表明,臭氧含量Q 与时间t (单位:年)的关系为0e ta Q Q -=,其中0Q 是臭氧的初始含量,a 为常数.经过测算,如果不对氟化物的使用和释放进行控制,经过280年将有一半的臭氧消失.如果继续不对氟化物的使用和释放进行控制,再.经过n 年,臭氧含量只剩下初始含量的20%,n 约为()(参考数据:ln 20.7≈,ln10 2.3≈)A .280B .300C .360D .6408.已知函数()1,2,xx x af x x a +≤⎧=⎨>⎩,若()f x 的值域为R ,则实数a 的取值范围是()A .(,0]-∞B .[0,1]C .[0,)+∞D .(,1]-∞9.已知0a >,记sin y x =在[],2a a 的最小值为a s ,在[]2,3a a 的最小值为a t ,则下列情况不可能的是()A .0a s >,0a t >B .0a s <,0a t <C .0a s >,0a t <D .0a s <,0a t >10.已知在数列{}n a 中,1a a =,命题:p 对任意的正整数n ,都有12nn n a a a +=-.若对于区间M 中的任一实数a ,命题p 为真命题,则区间M 可以是()A .()3,4B .()2,3C .3216,115⎛⎫ ⎪⎝⎭D .832,311⎛⎫ ⎪⎝⎭二、填空题11.已知复数5i2iz =-,则z =.12.已知函数()33log ,0,,0.x x f x x x >⎧=⎨<⎩若()()273f f a =,则a =.13.已知幂函数y x α=的图像经过()0,0A ,()1,1B ,()1,1C -,()4,2D 中的三个点,写出满足条件的一个α的值为.14.在ABC V 中,1tan 4A =,3tan 5B =.(1)C ∠=;(2)若ABC V,则最短边的长为.15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[],M M -.例如,当()31x x ϕ=,()2sin x x ϕ=时,()1x A ϕ∈,()2x B ϕ∈.给出下列命题:①“函数()f x A ∈”的充要条件是“t R ∀∈,关于x 的方程()f x t =都有实数解”;②“函数()f x B ∈”的充要条件是“()f x 既有最大值,也有最小值”;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()()f x g x B ⋅∈,则()g x B ∈;④若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉.其中,正确命题的序号是.三、解答题16.已知函数()sin cos cos sin f x x x ωϕωϕ=+,其中0ω>,π2ϕ<.记()f x 的最小正周期为T ,()2f T =.(1)求ϕ的值;(2)若()f x 与x 轴相邻交点间的距离为π2,求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.在ABC V 中,2cos 2c A b a =-.(1)求C ∠的大小;(2)若c =,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求AC 边上中线的长.条件①:ABC V 的面积为条件②:1b a -=;条件③:1sin sin 2B A -=.注:如果选择的条件不符合要求,第(Ⅱ)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.已知函数()()2121ln 22f x x x x x =+--.(1)求()f x 的单调区间;(2)若关于x 的不等式()f x x a '<-+有解,求实数a 的取值范围.19.已知椭圆C :22221x y a b+=(0a b >>)的左顶点为A ,C 的长轴长为4,焦距为过定点(),0T t (2t ≠±)作与x 轴不重合的直线交C 于P ,Q 两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求C 的方程;(2)是否存在点T ,使得OM ON ⋅等于定值13?若存在,求t 的值;若不存在,说明理由.20.已知函数()e xf x x ax =-,R a ∈.(1)当e a =时,求曲线=在点1,1处的切线方程;(2)若函数()f x 是单调递增函数,求a 的取值范围;(3)当0a ≥时,是否存在三个实数123x x x <<且()()()123f x f x f x ==?若存在,求a 的取值范围;若不存在,说明理由.21.已知集合{}1,2,3,,A n =⋅⋅⋅,其中*N n ∈,1A ,2A ,…,m A 是A 的互不相同的子集.记i A 的元素个数为i M (1,2,,i m =⋅⋅⋅),i j A A 的元素个数为ij N (1i j m ≤<≤).(1)若4n =,3m =,{}11,2A =,{}21,3A =,13231N N ==,写出所有满足条件的集合3A (结论不要求证明);(2)若5n =,且对任意的1i j m ≤<≤,都有0ij N >,求m 的最大值;(3)若给定整数7n ≥,3i M ≤(1,2,,i m =⋅⋅⋅)且对任意1i j m ≤<≤,都有1ij N =,求m 的最大值.。
2020-2021学年北京第四中学顺义分校高一数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若,规定:,例如:(),则的奇偶性为A、是奇函数不是偶函数B、是偶函数不是奇函数C、既是奇函数又是偶函数D、既不是奇函数又不是偶函数参考答案:B2. 以下四个命题:①对立事件一定是互斥事件;②函数的最小值为2;③八位二进制数能表示的最大十进制数为256;④在中,若,,,则该三角形有两解.其中正确命题的个数为()A.4 B.3 C.2 D.1参考答案:C3. 向高为H的水平瓶中注水,注满为止。
如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是()参考答案:A略4. 若为递减数列,则的通项公式可以为()A. B. C. D.参考答案:C略5. 如图中阴影部分的面积S是h的函数(其中0≤h≤H),则该函数的大致图象为()A. B. C. D.参考答案:D【分析】利用排除法求解.首先确定当时,阴影部分面积为0,排除A与B,又由当时,阴影部分的面积小于整个半圆面积的一半,排除C,从而得到答案D.【详解】解:∵当时,对应阴影部分的面积为0,∴排除A与B;∵当时,对应阴影部分的面积小于整个区域面积的一半,且随着h的增大,S随之减小,减少的幅度不断变小,∴排除C.从而得到答案D.故选:D.【点睛】此题考查了函数问题的实际应用.注意排除法在解选择题中的应用,还要注意数形结合思想的应用.6. 的值等于()A. B. C. D.参考答案:D【分析】利用诱导公式先化简,再利用差角的余弦公式化简得解.【详解】由题得原式=.故选:D【点睛】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.7. 在等差数列{a n}中,已知,则()A.40 B.43 C.42 D.45参考答案:C分析:联立求出d的值,再把化简,再把和d 的值代入求值.详解:由题得,∴.∴.故选C.8. 若则实数的取值范围是()A.;B. ;C. ;D.参考答案:B 9. 在锐角△ABC中,角A,B,C的对边分别为a,b,c,若,则的最小值是()A.4 B. C.8 D.6参考答案:C在锐角中,化简可得①.,②,且.则令,则,故当且仅当,即时,取等号,此时,,故的最小值是8,故选:C.10. 已知向量,,,的夹角为45°,若,则()A. B. C. 2 D. 3参考答案:C【分析】利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.二、 填空题:本大题共7小题,每小题4分,共28分11. 函数f(x)=在上的最大值和最小值的差为1,则a=.参考答案:12. 若,,则参考答案:13. 已知,则__________.参考答案:【分析】直接利用两角和的正切公式求解即可.【详解】因为,所以,故答案为.14. 若球的半径为,则这个球的内接正方体的表面积是 ; 参考答案: 7215. 过点(0,1)且与直线2x ﹣y=0垂直的直线方程的一般式是 .参考答案:x+2y ﹣2=0【考点】直线的一般式方程与直线的垂直关系.【分析】与直线2x ﹣y=0垂直的直线方程的斜率k=﹣,由此能用点斜式方程能求出过点(0,1)且与直线2x ﹣y=0垂直的直线方程.【解答】解:∵与直线2x ﹣y=0垂直的直线方程的斜率k=﹣,∴过点(0,1)且与直线2x ﹣y=0垂直的直线方程为: y ﹣1=﹣,整理,得:x+2y ﹣2=0.故答案为:x+2y ﹣2=0.【点评】本题考查直线方程的求法,是基础题,解题时要认真审题,注意直线间位置关系的灵活运用.16. 下把函数的图象向右平移个单位长度得到的函数图象解析式为f(x)= .参考答案:17. 已知向量,,则.参考答案:(5,7)三、 解答题:本大题共5小题,共72分。
2020-2021北京市北京四中高一数学上期中模拟试题(带答案)一、选择题1.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭ C .11,42⎛⎫ ⎪⎝⎭ D .13,24⎛⎫ ⎪⎝⎭2.函数()ln f x x x =的图像大致是( )A .B .C .D .3.函数()log a x xf x x =(01a <<)的图象大致形状是( )A .B .C .D .4.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤5.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 6.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ðD .()()U M P S ⋂⋃ð7.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x =为奇函数,且在(0,)+∞上单调递增,则实数a 的值是( )A .1,3-B .1,33C .11,,33-D .11,,332 8.函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞9.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是()A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--10.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫ ⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭ C .()1,3 D .()2,311.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b 12.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( ) A .a c b << B .b a c << C .a b c << D .b c a <<二、填空题13.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.14.给出下列四个命题:(1)函数()f x x x bx c =++为奇函数的充要条件是0c =;(2)函数()20x y x -=>的反函数是()2log 01y x x =-<<;(3)若函数()()2lg f x x ax a =+-的值域是R ,则4a ≤-或0a ≥; (4)若函数()1y f x =-是偶函数,则函数()y f x =的图像关于直线0x =对称. 其中所有正确命题的序号是______.15.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________. 16.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.17.已知偶函数()f x 满足3()8(0)f x x x =-≥,则(2)0f x ->的解集为___ ___ 18.设,则________19.用max{,,}a b c 表示,,a b c 三个数中的最大值,设{}2()max ln ,1,4(0)f x x x x x x =--->,则()f x 的最小值为_______. 20.已知函数(12)(1)()4(1)xa x f x a x x ⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________三、解答题 21.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike ”计划在甲、乙两座城市共投资160万元,根据行业规定,每个城市至少要投资30万元,由前期市场调研可知:甲城市收益P 与投入(a 单位:万元)满足426P a =,乙城市收益Q 与投入(b 单位:万元)满足124Q b =+,设甲城市的投入为(x 单位:万元),两个城市的总收益为()(f x 单位:万元).(1)写出两个城市的总收益()(f x 万元)关于甲城市的投入(x 万元)的函数解析式,并求出当甲城市投资72万元时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?22.已知函数2()(2)3f x x a x =+--.(1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 23.已知函数()()()lg 2lg 2f x x x =++-.(1)求函数()f x 的定义域;(2)若不等式f ()x m >有解,求实数m 的取值范围.24.已知函数()1ln 1x f x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.25.2018年1月8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y 与这种新材料的含量x (单位:克)的关系为:当06x ≤<时,y 是x 的二次函数;当6x ≥时,13x t y -⎛⎫= ⎪⎝⎭测得数据如下表(部分):(1)求y 关于x 的函数关系式()y f x =;(2)当该产品中的新材料含量x 为何值时,产品的性能指标值最大.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43x f x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫ ⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.2.A解析:A【解析】【分析】从图象来看图象关于原点对称或y 轴对称,所以分析奇偶性,然后再用特殊值确定.【详解】因为函数()ln f x x x =是奇函数,排除C ,D又因为2x = 时()0f x >,排除B故选:A【点睛】本题主要考查了函数的图象的判断,还考查了数形结合的思想,属于基础题.3.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论.【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A .故选C .【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.4.D解析:D【解析】【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值.要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增, 所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D.【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.5.B解析:B【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算6.C解析:C【解析】【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S).故选C .【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.7.B解析:B【解析】【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项.【详解】因为()a f x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.8.D解析:D【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞),令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数;x ∈(4,+∞)时,t =228x x --为增函数;y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞),故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增. 简称为“同增异减”.9.D解析:D【解析】【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解.【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减, 因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--,故选D.本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.10.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 11.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 12.B解析:B【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.二、填空题13.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8【解析】 ∵f(x)定义域为[3+a ,5],且为奇函数,∴3+a =-5,∴a=-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.14.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确 解析:(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确, 由函数()()2lg f x x ax a =+-的值域是R ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确.【详解】解:(1)当0c =时,()=+f x x x bx ,()()()-=---=-+=-f x x x bx x x bx f x ,当函数为奇函数时()()f x f x -=-,即()++=----+=+-x x bx c x x bx c x x bx c ,解得0c =,所以0c =是函数()f x x x bx c =++为奇函数的充要条件,所以(1)正确;(2)由反函数的定义可知函数()20x y x -=>的反函数是()2log 01y x x =-<<,所以(2)正确;(3)因为函数()()2lg f x x ax a =+-的值域是R ,所以2y x ax a =+-能取遍(0,)+∞的所有实数,所以240a a =+≥△,解得0a ≥或4a ≤-,所以(3)正确; (4)函数()1y f x =-是偶函数,所以()1y f x =-图像关于y 轴对称,函数()y f x =的图像是由()1y f x =-向左平移一个单位得到的,所以函数()y f x =的图像关于直线1x =-对称,故(4)不正确.故答案为:(1)(2)(3)【点睛】本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.15.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2【解析】【分析】先求f (2),再根据f (2)值所在区间求f (f (2)).【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.16.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200【解析】【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数.【详解】设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000,当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200.【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键. 17.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能 解析:{|40}x x x ><或【解析】 【分析】通过判断函数的奇偶性,增减性就可以解不等式. 【详解】根据题意可知(2)0f =,令2x t -=,则转化为()(2)f t f >,由于偶函数()f x 在()0,∞+上为增函数,则()(2)f t f >,即2t>,即22x -<-或22x ->,即0x <或4x >.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.18.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-解析:-1 【解析】 【分析】由分段函数的解析式先求出的值并判定符号,从而可得的值.【详解】, ,所以,故答案为-1. 【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.19.0【解析】【分析】将中三个函数的图像均画出来再分析取最大值的函数图像从而求得最小值【详解】分别画出的图象取它们中的最大部分得出的图象如图所示故最小值为0故答案为0【点睛】本题主要考查数形结合的思想与解析:0 【解析】 【分析】将{}2()max ln ,1,4(0)f x x x x x x =--->中三个函数的图像均画出来,再分析取最大值的函数图像,从而求得最小值.【详解】分别画出ln y x =-,1y x =-,24y x x =-的图象,取它们中的最大部分,得出()f x 的图象如图所示,故最小值为0.故答案为0 【点睛】本题主要考查数形结合的思想与常见函数的图像等,需要注意的是在画图过程中需要求解函数之间的交点坐标从而画出准确的图像,属于中等题型.20.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】 【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.三、解答题21.(1)()1364f x x =-+,30130x ≤≤,66万元(2)甲城市投资128万元,乙城市投资32万元 【解析】 【分析】() 1由题知,甲城市投资x 万元,乙城市投资160x -万元,求出函数的解析式,利用当甲城市投资72万元时公司的总收益;()()12364f x x =-+,30130x ≤≤,令t =,则t ∈,转化为求函数2,6143y t t ∈=-++最值,即可得出结论.【详解】()1由题知,甲城市投资x 万元,乙城市投资160x -万元,所以()()11616023644f x x x =+-+=-+, 依题意得3016030x x ≥⎧⎨-≥⎩,解得30130x ≤≤,故()1364f x x =-+,30130x ≤≤, 当72x =时,此时甲城市投资72万元,乙城市投资88万元,所以总收益()136664f x x =-+=. ()()12364f x x =-+,30130x ≤≤令t =t ∈.2,6143y t t ∈=-++当t =,即128x =万元时,y 的最大值为68万元, 故当甲城市投资128万元,乙城市投资32万元时, 总收益最大,且最大收益为68万元. 【点睛】本题考查实际问题的应用,二次函数的性质以及换元法的应用,考查转化思想以及计算能力,属于中档题.22.(1)(,6][6,+)∞∞--U ;(2)3(,)4∞-. 【解析】 【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围. 【详解】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞U ;(2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.【点睛】本题考查二次函数单调性,恒成立的的综合问题,属于基础题型. 23.(1)(2,2)-;(2)lg 4m <. 【解析】试题分析:(1)由对数有意义,得20{20x x +>->可求定义域;(2)不等式()f x m >有解⇔max ()m f x <,由2044x <-≤,可得()f x 的最大值为lg 4,所以lg 4m <.试题解析:(1)x 须满足20{20x x +>->,∴22x -<<,∴所求函数的定义域为(2,2)-.(2)∵不等式()f x m >有解,∴max ()m f x <()()()lg 2lg 2f x x x =++-=2lg(4)x -令24t x =-,由于22x -<<,∴04t <≤∴()f x 的最大值为lg 4.∴实数m 的取值范围为lg 4m <. 考点:对数性质、对数函数性、不等式有解问题. 24.(1)[1,0]- ;(2)见解析. 【解析】试题分析:(1)由对数的真数大于0,可得集合A ,再由集合的包含关系,可得a 的不等式组,解不等式即可得到所求范围;(2)求得()f x 的定义域,计算()f x -与()f x 比较,即可得到所求结论. 试题解析:(1)令101xx+>-,解得11x -<<,所以()1,1A =-, 因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[]1,0-(2)函数()f x 的定义域()1,1A =-,定义域关于原点对称()()()1ln 1x f x x ---=+- ()1111ln ln ln 111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭而1ln32f ⎛⎫=⎪⎝⎭,11ln 23f ⎛⎫-= ⎪⎝⎭,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭所以函数()f x 是奇函数但不是偶函数.25.(1)()2712,0641,63x x x x f x x -⎧-+≤<⎪⎪=⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩(2)4x = 【解析】 【分析】(1)利用待定系数法,结合所给数据可求函数关系式()y f x =; (2)分段求解函数的最大值,比较可得结果. 【详解】(1)当06x ≤<时,由题意,设()2f x ax bx c =++(0a ≠),由表格数据得()()()007142423f c f a b c f a b c ⎧==⎪⎪=++=⎨⎪=++=⎪⎩,解得1420a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,所以,当06x ≤<时,()2124f x x x =-+, 当6x ≥时,()13x tf x -⎛⎫= ⎪⎝⎭,由表格数据可得()911939tf -⎛⎫==⎪⎝⎭, 解得7t =,所以当6x ≥时,()713x f x -⎛⎫= ⎪⎝⎭,综上,()2712,0641,63x x x x f x x -⎧-+≤<⎪⎪=⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩. (2)当06x ≤<时,()()221124444f x x x x =-+=--+, 可知4x =时,()()max 44f x f ==,当6x ≥时,()713x f x -⎛⎫= ⎪⎝⎭单凋递减,可知6x =时,()()67max1633f x f -⎛⎫=== ⎪⎝⎭.综上可得,当4x =时,产品的性能指标值最大. 【点睛】本题主要考查函数解析式的求解及最值,待定系数法是求解析式的常用方法,根据函数的类型设出解析式,结合条件求解未知系数,侧重考查数学抽象 26.(1)1.70/min km ;(2)466;(3)9 【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =. 试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-= 故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg 52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x∴==于是466x =. 故候鸟停下休息时,它每分钟的耗氧量为466个单位.(3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 2100{11.5log lg 2100x x x x =-=-两式相减可得:13211log 2x x =,于是129x x =. 故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍.考点:1.函数代入求值;2.解方程;3.对数运算.。