对数函数—比较大小
- 格式:ppt
- 大小:251.00 KB
- 文档页数:13
04高中数学-娟老师2020.30,0,0a b c ⇒>>>"同正异负"第一步:判正负31,1,log 41,,,a b c A B C±±⇒<>=>第二步:与1,排除2比较大小1、2、第一步:判正负⇒>>>0,0,0a b c0.21,1c a b C2,-小=>±±⇒<<第二步:与1,2比较大选3、0,,0,0a b c A D⇒>><排第一步:判除正负,1122311,log 1log 102Ba b ⎛⎫±±⇒<=> ⎪⎝⎭第二步:与1,2比较大,排除小1136log 3339x x ⇒===16log 767y y ⇒==x y z ⇒>>4、445566log (43)1log 3,log (53)1log 3,log (63)1log 3a b c =⋅=+=⋅=+=⋅=+a b c⇒>>5、()()0,1f x ⇒+∞、单在调性:单减0.3222log 52x ⇒<<、比的大小:3a b c⇒>>、比函数值的大小:1、221()((log 5)(lo )g 5)a x f x f f f ⇒=-⇒=-=、奇偶性:偶函数()0.522log 5log 4.1220,0⇒>+>>∞、单调性:单增3a b c⇒>>、比大小:2、1,()2()x f x x fx -=-⋅=-⇒判奇偶:奇函数(2,()2)2,x x x f x x f x x x ∈∞=⋅↑↑⇒=⋅↑∈∞判单调性:(0,+),(0,+时)33333,(log 5),(log 2),(ln 3)log 2log 5ln 3a fb fc f c a b ===⇒<<⇒>>比大小:3、1,()()()()g x xf x xf x g x ⇒-=--==判奇偶:偶函数2,()()()(),g x x g x x f xf x x x ↑↑⇒=∈∈∞=↑∞判单调性:(0,+)时(0,+,).80.82023,(log 5.1),(2),3log 5).12(3a g c a b b g c g ⇒>>⇒>=>==比大小:4、1,(1)(1)f x f x ⇒+=-+奇偶:偶函数1(1,[)22xx f x ⎛⎫⇒=- ⎪∞⎝⎭∈↓判单调性:1,+)时,333333,(2log 2)(log 4.5),(log 4)log 4log 4.53,(3)a f f b f c f b a c ⇒=-===<<⇒>>比大小:11(1)1f x x ⎧-−−−−−→⎨=−−−−−→⎩左移个单位左移个单位1,判奇偶:关于对称()f x y ⎧⎨⎩关于轴对称()f x ⇒是偶函数2,()x f x ∈∞判单调性:(0,+)时,单调递减1.36612.323,(log 3),(2),(0.70.7log 32)a f b f c f c a b ⇒<<=>=⇒>=比大小:11、12、13、14、。
必修1 2.2对数函数课时5 对数函数的概念、图象、性质、比较大小班级: 姓名: 学号: _使用时间___________总编号_________课前预习学案一、预习目标记住对数函数的定义;初步把握对数函数的图象与性质. 二、预习内容1、对数函数的定义_______________________________________.2、对数函数y = x a log (a >0,且a ≠ 1)的图像和性质.研究函数和 的图象; 请同学们完成x ,y 对应值表,并用描点法分别画出函数 和的图象:三、提出疑惑:(图象性质与指数函数作比较)(对数函数与指数函数互为反函数,图象关于x y 21log =x y 2log =x y 2log =x y 21log =直线x y =对称)(反函数概念见教材P73)课内探究学案一、学习目标:1、理解对数函数的概念,熟悉对数函数的图象与性质规律.2、掌握对数函数的性质,求定义域和比较大小。
学习重难点:对数函数的图象与性质 二、学习过程 探究点一例1:求下列函数的定义域(教材P71)(1) (2)练习:求下列函数的定义域: (1) (2)例2、求下列函数的定义域:(1)()54log 221++-=x x y ; (2)()()211log -+x x .解析 : 直接利用对数函数的定义域求解,而不能先化简. 点评:本题主要考查了对数函数的定义域极其求法. 探究点二例3:比较下列各组数中两个值的大小:(利用单调性和图形) (1)5.1log 7.0与1.2log 7.0; (2)5log 3与4log 6;(3)()9.1lg m 与()()1lg 1.2>m m ; (4)7.0log 1.1与7.0log 2.1;(5)7.0log 2与8.0log 31; (6)3log 2与4log 3.(2倍与3作比较)探究点三例4、已知,0>a 求1≠a ,函数xa y =与()x y a -=log 的图像只能是( B )三、反思总结)4(log x y a -=2log x y a =)1(log 5x y -=xy 2log 1=课时5 对数函数的概念、图象、性质、比较大小 测试题____班 姓名_______一、基础过关(1~6各5分)1.函数y =log 2x -2的定义域是 ( D )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( C )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.若f (x )=()12log 121+x ,则f (x )的定义域为 ( C )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞C.⎝⎛⎭⎫-12,0∪(0,+∞)D.⎝⎛⎭⎫-12,2 4.已知x =ln π,y =log 52,z =21-e,则 ( D )A .x <y <zB .z <x <yC .z <y <xD .y <z <x5.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是____(1,2)____. 6.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是____(4,-1)____. 7. (10分)比较下列三个数的大小:(1)8.0log ,9.0log ,1.17.01.19.0. (2)32log ,2log ,3log 2332;8.(15分)设函数f (x )=ln(x 2+ax +1)的定义域为A .(1)若1∈A ,-3∉A ,求实数a 的取值范围;(2)若函数y =f (x )的定义域为R ,求实数a 的取值范围.解 (1)由题意,得⎩⎪⎨⎪⎧1+a +1>09-3a +1≤0,所以a ≥103.故实数a 的取值范围为[103,+∞).(2)由题意,得x 2+ax +1>0在R 上恒成立,则Δ=a 2-4<0,解得-2<a <2. 故实数a 的取值范围为(-2,2). 二、能力提升(9~11各5分)9.函数f(x)=log a|x|+1(0<a<1)的图象大致为(A)10.若log a23<1,则a的取值范围是(D) A.(0,23) B.(23,+∞) C.(23,1) D.(0,23)∪(1,+∞) 11.函数f(x)=log3(2x2-8x+m)的定义域为R,则m的取值范围是___ m>8_____.12.(15分)已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)-g(x)>0的x的取值范围.解(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即log a(1+x)>log a(1-x),①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0.三、探究与拓展13.(15分)若不等式x2-log m x<0在(0,12)内恒成立,求实数m的取值范围.解由x2-log m x<0,得x2<log m x,要使x2<log m x在(0,12)内恒成立,只要y=log m x在(0,12)内的图象在y=x2的上方,于是0<m<1.在同一坐标系中作y=x2和y=log m x的草图,如图所示.∵x=12时,y=x2=14,∴只要x=12时,y=log m12≥14=log m m14.∴12≤m14,即116≤m.又0<m<1∴116≤m<1,即实数m的取值范围是[116,1).。
指数函数、幂函数和对数函数是高中数学中的重要概念,它们在数学和现实生活中都有着重要的应用。
在本篇文章中,我们将深入探讨这三种函数的性质,以及它们之间的比较大小关系。
通过本文的阅读,你将能够更全面地理解这些函数的特点,并从中获得更深入的数学启发。
1. 指数函数指数函数是数学中常见的一种函数,其一般形式可表示为 y = a^x,其中a为常数且不等于1。
指数函数的特点是随着自变量x的增大,函数值y以指数方式增长或者下降。
指数函数在自然科学、工程技术以及金融领域都有着广泛的应用,例如放射性衰变、人口增长模型等都可以使用指数函数来描述。
在指数函数中,底数a的大小决定了函数的增长速度,当a大于1时,函数呈现增长趋势;当a在0和1之间时,函数呈现下降趋势。
2. 幂函数幂函数是指数函数的一种特殊形式,其一般形式可以表示为y = x^a,其中a为常数。
幂函数的特点是自变量x的次幂影响了函数值y的大小,不同的a值会导致函数曲线的形状发生变化。
当a为正数时,幂函数呈现增长趋势;当a为负数时,幂函数呈现下降趋势。
幂函数在物理学、生物学以及经济学中都有着重要的应用,例如牛顿定律中的物体受力情况、生物种群数量增长模型等都可以用幂函数来描述。
3. 对数函数对数函数是幂函数的逆运算,常见的对数函数有以10为底的常用对数函数和以e为底的自然对数函数。
对数函数的一般形式可以表示为 y= loga(x),其中a为底数。
对数函数的特点是能够将幂函数转化为线性函数,便于进行求解和分析。
对数函数在科学领域、信息论以及计算机科学中有着广泛的应用,例如信噪比的计算、数据压缩算法等都离不开对数函数的运算。
指数函数、幂函数和对数函数各自具有独特的特点和应用,它们在数学领域和现实生活中都扮演着重要的角色。
在比较大小方面,一般来说,指数函数增长速度最快,其次是幂函数,对数函数增长速度最慢。
在实际问题中,我们可以根据具体情况选择合适的函数来进行建模和求解。
关于“指数函数、对数函数⼤⼩⽐较问题”的探索2019-07-15关于⼤⼩⽐较的问题,是⾼考不可缺少的⼀个考点,但是考⽣遇到这道题往往有点不知所措,即使能做出来,也要花上相当多的时间,这不仅会影响这类题⽬的得分率,还会在很⼤程度上影响学⽣的考试状态.为此在历年的⾼考前,我都要进⾏这类题⽬的专门训练,下⾯是我近些年为⾼三学⽣复习“⼤⼩⽐较”专题时总结出的⼀点经验,供⼴⼤⾼考学⼦学习借鉴.【问题⼀】设a=log54,b=(log53)2,c=log54,⽐较a、b、c的⼤⼩.解:因为y=logax(a>0,且a≠1)在a>1时为增函数,在0<a<1时为减函数,所以,0=log51<log53<log54<log55=1.⼜易知log53>(log53)2,⼜因为log45>log44=1,所以显然有c>a>b.⼩结:本题显然由对数性质可得.解题后反思本题还能否⽤其他⽅法来解决.【问题⼆】设a=log3π,b=log23,c=log32,⽐较a、b、c的⼤⼩.解:因为π>3,⼜log3π>log33=1,即a>1,此题关键是处理好b、c的⼤⼩⽐较,由于b、c这两者间没有相同的底数,但是注意观察就发现,有b>c,所以有a>b>c.(引导学⽣看到有log23=12log23>12log22=12,即b>12,⽽对于c=log32=12log32<12log33=12,即c<12.由于看出b、c均⽐a⼩,且均为正数.故⽽可以⽤求商法来判断b、c的⼤⼩,即可得到a、b、c的⼤⼩).⼩结:对性质的综合运⽤是解决问题的关键.【问题三】设a=(35)25,b=(25)35,c=(25)25,⽐较a、b、c的⼤⼩.解:引导学⽣观察发现,a、c的指数均是25,⽽且35>25>0,所以显然有a>c,⼜看到b、c的底数均是25,且0<25<1,所以显然有b⼩结:注意观察,找出特征,进⽽利⽤性质来完成⽐较.【问题四】若x∈(e-1,1),a=lnx,b=2lnx,c=ln3x⽐较a,b,c的⼤⼩.解:因为e是⼀个⼤于2的⽆理数,所以0<1e<1.易知,a<0,b<0,c<0,很显然c>a>b.⼩结:关键是要掌握绝对值⼩于1的数经过乘⽅后与它原来的绝对的⼤⼩进⾏⽐较.【问题五】若a=logπ0.8,b=(12)0.2,c=2-0.5,⽐较a、b、c的⼤⼩.解:因为a是⼀个对数函数,且底数π>1,所以显然有a<0,b=(12)0.2=2-0.2>2-0.5=c>0,所以显然有b>c>a.⼩结:本题关键是考察对数和指数函数的性质,同时在⽐较⼤⼩时,合理的取值也是关键.【问题六】设a=log32,b=ln2,c=5-12,⽐较a,b,c的⼤⼩.解:易知a、b均为正数,且都介于0到1之间,所以可以通过求商来判断它们的⼤⼩.ba=log3e>1,所以a<b.现在关键是⽐较a、c的⼤⼩,所以可以考虑⽤估算法来判断得到c<a,所以b>a>c.⼩结:估算法要求学⽣记住⼀些较为常⽤的数的近似数.有些题在按照常规法解答较慢时,⽤估算解近似值往往能起到事半功倍的效果.总之,⼤⼩⽐较是有规律可循的,但是在考场上要能做到快速准确地答题,仅靠基本理论和常规⽅法是不够的,还需要在平时积累⼀定的解题技巧,尤其是要把规律性与特殊性有效结合,才能做到解题快速、灵活⽽⼜⾼效.注:本⽂为⽹友上传,不代表本站观点,与本站⽴场⽆关。
指数函数与对数函数大小比较的实用指南简介指数函数和对数函数是数学中常见的函数类型。
在比较它们的大小时,我们可以采用以下几种简单的策略。
策略一:观察底数和指数指数函数可以表示为 f(x) = a^x,其中 a 表示底数,x 表示指数。
对数函数可以表示为 g(x) = log_a(x),其中 a 表示底数,x 表示函数值。
当底数 a 大于 1 时,指数函数的增长速度显著大于对数函数的增长速度。
当底数 a 介于 0 和 1 之间时,指数函数的增长速度相对较小,而对数函数的增长速度较大。
因此,如果给定 a、x,我们可以通过观察底数的值来判断哪个函数较大。
策略二:比较函数值我们可以通过计算函数值来比较指数函数和对数函数的大小。
给定 a、x,我们计算指数函数 f(x) = a^x 和对数函数 g(x) = log_a(x) 的函数值,然后比较它们的大小。
具体比较方法如下:- 当 a^x > log_a(x) 时,指数函数 f(x) 较大。
- 当 a^x < log_a(x) 时,对数函数 g(x) 较大。
- 当 a^x = log_a(x) 时,指数函数 f(x) 和对数函数 g(x) 相等。
策略三:绘制函数图像绘制指数函数和对数函数的图像可以直观地比较它们的大小。
对于给定的 a,我们可以使用数学软件或手绘图形的方式来绘制函数图像,并观察函数图像的变化趋势。
一般来说,指数函数的图像呈现出急剧增长或急剧衰减的趋势,而对数函数的图像则呈现出平缓增长的趋势。
策略四:推导和比较导数我们可以推导指数函数和对数函数的导数,然后比较它们的大小。
如果导数之间的比较关系成立,那么函数的大小关系也将成立。
具体而言,对于给定的 a,我们可以计算指数函数 f(x) = a^x 和对数函数 g(x) = log_a(x) 的导数,然后比较它们的大小。
结论在比较指数函数和对数函数的大小时,我们可以运用以上策略。
根据具体的情况选择合适的方法进行判断,以便得出准确的结果。
指数函数对数函数大小比较的技巧指数函数和对数函数都是数学中常见的函数类型,它们在不同的应用领域中起着重要的作用。
为了有效地比较指数函数和对数函数的大小,以下是几个简单但实用的技巧:1. 图像比较法:通过绘制指数函数和对数函数的图像,可以直观地比较它们的大小关系。
可以使用计算机软件或手工绘图的方式绘制函数的图像,然后观察曲线的走势来判断函数的大小。
2. 极限比较法:利用函数的极限性质来进行大小比较。
指数函数和对数函数都具有特定的极限性质,对于任意正实数x,当x趋向于正无穷时,指数函数的增长速度远大于对数函数;反之,当x趋向于零时,指数函数的增长速度远小于对数函数。
可以通过计算极限值或比较增长速度来判断函数的大小。
3. 导数比较法:求取函数的导数来进行大小比较。
指数函数的导数恒大于零,而对数函数的导数恒小于零。
因此,在某个区间内,如果指数函数的导数大于对数函数的导数,那么指数函数的增长速度就会超过对数函数,从而指数函数大于对数函数。
4. 特殊点比较法:比较函数在特定点上的取值来判断大小。
通过计算指数函数和对数函数在某些特殊点上的值,如x=1或x=e,可以直接比较函数的大小。
例如,指数函数可以表示为e的幂次方,如果幂次大于1,则指数函数会超过对数函数。
这些技巧可以帮助我们更好地理解和比较指数函数和对数函数的大小关系。
根据具体问题的需求,选择适合的比较方法可以更精确地判断函数的大小。
请注意,这些技巧是简化的策略,适用于基本的指数函数和对数函数。
在处理复杂的函数时,可能需要借助更深入的数学理论和方法进行比较。
知识导航一般地,比较函数式的大小主要是比较指数函数式、对数函数式、幂函数式的大小.由于大部分的函数式中的底数、指数、真数均不相同,所以很难直接比较出它们的大小,我们需要采取一些相应的办法,如利用函数的单调性、图象,借助中间量等来比较两个函数式的大小.一、利用函数的单调性在某一定区间内,指数函数、对数函数、幂函数都具有单调性.当两函数式的底数相同时,可以建立恰当的函数模型,根据函数的单调性来比较两个函数式的大小;当两函数式的底数不相同时,可先利用换底公式以及指数函数、对数函数、幂函数的运算法则,将二者化为底数相同的函数式,再结合函数的单调性进行比较.例1.试比较以下两组数的大小.()10.332与0.335;()220.5与40.3.解析:对题中的两组数进行观察不难发现,这两组数都属于指数函数.可首先将它们的底数统一,然后根据底数与1之间的关系来判断函数的单调性.一般地,对于指数函数y=a x,当a>1时函数递增,当0<a<1时函数递减.最后根据函数的单调性比较两组数的大小.解:(1)由于两数的底数相同,且0<0.3<1,所以函数y=0.3x是单调递减函数,又32>35,所以0.332<0.335.()2由于4=22,所以40.3=()220.3=20.6,而函数y=2x是单调递增函数,且0.5<0.6,所以20.5<40.3.二、利用函数的图象我们知道,当a>1时,对数函数y=log a x(a>0,a≠1)的图象呈递增的趋势,且a越大,图象在第一象限内离x轴越近.反之,当0<a<1时,对数函数的图象呈递减的趋势,且a越小,函数图象离y轴越近.当a>1时,指数函数y=a x()a>0,a≠1的图象呈递增的趋势,且a越大,图象在第一象限内离y轴越近.反之,当0<a<1时,对数函数的图象呈递减的趋势,且a越小,函数图象离x轴越近.当α>0时,幂函数函数y=xα的图象在区间(0,+∞)上是增函数;当α<0时,图象在(0,+∞)上是减函数,在(-∞,0)上单调递增.在解题时,我们可以结合函数式的特点构造出函数模型,然后结合函数的图象来比较函数式的大小.例2.比较下列两组数的大小.()131.2与21.2;()2æèöø233与æèöø3432.解析:(1)31.2与21.2是指数同为1.2的指数函数,在对其进行比较时,可以首先将y=3x、y=2x的图象画在同一坐标系中,然后将x=1.2代入,观察此时y的大小即可得出31.2>21.2.()2由于æèöø233=æèöø4932,将y=æèöø4932与y=æèöø3432的图象画在同一直角坐标系中,继而观察当x=32时y值的大小,就可以快速得出结论:æèöø233<æèöø3432.运用函数的图象来比较函数式的大小比较直接、简便.三、借助中间量有时候,要比较的两个函数式的真数、底数、指数各不相同,且它们之间没有任何联系,那么我们就需要借助中间量来比较它们的大小.常用的中间量有0、1、-1.可将函数式分别与中间量进行比较,如此便可判断出它们的大小关系.例3.比较以下函数式的大小.()11.70.3与0.93.1;()2log20.3,logπ3与log35.解析:()1中两个函数式的指数与底数均不同,且无法统一,可借助中间量来对其进行大小比较.∵1.70.3>1.70=1,0.93.1<0.90=1,∴1.70.3>0.93.1.()2中的两个函数式较为复杂,可同时将0和1作为中间量来比较三者的大小.∵log20.3<log21=0,0=logπ1<logπ3<logππ=1,∴log20.3<logπ3<log35.在比较函数式的大小时,同学们要注意分清所要比较的函数式之间的区别,建立联系,构造合适的函数模型或中间量,然后利用函数的单调性、图象、中间量来比较函数式的大小.(王林37。
专题12 指、对数函数比较大小【母题原题1】【2020年高考全国Ⅲ卷,理数】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.【母题原题2】【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314) 【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.【母题原题3】【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><,0ab ∴<,∴0ab a b <+<.故选B .【名师点睛】本题主要考查对数的运算和不等式,属于中档题.【命题意图】主要考查数形结合思想、分类讨论思想的运用和考生的逻辑推理能力、数学运算能力. 【命题规律】在高考中的考查热点有:(1)比较指、对数式的大小;(2)指、对数函数的图象与性质的应用;(3)以指、对数函数为载体,与其他函数、方程、不等式等知识的综合应用.以选择题和填空题为主,难度中等.【答题模板】1.比较指数幂大小的常用方法一是单调性法,不同底的指数函数化同底后就可以应用指数函数的单调性比较大小,所以能够化同底的尽可能化同底;二是取中间值法,不同底、不同指数的指数函数比较大小时,先与中间值(特别是0,1)比较大小,进而得出大小关系;三是图解法,根据指数函数的特征,在同一平面直角坐标系中作出它们相应的函数图象,借助图象比较大小.2.比较对数值大小的类型及相应方法【方法总结】1.指数函数图象的特点(1)任意两个指数函数的图象都是相交的,过定点(0,1),底数互为倒数的两个指数函数的图象关于y轴对称.(2)当a>1时,指数函数的图象呈上升趋势;当0<a<1时,指数函数的图象呈下降趋势.(3)指数函数在同一坐标系中的图象的相对位置与底数大小关系如图所示,其中0<c<d<1<a<b,在y 轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大.2.对数函数图象的特点(1)当a >1时,对数函数的图象呈上升趋势; 当0<a <1时,对数函数的图象呈下降趋势.(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.(3)在直线x =1的右侧:当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.3.解决对数型复合函数的单调性问题的步骤 (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,要考查其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性. 研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,否则所得范围易出错.1.(2020·广西壮族自治区高三月考(文))已知函数()f x 是定义在R 上的奇函数,当0x ≤时,()f x 单调递增,则( ).A .()()93log 4(1)log 4f f f >>B .()()93log 4(1)log 4f f f <<C .()()93(1)log 4log 4f f f >>D .()()93(1)log 4log 4f f f <<【答案】B 【解析】【分析】根据函数()f x 的单调性和奇偶性可知()f x 是R 上的单调增函数,只需根据对数函数的单调性比较9log 4,1,3log 4的大小即可得到答案.【详解】因为函数()f x 是定义在R 上的奇函数,当0x ≤时,()f x 单调递增, 所以()f x 在R 上单调递增,因为99log 4log 91<=,331log 3log 4=<, 所以93log 41log 4<<,所以()()93log 4(1)log 4f f f <<. 故选B.【点睛】本题考查函数的性质,对数函数的单调性的应用,考查数学抽象与逻辑推理的核心素养. 2.(2020·广西壮族自治区高三其他(文))已知0.2log 2a =,20.2b =,0.23c =,则( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】A 【解析】【分析】利用指对函数的单调性,借助中间量比较大小. 【详解】0.2log 20a =<,()20.20,1b =∈,0.231c =>,所以a b c <<, 故选A .【点睛】利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.3.(2020·广西壮族自治区田阳高中高二月考(理))已知0.64a =, 1.12b =,4log 12c =,则( ) A .c b a << B .b a c <<C .a b c <<D .c a b <<【答案】A 【解析】【分析】利用对数函数的单调性比较c 与2的大小关系,再利用指数函数的单调性得出2a b >>,即可得出a 、b 、c 三个数的大小关系.【详解】指数函数2xy =为增函数,则 1.2 1.1222a b =>=>,对数函数4log y x =是()0,∞+上的增函数,则44log 12log 162c =<=,因此,c b a <<. 故选A.【点睛】本题考查指数与对数的大小比较,一般利用指数函数与对数函数的单调性,结合中间值法来得出各数的大小关系,考查推理能力,属于中等题.4.(2020·广西壮族自治区田阳高中高二月考(文))已知20.8a =,0.82b =,2log 0.8c =,则a ,b ,c 的大小关系为( )A .a b c >>B . a c b >>C . b a c >>D . c a b >>【答案】C 【解析】【分析】把各数与中间值0,1比较即得.【详解】200.81<<,0.821>,2log 0.80<,∴c a b <<. 故选C .【点睛】本题考查幂和对数的比较大小,掌握指数函数和对数函数的性质是解题关键.不同底的幂或对数解题时可借助于中间值0,1等比较大小.5.(2020·广西壮族自治区桂平市第五中学高三月考(文))已知()12log ,02,0x x x f x x >⎧⎪=⎨⎪≤⎩,()()2a f f =-,ln π2b =,lncos5c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >>【答案】C 【解析】【分析】根据对数运算和指数运算比较大小即可.【详解】解:由题设知,()()12112log 244a f f f ⎛⎫=-=== ⎪⎝⎭,ln π1>,∴ln π22b =>,又0cos51<<, ∴lncos50c =<,则b a c >>.故选C.【点睛】本题考查对数运算和指数运算,结合对数函数,指数函数及余弦函数的性质,属于基础题. 6.(2020·广西壮族自治区南宁三中高三期末(文))已知ln 2a =,ln b π=,125ln 24c =,则a ,b ,c 的大小关系为( ) A .b c a << B .c a b << C .a b c << D .a c b <<【答案】D 【解析】【分析】化简c ,利用对数函数的单调性,即可得出结论. 【详解】因为12125255ln ln ln 2442c ⎛⎫=== ⎪⎝⎭,又因为ln y x =在(0,)+∞上单调递增, 且522π<<,所以a c b <<. 故选:D.【点睛】本题考查对数的简单运算,考查利用函数的单调性比较函数值的大小,属于基础题. 7.(2020·湖南省高三一模(理))已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A .a c b >>B .b c a >>C .b a c >>D .a b c >>【答案】B 【解析】【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系.【详解】()()f x f x -=,则函数()y f x =为偶函数,函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.8.(2020·广西壮族自治区高三三模(文))已知函数()1112xf x e =-+,若()1.32a f =,()0.74b f =,()3log 8c f =,则a ,b ,c 的大小关系为( )A .c a b <<B .a c b <<C .b a c <<D .a b c <<【答案】C 【解析】【分析】由指数函数的性质,求得函数()f x 是减函数,再利用指数函数与对数函数的性质,得到1.30.73log 824<<,即可求解.【详解】由指数函数的性质,可得函数e 1xy =+为单调递增函数, 可得函数()1112xf x e =-+是定义域R 上的单调递减函数, 又因为 1.31.40.73log 82224<<<=,所以()()()0.7 1.3342log 8f f f <<,所以b a c <<. 故选C .【点睛】本题主要考查了函数的单调性的应用,以及指数式与对数式的比较大小,其中解答中根据指数函数与对数函数的性质,得到自变量的大小关系是解答的关键,着重考查了推理与计算能力. 9.(2020·广西壮族自治区南宁三中高三月考(理))已知13(ln 2)a =,13(ln 3)b =,21log 3c =,则a ,b ,c 的大小关系是( ).A .a b c <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】利用对数函数和指数函数的性质求解. 【详解】解:∵0ln 21<<,∴01a <<, ∵ln 31>,∴1b >, ∵221log log 313=-<-,∴0c <, ∴c a b <<, 故选B .【点睛】本题考查三个数的大小的求法,解题时要认真审题,注意对数函数和指数函数的性质的合理运用,属于基础题.10.(2020·四川省金堂中学校高三一模(文))若a ,b ,c 满足23a =,2log 5b =,32c =.则( )A .c a b <<B .b c a <<C .a b c <<D .c b a <<【答案】A 【解析】【分析】利用指数函数和对数函数的单调性即可比较大小. 【详解】23a =,12232<<,∴12a <<,22log 5log 4b =>,∴2b >,32c =,01323<<,∴01c <<,∴c a b <<,故选A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题. 11.(2020·四川省绵阳南山中学高三一模(理))已知0.50.70.70.7,0.5,log 0.5a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】B 【解析】【分析】先利用指数函数和幂函数的单调性比较出,a b ,1的大小,再利用对数函数的单调性判断出c 与1的大小,然后可比较出3个数的大小.【详解】解:因为0.7xy =在R 上为减函数,且0.50>,所以0.500.00.771<<=,即01a <<,同理可得01b <<, 因为0.50.500.7.50.5,0.700..55<>,所以0.50.710.70.50>>>,即10a b >>>,因为0.7log y x =在(0,)+∞上为减函数,且0.70.50>>, 所以0.70.7log 0.5log 0.71>=,即1c >, 所以b a c <<, 故选B【点睛】此题考查指数和对数大小的比较,采取了中间量法,利用了转化与化归的思想,属于基础题.12.(2020·四川省成都外国语学校高二期中(理))已知实数ln22a =,22ln2b =+,2(ln2)c =,则a ,b ,c 的大小关系是( ) A .c a b << B .c b a << C .b a c << D .a c b <<【答案】A 【解析】【分析】先判断ln2的大小范围,然后判断三个数的大小关系.【详解】解:因为0ln21<<所以1<ln 22<2,2+2ln2>2,0<2(ln2)<1,∴c <a <b . 故选A .【点睛】本题考查了有关对数式的大小比较.13.(2020·四川省绵阳南山中学高三一模(文))已知5log 312a ⎛⎫= ⎪⎝⎭,5log 314b ⎛⎫= ⎪⎝⎭,5log 0.12c =,则( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>【答案】A 【解析】【分析】利用指数函数与对数函数的单调性即可求解.【详解】5log 312a ⎛⎫= ⎪⎝⎭,555log 32log 3log 9111422b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5555101log log log 0.1lo 10g 122212c -⎛⎫=== ⎪⎝⎭=,由5log y x =在定义域内单调递增,则555log 10log 9log 3>>,又12xy ⎛⎫= ⎪⎝⎭单调递减,所以555log 10log 9log 3111222⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a b c >>. 故选A【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,需掌握指数函数、对数函数的图像与性质,属于基础题.14.(2020·四川省南充市第一中学高二期中(理))设0.40.831.2, 1.2,log 2a b c ===,则,,a b c 的大小关系是( ) A .b c a >> B .b a c >> C .c b a >> D .a b c >>【答案】B 【解析】【分析】由函数的单调性及与中间值“1”的大小关系,即可得到本题答案.【详解】由 1.2xy =在区间(,)-∞+∞是单调增函数,得0.80.401.2 1.2 1.21>>=, 又因为33log 2log 31c =<=,所以b a c >>. 故选B.【点睛】本题主要考查指数、对数比较大小的问题,利用函数的单调性及中间值“1”是解决此题的关键. 15.(2020·四川省高三三模(文))已知a =log 20.2,b =20.2,c =0.20.3,则A .a <b <cB .a <c <bC .c <a <bD .b <c <a【答案】B 【解析】【分析】运用中间量0比较a , c ,运用中间量1比较b , c【详解】a =log 20.2<log 21=0, b =20.2>20=1, 0<0.20.3<0.20=1,则0<c <1,a <c <b .故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.16.(2020·宜宾市叙州区第一中学校高三二模(理))已知0.22018a =,20180.2b =,2018log 0.2c =,则( )A .c b a >>B .b a c >>C .a b c >>D .a c b >>【答案】C【解析】由于020181a >=,000.21b <<=,2018log 10c <=,故a b c >>.故选C . 17.(2020·西昌市第二中学高三二模(理))已知2log 3a =,ln3b =,123c -=,则( )A .a b c <<B .c a b <<C .b c a <<D .c b a <<【答案】D 【解析】【分析】由题意结合对数函数的性质、指数函数的性质可得1101a b<<<、1c <,进而可得1c b a <<<,即可得解. 【详解】由题意31log 2a =,31log e b =,所以1101a b<<<,则1a b >>, 又102331c -=<=,所以1c b a <<<. 故选D.【点睛】本题考查了指数函数、对数函数单调性的应用,考查了指数式、对数式的大小比较与推理能力,属于基础题.18.(2020·四川省棠湖中学高三一模(文))已知0.250.5log 2,1og 0.2,0.5a b c ===,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b【答案】B 【解析】【分析】利用对数函数和指数函数的性质求解.【详解】555log 1log 2log <<∴102a <<,2221og 1og 54>=,∴2b >, 10.200.50.50.5<<,∴112c <<, ∴a c b <<,故选B.【点睛】本题考查指数式和对数式的大小比较,考查逻辑推理能力、运算求解能力,求解时注意中间变量的引入.19.(2020·四川省阆中中学高三二模(理))已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】【分析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A .【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.20.(2020·四川省高三三模(理))已知函数(1)=-y f x 的图象关于直线1x =对称,且当(0,)x ∈+∞时,ln ()x f x x =.若2e a f ⎛⎫=- ⎪⎝⎭,(2)b f =,23c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系是( ) A .b a c >> B .a b c >>C .a c b >>D .c b a >>【答案】D 【解析】【分析】根据函数图象平移的性质判断出函数()y f x =的对称性,结合导数判断出函数()y f x =在(1,)x e ∈时的单调性,最后利用单调性,结合对数的运算性质和对数函数的单调性进行大小比较即可.【详解】因为函数(1)=-y f x 的图象向左平移1个单位长度,得到()y f x =的图象, 而函数(1)=-y f x 的图象关于直线1x =对称,所以()y f x =的图象关于0x =对称,即关于纵轴对称,因此()y f x =是偶函数.因此22e e a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, 当(1,)x e ∈时,'2ln ln 1ln ()()x x xf x f x x x x -==⇒=, 因为(1,)x e ∈,所以ln 1x <,即'()0f x >,所以()y f x =在(1,)x e ∈时,单调递增,因为122e e <<<,所以()(2)2ef f <,即b a > 32ln232121273ln ln()ln 232323283c f -⎛⎫===-== ⎪⎝⎭,ln 21(2)ln 222b f ===,因为2728>,所以c b >,即c b a >>. 故选D【点睛】本题考查了利用函数单调性比较函数值大小问题,考查了导数的应用,考查了对数函数的性质,考查了数学运算能力.21.(2020·贵州省高三其他(文))已知2log 0.7a =,0.12b =,ln 2c =,则( )A .b c a <<B .a c b <<C .b a c <<D .a b c <<【答案】B 【解析】【分析】找中间量0和1进行比较,根据指数函数、对数函数的单调性可得到答案. 【详解】因为2log 0.7a =2log 10<=,0.10221b =>=,ln1ln 2ln 1c e <=<=, 所以a c b <<. 故选B.【点睛】本题考查了利用指数函数和对数函数的单调性比较大小,找中间量0和1进行比较是关键,属于基础题.22.(2020·贵州省高三其他(文))若0.32=a ,2log 0.3b =,3log 2c =,则实数a ,b ,c 之间的大小关系为( ) A .a b c >> B .a c b >>C .c a b >>D .b a c >>【答案】B【解析】【分析】由已知,将a ,b ,c 与0和1比较得出结果.【详解】解:由题意可知0.30221a =>=,122log 0.3log 21b -=<=-,330log 2log 31c <=<=,∴a c b >>.故选B.【点睛】本题考查对数比较大小,属于基础题.23.(2020·嘉祥县第一中学高三三模)若x ∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( ) A .b >c >a B .c >b >aC .a >b >cD .b >a >c【答案】A 【解析】【分析】利用指数函数、对数函数的单调性直接求解. 【详解】∵x ∈(0,1), ∴a =lnx <0, b =(12)lnx >(12)0=1, 0<c =e lnx <e 0=1,∴a ,b ,c 的大小关系为b >c >a . 故选A .【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.24.(2020·贵州省凯里一中高三月考(理))已知,,a b c 均为正实数,若122log aa -=,122log bb -=,21log 2cc ⎛⎫= ⎪⎝⎭,则( ) A .c a b << B .c b a << C .a b c << D .b a c <<【答案】C 【解析】【分析】画出函数2xy =,12log xy =,12xy ⎛⎫= ⎪⎝⎭,2log y x =的图像,根据图像得到答案.【详解】122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭,利用函数2xy =,12log xy =,12xy ⎛⎫= ⎪⎝⎭,2log y x =,如图所示:由图象可得:a b c <<, 故选C.【点睛】本题考查了比较方程的解的大小关系,画出函数图像是解题的关键. 25.(2020·贵州省高三月考(理))已知132a -=, 21log 3b =, 131log 4c =,则( )A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D 【解析】131218a -==<, 21log 03b =<, 1331log log 414c ==>, 所以c a b >>. 故选D.26.(2020·云南省云南师大附中高三月考(理))设2log 0.2a =,0.5log 3b =,154c=,则a ,b ,c 的大小关系是( ) A .c a b >> B .c b a >>C .b a c >>D .a b c >>【答案】B 【解析】【分析】根据对数的性质,把2log 0.2a =和0.5log 3b =缩小范围,和中间值0、1、2、3比较,把154c=两边取以5为底的对数表示出c ,缩小c 的范围,最后比较大小. 【详解】解:∵2221log 0.2log log 55a ===-,22log 53<<,∴32a -<<-, ∵0.5122log 3log 3log 3b ===-,21log 32<<,∴21b -<<-; ∵154c=,∴551log log 44c ==-,50log 41<<,∴10c -<<. ∴c b a >>, 故选B .【点睛】考查对数值、幂值的大小比较,借助于中间值0、1、2、3以及一些特殊值是解决这类题的关键,基础题.27.(2020·云南省高三其他(文))已知352a =,253b =,135c -=,则( ) A .b a c << B .a b c <<C .c b a <<D .c a b <<【答案】D 【解析】【分析】求出,,a b c 的范围,比较得到b a >即得解. 【详解】由题得1305222,12a <∴<<<.120533,1b 33<∴<<<.352b a b a ===∴< 30151,15c -<=∴<.所以c a b <<. 故选D【点睛】本题主要考查指数函数幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 28.(2020·云南省下关第一中学高一期末)已知a =log 20.3,b =20.1,c =0.21.3,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<【答案】D 【解析】【分析】根据指数函数与对数函数单调性得到a ,b ,c 的取值范围,即得到它们的大小关系. 【详解】解:由对数和指数的性质可知,0.10 1.302log 0.3022100.20.21a b c a c b =<=>=<=<=∴<<,,,故选D .【点睛】本题考查对数的性质,考查指数的性质,考查比较大小,在比较大小时,若所给的数字不具有相同的底数,需要找一个中间量,把要比较大小的数字用不等号连接起来.29.(2020·四川省泸县五中高三月考(文))0.70.60.7log 6,6,0.7a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b a c >>D .b c a >>【答案】D 【解析】【分析】利用指数函数和对数函数的单调性,分别比较三个数与0或1的大小,进而可得结果. 【详解】由对数函数与指数函数的单调性可得,0.700.70.7log 6log 10,661,0a b ====<0.60.7c =00.71<=,b c a ∴>>,故选D.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.30.(2020·会泽县茚旺高级中学高一开学考试)三个数60.7,0.76,0.7log 6的大小关系为( )A .60.70.70.7log 66<<B .60.70.7log 60.76<<C .0.760.7log 660.7<<D .60.70.70.76log 6<<【答案】B 【解析】【分析】根据函数的单调性,将三个数与0,1比大小,即可求解.【详解】600.700.70.700.70.71,661,log 6log 10<<=>=<=,所以60.70.7log 60.76<<.故选:B【点睛】本题考查比较数的大小,注意函数单调性的应用,属于基础题.31.(2020·云南省云南师大附中高三月考(理))已知函数()2sin f x x x x =-,若()0.2log 3a f =,()3log 0.2b f =,()30.2c f =,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】B 【解析】【分析】判断函数()f x 为偶函数,然后利用导数求出()f x 在()0,x ∈+∞上单调递增,利用函数的单调性即可比较出大小.【详解】()()()()()22sin sin f x x x x x x x f x -=----=-=,故()f x 为偶函数,故只需考虑()0,x ∈+∞的单调性即可.()()'2sin cos sin 1cos f x x x x x x x x x =--=-+-,当()0,x ∈+∞时,设()sin h x x x =-,则()1cos 0h x x '=-> 所以()h x 在()0,∞+上单调递增,即()()00h x h >=,故sin x x >, 而()1cos 0x x -≥显然成立,故()'0fx >,故()f x 在()0,x ∈+∞上单调递增.()()0.25log 3log 3a f f ==,()()33log 0.2log 5b f f ==,35530.20.2log log 31log 5<<<<<,由函数单调性可知()()()3530.2log 3log 5f f f <<,即c a b <<,故选B .【点睛】本题考查了利用导数研究函数的单调性、利用函数的单调性比较函数值的大小,属于中档题.32.(2020·云南省高三月考(文))若13log 2a =,1312b ⎛⎫=⎪⎝⎭,2log 3c =,则a b c ,,的大小关系是( )A .b a c <<B .b c a <<C .a b c <<D .c b a <<【答案】C 【解析】【分析】利用指数函数、对数函数的单调性即可比较大小. 【详解】13log x y =为单调递减函数,1133log 2log 10a =<=∴,12xy ⎛⎫= ⎪⎝⎭为单调递减函数,13112012⎛⎫∴<<⎛⎫ ⎝⎪⎪⎭⎝=⎭,2log x y =为单调递增函数, 22log 3log 21∴>=,所以a b c <<. 故选C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题. 33.(2020·西藏自治区拉萨中学高三月考(文))已知123a =,131log 2b =,21log 3c =,则( ) A .a b c >> B .b c a >> C .c b a >> D .b a c >>【答案】 A【解析】试题分析:由指数函数,对数函数的性质,可知1231a =>,113311log ,0log 122b =<< 21log 03c =<,即a b c >>,选A 34.(2020·西藏自治区拉萨那曲第二高级中学高三月考(文))已知1(,1)x e -∈,ln a x =,ln 1()2xb =,ln x c e =,则,,a b c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .b a c >>【答案】B【解析】试题分析:∵1(,1)x e -∈,∴ln (1,0)x ∈-∴(1,0)a ∈-,(1,2)b ∈,1(,1)c e -∈∴b c a >>.选B.。