指数函数对数函数比较大小题型总结
- 格式:doc
- 大小:262.00 KB
- 文档页数:4
指数函数对数函数大小比较的攻略
指数和对数是高中数学中很重要的一部分,许多公式、定理和概念都与它们有关。
在数学研究中,我们常常需要对指数函数和对数函数进行比较,以便更好地理解它们的性质和变化规律。
一、指数函数与对数函数的定义
- 指数函数:y=a^x,a>0且a≠1。
- 对数函数:y=loga(x),a>0且a≠1。
两种函数互为反函数,即a^loga(x)=loga(a^x)=x。
二、指数函数与对数函数的图像
- 指数函数的图像为一条上升的曲线,其图像的左端点为(负无穷, 0),右端点为(正无穷, 正无穷)。
- 对数函数的图像为一条上升的曲线,其图像的左端点为(0, 负无穷),右端点为(正无穷, 正无穷)。
三、指数函数与对数函数的变化规律
- 指数函数的特点:定义域为R,值域为(0, 正无穷),单调递增,具有连续性和导数。
当0<a<1时,函数在定义域内且单调递减。
- 对数函数的特点:定义域为(0, 正无穷),值域为R,单调递增,具有连续性和导数。
四、指数函数与对数函数的大小比较
- 若a>1,则a^x的增长速度大于loga(x)的增长速度;
- 若0<a<1,则a^x的增长速度小于loga(x)的增长速度;
- 当a=1时,指数函数和对数函数都为常数函数;
- 当a=e时,e^x与lnx的关系比较特殊,两者相等。
综上所述,指数函数和对数函数在数学学习中都有着重要作用,掌握其定义和性质,理解其图像和变化规律,能够更好地应用它们
解决问题。
在比较大小时,要牢记以上几点规律,希望对各位同学
的学习有所帮助。
指数函数对数函数大小比较的技巧介绍指数函数和对数函数是数学中常见的函数类型,它们在各种科学和工程应用中起着重要的作用。
本文将介绍一些比较指数函数和对数函数大小的技巧,帮助读者更好地理解和应用这两种函数。
指数函数的性质指数函数的一般形式为 y = a^x,其中 a>0 且a≠1。
指数函数的性质如下:1. 当 a>1 时,函数呈现递增趋势,即 x 增大时,y 也增大。
2. 当 0<a<1 时,函数呈现递减趋势,即 x 增大时,y 减小。
3. 当 x=0 时,指数函数的值为 1,无论 a 的取值如何。
对数函数的性质对数函数的一般形式为y = logₐx,其中 a>0 且a≠1。
对数函数的性质如下:1. 对数函数是指数函数的反函数,即a^logₐx = x。
2. 当 0<x<1 时,对数函数的值为负数。
3. 当 x=1 时,对数函数的值为 0。
4. 当 x>1 时,函数呈现递增趋势,即 x 增大时,y 也增大。
5. 当 0<x<1 时,函数呈现递减趋势,即 x 增大时,y 减小。
6. 当 x=0 时,对数函数的值为负无穷大,即logₐ0 = -∞。
比较指数函数和对数函数大小的技巧1. 当 a>1 时,指数函数的值始终大于对数函数的值。
2. 当 0<a<1 时,指数函数的值始终小于对数函数的值。
3. 当 a=1 时,指数函数和对数函数的值相等。
4. 当 x 相同时,指数函数的值通常大于对数函数的值,但有特殊情况,例如 x=0 时,指数函数和对数函数的值相等,都为 1 或 0。
总结通过比较指数函数和对数函数的性质,我们可以得出一些比较大小的技巧。
在应用中,我们可以利用这些技巧更好地理解和使用指数函数和对数函数,从而更好地解决相关问题。
以上是关于指数函数对数函数大小比较的技巧的介绍。
希望本文能对读者有所帮助,谢谢阅读!。
第20讲指对数比较大小8种常考题型总结【知识点梳理】指数和对数的比大小问题成为了高考和模拟题的一些拉档题,这里我们重点介绍几种比大小方法,让大家充分了解掌握一些指数对数大小比较的常用方法.(1)利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可(2)利用指数对数函数图象关系比较大小(2)比较与0,1的大小关系,此类题目一般会放在单选第5题左右位置,比如12.02.0003.0=<<,12.0log3.0log 1log 02.02.02.0=<<=(3)取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与21的大小等(4)去常数再比大小当底数和真数出现了倍数关系时候,需要将对数进行分离常数再比较.例如:log log 1log log n a a a a ma m ma m n =+=+;.(5)当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如2ln =a 和2log 3=b ,ea 2log 12ln ==,3log 12log 23==b ,因为e 22log 3log >,所以b a >(6)乘倍数比较数的范围比较大小,比如3log 2=a 和4log 3=b ,则()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以ba >(7【题型目录】题型一:直接利用单调性比较大小题型二:比较与1,0的大小关系题型三:取中间值比较大小题型四:利用换底公式比较大小题型五:分离常数再比较大小题型六:利用均值不等式比较大小题型七:乘倍数比较数的范围比较大小题型八:构造函数比大小【典型例题】题型一:直接利用单调性比较大小【例1】已知222log 0.6,log 0.8,log 1.2a b c ===,则()A .c b a>>B .c a b>>C .b c a >>D .a b c>>【例2】已知2log 3a =,4log 6b =,8log 9c =,则a 、b 、c 的大小顺序为()A .a b c <<B .a c b<<C .c b a<<D .b c a<<【题型专练】1.下列选项正确的是()A .22log 5.3log 4.7<B .0.20.2log 7log 9<C .3πlog πlog 3>D .log 3.1log 5.2(0a a a <>且1)a ≠2.已知2log 3a =,ln 2b =,2log πc =,则a ,b ,c 的大小关系为()A .a b c >>B .c a b>>C .a c b>>D .c b a>>3.已知1ln 3a=,33log 5log 2b =-,c =a ,b ,c 的大小关系为()A .a c b >>B .b c a >>C .c a b>>D .c b a>>4.已知0.919x =,2log 0.1y =,2log 0.2z =,则()A .x y z>>B .x z y>>C .z x y >>D .z y x>>题型二:比较与1,0的大小关系【例1】若1223a ⎛⎫= ⎪⎝⎭,1ln 2b =,0.20.6c -=,则a ,b ,c 的大小关系为()A .c b a>>B .c a b >>C .b a c >>D .a c b>>【例2】已知0.3123log 2,log 3,2a b c -===,则a ,b ,c 的大小关系是()A .a b c>>B .b a c>>C .c a b>>D .b c a>>【例3】已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则()A .a c b >>B .b c a >>C .a b c >>D .c a b>>【题型专练】1.若0.110a =,lg 0.8b =,5log 3.5c =,则()A .a b c>>B .b a c>>C .c a b>>D .a c b >>2.已知5lg 0.2,log 6,ln 2a b c ===,则a ,b ,c 的大小关系为()A .a b c<<B .c a b<<C .a c b<<D .c b a <<3.已知0.60.622e log 0.6a b c -===,,,则a ,b ,c 的大小关系为()A .b a c >>B .b c a >>C .a b c>>D .a c b>>题型三:取中间值比较大小【例1】已知32log 3a =,2log 3b =,139c =,则()A .c a b>>B .b a c >>C .b c a>>D .c b a >>【例2】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是()A .c b a<<B .b a c<<C .a c b<<D .a b c<<【例3】已知6log 2a =,0.5log 0.2b =,0.30.6c =,则a ,b ,c 的大小关系为()A .a c b <<B .a b c <<C .b c a <<D .c a b<<【题型专练】1.已知3log 4a =,4log 5b =,32c =,则有()A .a b c>>B .c b a>>C .a c b >>D .c a b>>2.设0.61a =,0.6lg9b =,32log 8c =,则()A .b a c<<B .c b a<<C .a c b<<D .b c a<<3.已知52log 4a =,31log 72b =,4log 52c =,则a ,b ,c 的大小关系是()A .b c a<<B .b a c <<C .c a b<<D .a b c<<题型四:利用换底公式比较大小【例1】设x ,y ,z 为正数,且345x y z ==,则()A .x y z<<B .y x z<<C .y z x<<D .z y x<<【例2】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【例3】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【题型专练】1.设0.1log 4a =,50log 4b =,则()A .()22ab a b ab<+<B .24ab a b ab<+<C .2ab a b ab <+<D .2ab a b ab<+<2.设2log a π=,6log b π=,则()A .0a b ab-<<B .0ab a b<<-C .0ab a b <<-D .0a b ab<-<3.设0.20.3a =,20.3b =,则()A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+4.已知正数x ,y ,z 满足346x y z ==,则下列说法中正确的是()A .1112x y z+=B .346x y z >>C .22xy z>D .2x y z⎛+> ⎝题型五:分离常数再比较大小【例1】已知6log 3a =,8log 4b =,10log 5c =,则().A .b a c <<B .c b a<<C .a c b<<D .a b c<<【题型专练】1.设6log 3=a ,10log 5=b ,14log 7=c ,则()A.ab c >> B.b c a>> C.a c b>> D.a b c>>题型六:利用均值不等式比较大小【例1】73a =,4log 20b =,33log 2log 6c =+,则a ,b ,c 的大小关系是()A .a b c>>B .a c b >>C .c b a >>D .c a b>>【例2】若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为()A .a b c <<B .b c a <<C .b a c <<D .a c b<<【题型专练】1.已知910,1011,89m m m a b ==-=-,则()A .0a b>>B .0a b >>C .0b a >>D .0b a>>2.已知2log a =0.62b =,0.2log 6c =-,则实数a ,b ,c 的大小关系为()A .a c b>>B .a b c>>C .b a c>>D .b c a>>题型七:乘倍数比较小【例1】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A .a <b <c B .b <a <cC .b <c <aD .c <a <b【题型专练】1.已知3log 2=a ,4log 3=b ,5log 4=c ,则实数a ,b ,c 的大小关系为()A .a <b <cB .a b c>>C .b a c>>D .b c a>>题型八:构造函数比大小【例1】设0a >,0b >,则下列叙述正确的是()A .若ln 2ln 2a b b a ->-,则a b >B .若ln 2ln 2a b b a ->-,则a b <C .若ln 2ln 2a a b b ->-,则a b >D .若ln 2ln 2a a b b ->-,则a b<【例2】若2e 2e x x y y ---<-,则()A .()ln 10y x -+<B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【题型专练】1.若1a b >>,且x y x y a a b b --->-,则()A .()ln 10x y -+>B .()ln 10x y -+<C .ln 0x y ->D .ln 0x y -<2.已知正实数x ,y 满足21211log log 22xyx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则()A .11x y<B .33x y <C .()ln 10y x -+>D .122x y-<。
指数函数与对数函数例题和知识点总结一、指数函数的定义与性质指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。
其中,底数$a$决定了函数的性质。
当$a > 1$时,函数单调递增;当$0 < a < 1$时,函数单调递减。
指数函数的定义域为$R$,值域为$(0, +\infty)$。
例如,函数$y = 2^x$是一个底数为$2$(大于$1$)的指数函数,它在$R$上单调递增。
二、对数函数的定义与性质对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。
其中,对数的底数$a$同样决定了函数的性质。
当$a > 1$时,函数在$(0, +\infty)$上单调递增;当$0 < a <1$时,函数在$(0, +\infty)$上单调递减。
对数函数的定义域为$(0, +\infty)$,值域为$R$。
例如,函数$y =\log_2 x$是一个底数为$2$(大于$1$)的对数函数,它在$(0, +\infty)$上单调递增。
三、指数函数与对数函数的图象指数函数$y = a^x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(0, 1)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(0, 1)$,从左到右逐渐下降。
对数函数$y =\log_a x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(1, 0)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(1, 0)$,从左到右逐渐下降。
四、指数运算与对数运算的性质指数运算性质:1、$a^m \times a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)对数运算性质:1、$\log_a (MN) =\log_a M +\log_a N$2、$\log_a \frac{M}{N} =\log_a M \log_a N$3、$\log_a M^n = n \log_a M$4、$\log_a a = 1$5、$\log_a 1 = 0$五、例题分析例 1:比较大小比较$2^{03}$和$03^2$的大小。
µ专题 指对幂比较大小必刷100题1任务一:善良模式(基础)1-40题一、单选题1已知a=53-12,b=log25,c=log37,则a,b,c的大小顺序是()A.a>b>cB.c>a>bC.c>b>aD.b>c>a 【答案】D【解析】因为a=53-12=35 12<1,b=log25>log24=2,1=log33<c=log37<log39=2,所以b>c>a故选:D2已知a=ln 1π,b=e13,c=logπ3,则a,b,c大小顺序为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a 【答案】D【解析】∵a=ln 1π<ln1=0,b=e13>e0=1,0=logπ1<c=logπ3<logππ=1,∴b>c>a.故选:D.3已知a=ln 1π,b=e13,c=logπ3,则a,b,c大小顺序为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a 【答案】D【解析】因为a=ln 1π<ln1=0,b=e13>e0=1,c=logπ3∈0,1所以b>c>a故选:D【点睛】本题考查的是对数、指数幂的比较,较简单.4设a=34-34,b=43 2,c=log232,则a,b,c的大小顺序是A.b<a<cB.c<a<bC.b<c<aD.a<c<b 【答案】B【解析】a=34-34=43 34>1,且43 34<43 2=b,又c=log232<log22=1.故c<a<b.故选:B【点睛】本题主要考查了利于指数对数函数的单调性对函数值大小进行比较,属于基础题型.5a,b,c均为正实数,且2a=log12a,12b=log12b,12c=log2c,则a,b,c的大小顺序为A.a <c <bB.b <c <aC.c <b <aD.a <b <c【答案】D 【解析】试题分析:∵a ,b ,c 均为正实数,∴2a >2-b =log 12b ,而2a =log 12a ,∴log 12a >log 12b ,∴a <b .又12c=log 2c 且12b=log 12b ,由图象可知c >1,0<b <1,故a <b <c ,故选D .考点:利用函数图象比较大小.6若a =0.20.8,b =0.80.2,c =1.10.3,d =lg0.2,则a ,b ,c ,d 的大小关系是()A.c >b >a >dB.c >a >b >dC.b >c >a >dD.a >c >b >d【答案】A【解析】由指数函数的单调性知:0.20.2>0.20.8,1.10.3>1.10=1由幂函数的单调性知:0.80.2>0.20.2,所以c >1>b =0.80.2>0.20.2>0.20.8=a >0,又由对数函数的单调性可知:d =lg0.2<lg1=0综上有:c >b >a >d .故选:A7设a =log 3π,b =2log 32,c =4ln 1e ,则a ,b ,c 大小关系为()A.a >b >cB.b >a >cC.c >b >aD.c >a >b【答案】B 【解析】解:因为ln 1e<ln1=0,所以0<4ln 1e <40=1,即0<c <1,又2log 32=log 322=log 34>log 3π>log 33=1,即b >a >1,所以b >a >c ;故选:B8已知5a =2,b =ln2,c =20.3,则a ,b ,c 的大小关系为()A.a >b >cB.c >b >aC.b >c >aD.c >a >b【答案】B【解析】由5a =2⇒a =log 52=log 54<log 55⇒a <12,由ln e 2>ln 4>ln e ⇒1>b >12,c =20.3>1,所以c >b >a ,故选:B 9已知a =454.1,b =45-0.9,c =540.1,则这三个数的大小关系为()A.a >c >bB.b >c >aC.c >a >bD.c >b >a【答案】B【解析】b =45-0.9=540.9,因为y =54x在R 上单调递增﹐则b >c >1,又a =454.1<45=1.故b >c >a .故选:B .10若a =225,b =325,c =12 25,d =1325,则a ,b ,c ,d 的大小关系是()A.a >b >c >dB.b >a >d >cC.b >a >c >dD.a >b >d >c【答案】C【解析】解:a =225>20=1,b =325>30=1,c =1225<12=1,d =1325<13=1,另外a b =225325=2325<23=1,则b >ac d =12 251325=3225>32=1,则c >d故b >a >c >d 故选:C .11已知a =12-0.8,b =log 1223,c =40.5则a ,b ,c 的大小关系是()A.a <c <bB.a <b <cC.c <b <aD.b <a <c【答案】D 【解析】a =12-0.8=20.8∈1,2 ,b =log 1223=log 232∈0,1 ,c =40.5=2,显然b <a <c ,故选:D12已知3a =2,b =ln2,c =20.3,则a ,b ,c 的大小关系为()A.a >b >cB.c >b >aC.b >c >aD.c >a >b【答案】B【解析】由3a =2可得,a =log 32=ln2ln3,因为ln3>1>ln2>0,所以ln2ln3<ln2<1,又因为c =20.3>20=1,所以c >b >a .故选:B .13已知a =43,b =log 34,c =3-0.1,则a 、b 、c 的大小关系为()A.a >b >cB.c >b >aC.b >a >cD.a >c >b【答案】A 【解析】因为a =43=log 3343,343 3=34=81>43=64,所以log 3343>log 34,即a >b .又因为b=log34>log33=1,c=3-0.1<30=1,即b>c,所以a>b>c.故选:A14设0<x<π2,记a=lnsin x,b=sin x,c=esin x,则比较a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.b<c<a 【答案】A【解析】因为0<x<π2,所以b=sin x∈0,1,a=lnsin x<0,c=e sin x>1,所以a<b<c,故选:A15若a=2 23,b=323,c=1223,d=13 23,则a,b,c,a的大小关系是()A.a>b>c>dB.b>a>d>cC.b>a>c>dD.a>b>d>c 【答案】C【解析】∵23>0∴幂函数y=x23在0,+∞上单调递增,又∵3>2>12>13>0,∴323>223>1223>13 23,∴b>a>c>d故选:C.16已知a=0.31.7,b=1.70.3,c=log0.31.7,则a,b,c的大小关系为() A.a<c<b B.c<b<a C.c<a<b D.b<c<a【答案】C【解析】解:根据指数函数的性质知,0<0.31.7<0.30=1,1.70.3>1.70=1所以0<a<1<b;根据对数函数的性质知,log0.31.7<log0.31=0,所以c<0;所以a,b,c的大小关系是c<a<b.故选:C.17已知a=log262,b=log3142,c=232,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<a<bD.b<c<a【答案】A【解析】解:c=232>20=1,0<a=log262<log22=12,12=log33<log3142=b<1,∴a<b<c.故选:A.18已知a=1.20.5,b=0.51.5,c=22,则这三个数的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a【答案】D【解析】因为a =1.20.5>1.20=1,所以a >1.因为b =0.51.5<0.51=12,所以0<b <12.而c =22,所以12<c <1,故b <c <a .故选D .19已知a =ln22,b =ln33,c =ln55,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.b <a <cD.c <a <b【答案】D【解析】因为a -b =ln22-ln33=3ln2-2ln36=ln8-ln96<0,所以a <b ;又a -c =ln22-ln55=5ln2-2ln510=ln32-ln2510>0,所以a >c ,所以c <a <b .故选:D .20设a =log 20.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为()A.a <b <cB.c <a <bC.b <c <aD.a <c <b【答案】D【解析】∵log 20.3<log 21=0,∴a <0,∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1,∵0<0.40.3<0.40=1,∴0<c <1,∴a <c <b .故选:D .21若x ∈(e -1,1),a =ln x ,b =12ln x,c =2ln x ,则a ,b ,c 的大小关系为()A.c >b >aB.b >a >cC.a >b >cD.b >c >a【答案】D【解析】因x ∈(e -1,1),且函数y =ln x 是增函数,于是-1<a <0;函数y =2x 是增函数,-1<ln x <0<-ln x <1,而12 ln x =2-ln x ,则1<12ln x<2,12<2ln x <1,即12<c <1<b <2,综上得:b >c >a 故选:D22已知a =log 32,b =15 35,c =13-23,则a ,b ,c 的大小关系是()A.a <b <cB.b <a <cC.a <c <bD.b <c <a【答案】B【解析】由函数y =log 3x 在0,+∞ 上单调递增,可得12=log 33<log 32=a <1,,由函数y =15x 在R 上单调递减,可得b =15 35<15 12=15<12,由函数y =13 x 在R 上单调递减,可得c =13 -23>13 0=1, 因此b <a <c故选:B23设a=4323,b=43 34,c=32 34,则a,b,c的大小关系是()A.a>c>bB.a>b>cC.c>b>aD.b>c>a 【答案】C【解析】因为函数y=43x在R上是增函数,所以43 23<43 34,即a<b,又因为函数y=x34在(0,+∞)上是增函数,所以4334<32 34,所以b<c,故a<b<c.故选:C24已知a=ln12020+20192020,b=ln12021+20202021,c=ln12022+20212022,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.c>b>aD.c>a>b 【答案】A【解析】构造函数f x =ln x+1-x,f x =1x-1=1-xx,当0<x<1时,fx >0,f x 单调递增,所以f12020>f12021>f12022,a>b>c.故选:A25已知a=log35,b=1213,c=log1316,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b 【答案】D【解析】c=log1316=log36,因为函数y=log3x在0,∞上单调递增,所以log33=1<a=log35<log36<log1316=c,因为函数y=12x在R上单调递减,所以b=12 13<12 0=1,所以c>a>b故选:D【点睛】思路点睛:指数式、对数式、幂值比较大小问题,思路如下:思路一、对于同底数的幂值或对数式,直接根据指数函数或对数函数的单调性比较大小;思路二、对于不同底数的幂值或对数式,化为同底数的幂值或对数式,再根据思路一进行比较大小;或者找中间量(通常找0和1)进行比较.26已知1<1a<1b,M=a a,N=a b,P=b a,则M,N,P的大小关系正确的为()A.N<M<PB.P<M<NC.M<P<ND.P<N<M 【答案】B【解析】解:∵1<1a<1b,∴0<b<a<1,∴指数函数y=a x在R上单调递减,∴a b>a a,即N>M,又幂函数y=x a在0,+∞上单调递增,∴a a>b a,即M>P,∴N>M>P,故选:B .27已知a =sin3,b =log 3sin3,c =3sin3,则a ,b ,c 的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.c >b >a【答案】C 【解析】因为π2<3<π,所以a =sin3∈0,1 ,b =log 3sin3<log 31=0,c =3sin3>30=1,所以c >a >b .故选:C28设a =315,b =153,c =log 315,则a ,b ,c 的大小关系为().A.b <a <cB.a <c <bC.c <a <bD.c <b <a【答案】D【解析】指数函数y =3x ,y =15x分别是R 上的增函数和减函数,15>0,3>0,则315>30>153>0,对数函数y =log 3x 在(0,+∞)上单调递增,0<15<1,则log 315<log 31=0,所以有315>153>log 315,即c <b <a .故选:D29已知e a =π,2b =3,c =sin2021∘,则a ,b ,c 大小关系为()A.c <a <bB.c <b <aC.a <c <bD.a <b <c【答案】A【解析】由e a =π,得a =lnπ,因为π≈3.14,e ≈2.7128,e e ≈4.48,所以ln e <lnπ<ln e e ,即ln e <a <ln e e ,所以1<a <32,由2b =3,得b =log 23>log 222=32,又c =sin2021∘=sin 5×360∘+221∘ =sin221∘<0,所以c <a <b ,故选:A30已知a =log 53,b =log 169,c =0.3a -2,则a ,b ,c 的大小关系是()A.a >b >cB.a >c >bC.c >a >bD.c >b >a【答案】D【解析】b =log 4232=log 43<log 44=1,所以0<a <b <1,c =0.3a -2=0.3log 53-2=310 log 5325=103 log 5253>103 log 55=103>1,所以c >b >a .故选:D31已知a =log 31.5,b =log 0.50.1,c =0.50.2,则a 、b 、c 的大小关系为()A.a <b <cB.a <c <bC.b <c <aD.c <a <b。
指、对、幂、及三角值比较大小的方法总结基础知识储备1直接利用函数基本单调性比较大小例1.已知a =log 23,b =log 46利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可,c =log 89,则a 、b 、c 的大小顺序为()A.a <b <cB.a <c <bC.c <b <aD.b <c <a先利用对数运算法则进行化简,再用函数单调性比较大小.【解答】b =log 46=log 26,又c =log 89=log 239,∵3>6>39,y =log 2x 单调递增,∴c <b <a .课堂练兵1.下列选项正确的是()A.log 25.3<log 24.7 B.log 0.27<log 0.29C.log 3π>log π3D.log a 3.1<log a 5.2(a >0且a ≠1)2.已知a =log 23,b =ln2,c =log 2π,则a ,b ,c 的大小关系为()A.a >b >cB.c >a >bC.a >c >bD.c >b >a3.已知1a=ln3,b =log 35-log 32,c =2ln 3,则a ,b ,c 的大小关系为()A.a >c >bB.b >c >aC.c >a >bD.c >b >a4.已知x =90.91,y =log 20.1,z =log 20.2,则()A.x >y >zB.x >z >yC.z >x >yD.z >y >x比较与0,1的大小关系,此类题目一般会放在单选题靠前位置,比如0<0.20.3<0.20=1, 0=log 0.21<log 0.20.3<log 0.20.2=2比较与0,1的大小关系1例2.若a =23 12,b =ln 12,c =0.6-0.2,则a ,b ,c 的大小关系为()A.c >b >aB.c >a >bC.b >a >cD.a >c >b分别根据y =23x、y =ln x 、y =0.6x 的单调性,比较a ,b ,c 与0、1的大小,即可.【解答】y =23 x 在-∞,+∞ 上是减函数,0<a =23 12<23=1;y =ln x 在0,+∞ 上是增函数,b =ln 12<ln1=0;y =0.6x 在-∞,+∞ 上是减函数,c =0.6-0.2>0.60=1,故c >a >b 例3.已知a =log 132,b =log 23,c =2-0.3,则a ,b ,c 的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.b >c >a利用函数的单调性判断出a <0,b >1,0<c <1,即可得到正确答案.【解答】∵y =log 13x 为减函数,∴a =log 132<log 131=0,即a <0;∵y =log 2x 为增函数,∴b =log 23>log 22=1,即b >1;∵y =2x 为增函数,∴0<c =2-0.3<20=1,即0<c <1;∴b >c >a .例3.已知a=20.7,b=130.7,c=log213,则()A.a>c>bB.b>c>aC.a>b>cD.c>a>b利用幂函数、对数函数的单调性结合中间值法可得出a、b、c的大小关系.【解答】∵20.7>13 0.7>0=log21>log213,∴a>b>c.课堂练兵1.若a=100.1,b=lg0.8,c=log53.5,则()A.a>b>cB.b>a>cC.c>a>bD.a>c>b2.已知a=lg0.2,b=log56,c=ln2,则a,b,c的大小关系为()A.a<b<cB.c<a<bC.a<c<bD.c<b<a3.已知a=20.6,b=e-0.6,c=log20.6,则a,b,c的大小关系为()A.b>a>cB.b>c>aC.a>b>cD.a>c>b取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与(0,1)之间的某个数进行大小比较,常用的中间值是13取中间值比较大小2例4.已知a=log323,b=log23,c=913,则()A.c>a>bB.b>a>cC.b>c>aD.c>b>a 利用幂函数、对数函数的单调性结合中间值法可得出a、b、c的大小关系.【解答】∵a=log323<log31=0,1=log22<b=log23<log24=2,c=913>813=2,∴c>b>a.例5.已知a=log52,b=log83,c=12,则下列判断正确的是()A.c<b<aB.b<a<cC.a<c<bD.a<b<c 利用对数函数的单调性可比较a、b与c的大小关系,由此可得出结论.【解答】a=log52<log55=12=log822<log83=b,即a<c<b.例6.已知a=log62,b=log0.50.2,c=0.60.3,则a,b,c的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b 根据指数函数、对数函数的性质计算可得.【解答】log0.50.2=log2-15-1=log25>log24=2,即b>2,0=log61<log62<log66=12,即0<a<12,1=0.60>0.60.3>0.50.3>0.51=12,即12<c<1,∴b>c>a;课堂练兵1.已知a=log34,b=log45,c=32,则有()A.a>b>cB.c>b>aC.a>c>bD.c>a>b2.设a=0.61,b=lg90.6,c=log328,则有()A.b<a<cB.c<b<aC.a<c<bD.b<c<a3.已知a =2log 54,b =12log 37,c =2log 45,则a ,b ,c 的大小关系是()A.b <c <aB.b <a <cC.c <a <bD.a <b <c当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如a =ln2和b =log 324利用换底公式比较大小,a =ln2=1log 2e,b =log 32=1log 23,∵log 23>log 2e ,∴a >b 例7.设x ,y ,z 为正数,且3x =4y =5z ,则()A.x <y <zB.y <x <zC.y <z <xD.z <y <x令3x =4y =5z =k >1,用k 表示出x ,y ,z ,再借助对数函数的性质即可比较大小.【解答】因x ,y ,z 为正数,令3x =4y =5z =k ,则k >1,因此有:x =log 3k =1log k 3,y =log 4k =1log k 4,z =log 5k =1log k 5,又函数f (t )=log k t 在(0,+∞)上单调递增,而1<3<4<5,则0<log k 3<log k 4<log k 5,于是得1log k 3>1log k 4>1log k 5,所以z <y <x .例8.设a =log 32,b =ln2,c =512,则a 、b 、c 三个数的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.c >b >a根据对数函数与指数函数性质,结合中间值0、1比较即可.【解答】∵0<ln2<ln e =1,ln3>1,∴log 32=ln2ln3<ln2,∴a <b <1,∵c =512>50=1,∴c >b >a例9.设a =log 32,b =ln2,c =512,则a 、b 、c 三个数的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.c >b >a根据对数函数与指数函数性质,结合中间值0、1比较即可.【解答】∵0<ln2<ln e =1,ln3>1,∴log 32=ln2ln3<ln2,∴a <b <1,∵c =512>50=1,∴c >b >a 课堂练兵1.设a =log 0.14,b =log 504,则()A.2ab <2a +b <ab B.2ab <a +b <4ab C.ab <a +b <2abD.2ab <a +b <ab2.设a =log 2π,b =log 6π,则()A.a -b <0<ab B.ab <0<a -b C.0<ab <a -bD.0<a -b <ab 3.设0.2a =0.3,2b =0.3,则()A.a +b <ab <0 B.ab <a +b <0C.a +b <0<abD.ab <0<a +b 4.已知正数x ,y ,z 满足3x =4y =6z ,则下列说法中正确的是()A.1x +12y =1zB.3x >4y >6zC.xy >2z 2D.x +y >32+2z 去常数再比大小当底数和真数出现了倍数关系时,需要将对数进行分离常数再比较.这是对数值所独有的技巧,类似于分式型的分离常数,借助此法可以把较复杂的数值,转化为某一单调区间,或者某种具有单调性的形式,以利于比较大小 例如:log a ma =log a m +1;log a ma n =log a m +n 5分离常数再比较大小.例10.已知a =log 63,b =log 84,c =log 105,则().A.b <a <cB.c <b <aC.a <c <bD.a <b <c结合对数的运算公式以及对数函数的单调性进行转化求解即可.【解答】由题意得:a =log 63=log 662=1-log 62=1-1log 26,b =log 84=log 882=1-log 82=1-1log 28,a =log 105=log 10102=1-log 102=1-1log 210,∵函数y =log 2x 在(0,+∞)上单调递增,∴log 26<log 28<log 210,则1log 26>1log 28>1log 210,所以a <b <c 课堂练兵1.设a =log 36,b =log 510,c =log 714,则()A.c >b >aB.b >c >aC.a >c >bD.a >b >c例11.a 6利用均值不等式比较大小=73,b =log 420,c =log 32+log 36,则a ,b ,c 的大小关系是()A.a >b >cB.a >c >bC.c >b >aD.c >a >b根据对数函数的性质结合基本不等式分析比较即可【解答】a =73=1+43,b =log 420=log 44+log 45=1+log 45,c =log 32+log 36=1+log 34,∵43=log 3343=log 3381>log 3364=log 34,∴a >c ,∵log 45log 34=lg5lg4⋅lg3lg4<lg3+lg52 2(lg4)2=lg152 2(lg4)2<lg162 2(lg4)2=2lg422(lg4)2=1,log 45>1,log 34>1,∴log 45<log 34,所以c >b ,综上a >c >b ,故选B 例12.若a =lg2⋅lg5,b =ln22,c =ln33,则a ,b ,c 的大小关系为()A.a <b <cB.b <c <aC.b <a <cD.a <c <b由基本不等式可判断a <14,由对数的性质可得b >14,再作差可判断c ,b 大小.【解答】a =lg2⋅lg5<lg2+lg5 24=14,b =2ln24=ln44>14c -b =ln33-ln22=2ln3-3ln26=ln 986>0, 则c >b .所以a <b <c .课堂练兵1.已知9m =10,a =10m -11,b =8m -9,则()B.a >b >0C.b >a >0D.b >0>ab =20.6,c =-log 0.26,则实数a ,b ,c 的大小关系为()B.a >b >cC.b >a >cD.b >c >a乘倍数后再进行大小比较,比如a =log 23和b =log 34,则3a =3log 23=log 227∈4,5 A.a >0>b2.已知a =log 25,A.a >c >b 7乘倍数比较大小, 3b =3log 34=log 364∈3,4 ,∴3a >3b ,∴a >b例13.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b题意可得a 、b 、c ∈0,1 ,利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系【解答】由题意可知a 、b 、c ∈0,1 ,a b =log 53log 85=lg3lg5⋅lg8lg5<1lg52⋅lg3+lg82 2=lg3+lg82lg52=lg24lg252<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45;由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c .课堂练兵1.已知a =log 23,b =log 34,c =log 45,则实数a ,b ,c 的大小关系为()A.a <b <cB.a >b >cC.b >a >cD.b >c >a8初等型双元变量构造函数比大小构造简单函数,利用函数的单调性比较大小例14.设a >0,b >0,则下列叙述正确的是()A.若ln a -2b >ln b -2a ,则a >b B.若ln a -2b >ln b -2a ,则a <b C.若ln a -2a >ln b -2b ,则a >b D.若ln a -2a >ln b -2b ,则a <b构造函数,利用函数的单调性分析判断即可【解答】∵y =ln x 和y =2x 在(0,+∞)上均为增函数,∴f (x )=ln x +2x 在(0,+∞)上为增函数,∴f (a )>f (b )时,得a >b >0,反之也成立,即ln a +2a >ln b +2b 时,a >b >0,反之也成立,∴ln a -2b >ln b -2a 时,a >b >0,反之也成立例15.若2x -e -x <2y -e -y ,则()A.ln y -x +1 <0B.ln y -x +1 >0C.ln x -y >0D.ln x -y <0先构造函数f x =2x -e -x ,通过观察导函数得到f x 单调性,从而得到x <y ,故可通过函数单调性判断出ln y -x +1 >ln1=0,而x -y 的可能值在[1,+∞)⋃0,1 ,故CD 均错误.【解答】令f x =2x -e -x ,则f x =2x ln2+e -x >0恒成立,故f x =2x -e -x 单调递增,由2x -e -x <2y -e -y 可得:x <y ,故ln y -x +1 >ln1=0,A 错误,B 正确;x -y 的可能值在[1,+∞)⋃0,1 ,故不能确定ln x -y 与0的大小关系,CD 错误.课堂练兵1.若a >b >1,且a x -a y >b -x -b -y ,则()A.ln x -y +1 >0B.ln x -y +1 <0C.ln x -y >0D.ln x -y <02.已知正实数x ,y 满足log 2x +log 12y <12 x -12 y,则()A.1x <1yB.x 3<y 3C.ln y -x +1 >0D.2x -y <12例16.设a ≠0,若x =a 为函数f x 9利用导数研究函数的单调性比较大小=a x -a 2x -b 的极大值点,则()A.a <b B.a >bC.ab <a 2D.ab >a 2【解答】若a =b ,则f x =a x -a 3为单调函数,无极值点,不符合题意,故a ≠b .∴f x 有x =a 和x =b 两个不同零点,且在x =a 左右附近是不变号,在x =b 左右附近是变号的.依题意,x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,∴在x =a 左右附近都是小于零的.当a <0时,由x >b ,f x ≤0,画出f x 的图象如下图所示:由图可知b <a ,a <0,故ab >a 2.当a >0时,由x >b 时,f x >0,画出f x 的图象如下图所示:由图可知b >a ,a >0,故ab >a 2.故选:D .课堂练兵1.(多选题)已知正数x ,y ,z 满足x ln y =ye z =zx ,则x ,y ,z 的大小关系为()A.x >y >z B.y >x >z C.x >z >y D.以上均不对2.设a =2021ln2019,b =2020ln2020,c =2019ln2021,则()A.a >b >cB.c >b >aC.a >c >bD.b >a >c一般情况下,作差或者做商,可处理底数不一样的的对数比较大小10差比法与商比法作差或者做商的难点在于后续变形处理,注意此处的常见解题技巧和方法例17.已知实数a 、b 、c 满足a =613,b =log 23+log 64,5b +12b =13c ,则a 、b 、c 的关系是()A.b >a >cB.c >b >aC.b >c >aD.c >a >b利用幂函数的性质知a <2,利用对数的运算性质及差比法可得b -2>0,再构造13c -13b ,根据指数的性质判断其符号,即可知b ,c 的大小.【解答】a =613<813=2;b =log 23+log 64=log 23+21+log 23,b -2=log 23⋅log 23-1 1+log 23>0,b >2;13c =5b +12b >52+122=132,c >2;13c -13b =5b +12b -13b =52⋅5b -2+122⋅12b -2-132⋅13b -2<52⋅12b -2+122⋅12b -2-132⋅13b -2=12b -2(52+122)-132⋅13b -2=132(12b -2-13b -2)<0,∴b >c ,综上,b >c >a .课堂练兵1.已知a =0.8-0.4,b =log 53,c =log 85,则()A.a <b <cB.b <c <aC.c <b <aD.a <c <b2.已知a =5log 23.4,b =5log 43.6,c =15log 30.3,则()A.a >b >cB.b >a >cC.a >c >bD.c >a >b 3.已知3a =6b =10,则2,ab ,a +b 的大小关系是()A.ab <a +b <2B.ab <2<a +bC.2<a +b <abD.2<ab <a +bf x 11构造函数:ln x /x 型函数 =ln xx出现的比较大小问题:①f x =ln x x 在区间(0,e )上单调递增,在区间(e ,+∞)单调递减;当x =e 时,取得最大值1e;②注意:f 2 =ln22=2ln24=f 4 例18.设a =4-ln4e2,b =1e ,c =ln22,则a ,b ,c 的大小关系为()A.a <c <bB.c <a <bC.a <b <cD.b <a <c设f x =ln x x ,利用导数判断单调性,利用对数化简a =f e 22 ,b =f e ,c =f 2 =f 4 ,再根据单调性即可比较a ,b ,c 的大小关系.【解答】设f x =ln x x ,则f x =1x⋅x -ln xx 2=1-ln x x 2,当x ∈1,e ,f x >0,f x 单调递增,当x ∈e ,+∞ ,f x <0,f x 单调递减,因为a =4-ln4e 2=2ln e 2-ln2 e 2=ln e 22e 22=f e 22 ,b =1e =ln e e =f e ,c =ln22=f 2 ,所以b =f e 最大, 又因为c =f 2 =f 4 ,e <e 22<4,所以a =f e 22 >f 4 =c ,所以b >a >c课堂练兵1.已知a =3ln2π,b =2ln3π,c =3ln π2,则下列选项正确的是()A.a >b >c B.c >a >b C.c >b >aD.b >c >a2.以下四个数中,最大的是()A.ln 33 B.1e C.ln ππD.15ln15303.下列命题为真命题的个数是()①ln3<3ln2;②ln π<πe;③215<15;④3e ln2<42B.2D.4A.1C.312放缩①对数,利用单调性,放缩底数,或者放缩真数,指数和幂函数结合来放缩。
专项5 指数函数、对数函数相关的4种题型1.比较大小一般来说,指数、对数比较大小我们采取的思路是:首先,尽量将不同底数的指数、对数或幂函数,通过公式化成同一底数的,底数相同的根据单调性比较大小;其次,对于确实不能化成同一底数的,我们尽量将真数或指数化成相同的,然后我们做出图像,根据指数函数在第一象限内底数越大图像越高的特征、对数函数在第一象限内水平向右底数增大的特征判断大小; 最后,如果全都不相同,我们一般先做出图像,观察图像,判断大小,如果图像仍然不能解决问题,那么我们就应该考虑找中间值进行比较,中间值一般取0,-1,1,比如能否确定所要进行比较的数的正负、与1或-1的大小关系。
通过上述方式一般能解决所有比较大小问题。
1.设0.90.48 1.514,8,()2a b c -===,则( ) .A c a b >>.B b a c >>.C a b c >>.D a c b >>2.三个数0.32、log 20.3、20.3的大小关系为( )A .0.32<20.3<log 20.3B .0.32<log 20.3<20.3C .log 20.3<0.32<20.3D .log 20.3<20.3<0.323. a log a,log a,log 1,a 0530.5三者的大小关系是则<<若( )a log a log a log D.a log a log a log C.a log a log a log B.a log a log a log A.530.50.5530.535350.5>>>>>>>>4.设a >1,且2log (1)log (1),log (2)a a a m a n a p a =+=-=,,则p n m ,,的大小关系为( )(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n5.以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2) (C) ln (D) ln26.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( ) A .a b c << B .c b a << C .c a b <<D .b a c <<7.设a b c ,,均为正数,且122log a a =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2c c ⎛⎫= ⎪⎝⎭.则( ) A.a b c << B.c b a << C.c a b << D.b a c <<28.下列大小关系正确的是( )A .20.440.43log 0.3<<;B .20.440.4log 0.33<<;C .20.44log 0.30.43<<;D .0.424log 0.330.4<<9.设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A.R Q P << B.P R Q << C.Q R P << D.R P Q <<10. 下列不等式成立的是( )A .2lg (lg )e e <<B .2lg (lg )e e <<C .2(lg )lg e e <<D .2(lg )lg e e <<11.已知324log 0.3log 3.4log 3.615,5,()5a b c ===,则( ) .A a b c >>.B b a c >>.C a c b >>.D c a b >>12.若13(,1),ln ,2ln ,ln x e a x b x c x -∈===,则( ) .A a b c <<.B c a b <<.C b a c <<.D b c a <<13.设2554log 4,(log 3),log 5,a b c ===则( ) .A a c b <<.B b c a <<.C a b c <<.D b a c <<2.恒过定点问题指数函数恒过定点(0,1),是指指数函数的指数位置的表达式为0的时候,函数值恒为1;对数函数恒过(1,0),是指对数函数的真数位置的表达式为1的时候,函数值恒为0;对于指数位置或真数位置表达式中含有参数的,应考虑使用公式分离参数。
指数函数与对数函数题型总结题型一:定义域的求解一、定义域是函数y=f(x)中的自变量x 的范围,求函数的定义域需要从这几个方面入手: 1、分母不为零2、偶次根式的被开方数非负。
3、对数中的真数部分大于0。
4、指数、对数的底数大于0,且不等于15、y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
6、0x 中x 0≠【2019江苏理4】函数276y x x =+-的定义域是_____. 【答案】[-1,7]【解析】由已知得2760x x +-≥,即2670x x --≤解得17x -≤≤,故函数的定义域为[-1,7]. 【2018•江苏理5】函数f(x) =1log 2-x 的定义域为________. 【答案】【解析】解:,即。
【2017年山东理1】设函数y=4-x 2的定义域为A ,函数y=ln(1-x)的定义域为B,则A∩B=( ) A.(1,2) B.(1,2] C.(-2,1) D.[-2,1)【答案】D 【解析】由4-x 2≥0得-2≤x≤2,由1-x >0得x <1,故A∩B={x|-2≤x≤2}∩{x|-2≤x <1}.故选D. 【2016江苏理5】函数y=的定义域是 .【答案】 [﹣3,1]【解析】解:由3﹣2x ﹣x 2≥0得:x 2+2x ﹣3≤0,解得:x ∈[﹣3,1], 【2014山东理3】函数1)(log 1)(22-=x x f 的定义域为( )A.)210(,B.)2(∞+,C.),2()210(+∞ , D.)2[]210(∞+,, 【答案】 C 【解析】根据函数解析式有意义的条件建立不等式求解.()22log 10x ->,2log 1x ∴>或2log 1x ∴<-,2x ∴> 或102x ∴<<. 【2014江西理】函数f (x )=ln (x 2﹣x )的定义域为( ) A .(0,1)B .[0,1]C .(﹣∞,0)∪(1,+∞)D .(﹣∞,0]∪[1,+∞) 【答案】 C 【解析】要使函数有意义,则x 2﹣x >0,即x >1或x <0, 故函数的定义域为(﹣∞,0)∪(1,+∞), 【2013重庆文3】函数21log 2y x =(-)的定义域是( ).A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 【答案】C【解析】由题知220,log 20,x x ->⎧⎨(-)≠⎩解得2,21,x x >⎧⎨-≠⎩即2,3.x x >⎧⎨≠⎩所以该函数的定义域为(2,3)∪(3,+∞),故选C .【2013大纲全国理4】已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意知-1<2x +1<0,则-1<x <12-.故选B. 【2013安徽文11】函数21ln 11y x x ⎛⎫=++- ⎪⎝⎭的定义域为__________. 【答案】(0,1]【解析】由2110,10xx ⎧+>⎪⎨⎪-≥⎩⇒10,11x x x <->⎧⎨-≤≤⎩或⇒0<x ≤1. ∴该函数的定义域为(0,1]. 【2013山东文5】函数f (x )=1123xx -++的定义域为( ). A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1]【答案】 A 【解析】由题可知12030x x ⎧-≥⎨+>⎩⇒213x x ⎧≤⎨>-⎩⇒0,3,x x ≤⎧⎨>-⎩ ∴定义域为(-3,0].【2013江西理2】函数y =x ln(1-x )的定义域为( ).A .(0,1)B . [0,1)C .(0,1]D .[0,1] 【答案】B【解析】要使函数有意义,需0,10,x x ≥⎧⎨->⎩解得0≤x <1,即所求定义域为[0,1).故选B.【2013大纲全国理4】已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫--⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭【答案】 B 【解析】由题意知-1<2x +1<0,则-1<x <12-.故选B. 【2012山东文3】函数21()4ln(1)f x x x =+-+的定义域为 ( ).A.[2,0)(0,2]- B.(1,0)(0,2]- C.[2,2]- D.(1,2]-【答案】B 【解析】要使得函数有意义,应满足210111040x x x x ⎧+>⎪+≠⇒-<<⎨⎪-⎩或02x<.【2012江西理】下列函数中,与函数y=定义域相同的函数为( )A .y=B .y=C .y=xe xD .y=【答案】 D 【解析】∵函数y=的定义域为{x ∈R|x ≠0},∴对于A ,其定义域为{x|x ≠k π}(k ∈Z ),故A 不满足; 对于B ,其定义域为{x|x >0},故B 不满足; 对于C ,其定义域为{x|x ∈R},故C 不满足; 对于D ,其定义域为{x|x ≠0},故D 满足; 综上所述,与函数y=定义域相同的函数为:y=.【2012江苏省理】函数x x f 6log 21)(-=的定义域为 . 【答案】 (0 6⎤⎦,。
函数比较大小专项突破一指数式、对数式,幂式比较大小1.已知a=log2e,b=ln2,c=1e,其中e为自然对数的底数,则( )A.a>b>cB.a>c>bC.b>a>cD.b>c>a【解析】∵log2e>log22=1=ln e>ln2>ln2=12>1e,∴a>b>c.故选:A.2.设a=325,b=25 3,c=log325,则( )A.a>b>cB.a>c>bC.b>a>cD.c>b>a【解析】结合指数函数性质和对数函数性质可知a=325>30=1,0<b=253<250=1,c=log325<log31=0,∴a>b>c,故选:A.3.已知a,b,c,d∈R,2a=3b=log12c=log13d=2,则( )A.a<b,c<dB.a<b,c>dC.a>b,c<dD.a>b,c>d【解析】因为a,b,c,d∈R,2a=3b=log12c=log13d=2,所以a=1,b=log32<1,故a>b,c=12 2=14,d=13 2=19,所以c>d.故选:D.4.若a=50.3,b=0.35,c=ln sin22020,则a,b,c的大小关系为( )A.a>b>cB.a>c>bC.b>a>cD.c>a>b【解析】a=50.3>1,b=0.35∈0,1,0<sin22020<1,所以c=ln sin22020<0,所以a>b>c 故选:A5.已知a=12 13,b=53 12,c=log2352,则a,b,c的大小关系为( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】a=1213<12 0=1,b=53 12>53 0=1,c=log2352<log231=0,∴b>1>a>0>c.故选:C.6.已知a=30.5,b=log32,c=tan56π,则( )A.a>b>cB.b>a>cC.c>a>bD.a>c>b【解析】∵30.5>30=1=log33>log32>log31=0>-33=tan5π6,∴a>b>c.故选:A.7.已知幂函数f x 的图象经过点A3,27与点B t,64,a=log0.1t,b=0.2t,c=t0.1,则( ) A.c<a<b B.a<b<c C.b<a<c D.c<b<a 【解析】设幂函数f x =xα,因为点A3,27在f x 的图象上,所以27=3α,α=3,即f x =x3,又点B t,64在f x 的图象上,所以64=t3,则t=4,所以a=log0.14<0,0<b=0.24<1,c=40.1>1,所以a<b<c,故选:B8.已知函数f(x)是定义在R上的偶函数,对任意x1,x2∈(0,+∞),都有f(x1)-f(x2)x1-x2>0(x1≠x2),a=f log 1312,b =f log 213 ,c =f 512,则( )A.a >b >c B.c >a >b C.b >a >c D.c >b >a【解析】因为对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0(x 1≠x 2),所以f (x )在(0,+∞)上单调递增,又函数f (x )是定义在R 上的偶函数,所以f (x )=f (-x )因为log 1312=log 32,又0=log 31<log 32<log 33=1所以log 1312∈0,1 ,又1=log 22<log 23<log 24=2,512=5>2所以0<log 1312<log 23<512,所以f log 1312 <f log 23 =f -log 23 =f log 213 <f 512 所以c >b >a .故选:D .9.已知定义在R 上的偶函数f x 满足f x +6 =f x ,且当x ∈0,3 时,f x =xe x ,则下面结论正确的是( )A.f ln3 <f e 3 <f -eB.f -e <f ln3 <f e 3C.f e 3 <f -e <f ln3D.f ln3 <f -e <f e 3【解析】∵x ∈0,3 ,f x =xe x ,∴f x =e x x +1 ,∴x ∈0,3 时,f x 单调递增;∵f x +6 =f x ,∴x ∈18,21 ,f x 单调递增;∵2+3×6<e 3<e +3×6 ,∴f 2+3×6 <f e 3 <f e +3×6 ,∴f 2 <f e 3 <f e ,∵f -x =f x ∴f -e =f e ,∴0<ln3<ln e 2=2,∴f ln3 <f 2 ,综上所述,f ln3 <f e 3 <f -e .故选:A .10.已知定义在R 上的函数y =f (x -1)的图象关于点(1,0)对称,且函数y =f (x )在(0,+∞)上单调递增,a =0.23,b =30.2,c =log 0.20.3,则f (a ),f (b ),f (c )的大小关系为( )A.f (a )>f (b )>f (c )B.f (c )>f (a )>f (b )C.f (b )>f (c )>f (a )D.f (c )>f (b )>f (a )【解析】因为函数y =f (x -1)的图象关于点(1,0)对称,所以y =f (x )的图象关于点(0,0)对称,即函数y =f (x )为奇函数,所以a =0.23=0.008,b =30.2>30=1,c =log 0.20.3=log 0.20.09>log 0.20.2=12,故b >c >a >0,又函数y =f (x )在(0,+∞)上单调递增,所以f (b )>f (c )>f (a ),故选:C .11.已知a =ln12,b =ln lg2 ,c =lg ln2 则a ,b ,c 的大小关系是( )A.c >a >bB.c >b >aC.a >b >cD.b >c >a【解析】先比较a ,b ,易知lg2<12,故ln (lg2)<ln 12,即b <a ,又e <10,故x >1时ln x >lg x ,0<x <1时ln x <lg x ,故lg 12>ln 12, 而ln2>12,故lg (ln2)>lg 12>ln 12,有c >a ,故选:A ,12.已知x ∈1,2 ,则下列说法正确的是( )A.ln22x>2ln2x >x 2ln2 B.x 2ln2>ln22x>2ln2x C.2ln2x >x 2ln2>ln22xD.2ln2x >ln22x>x 2ln2【解析】∵x 2ln2=ln2x 2,2ln2x =ln 2x 2,∴比较2x 2,2x 2,22x的大小关系即可.1、当x ∈1,2 时,x 2<2x ,x 2<2x ,故2x 2<22x,2x 2<2x 2,故x 2ln2<ln22x,x 2ln2<2ln2x .2、令2x =t ∈2,4 ,则2x 2=t 2,22x =2t .由2t <t 2,即22x <2x 2,则2ln2x >ln22x.综上,2ln2x >ln22x>x 2ln2.故选:D .13.(多选)已知a ,b ,c ∈R ,且ln a =e b =1-c ,则下列关系式中可能成立的是( )A.a >b >cB.a >c >bC.c >a >bD.c >b >a【解析】设ln a =e b =1-c =t ,t >0,则a =e t ,b =ln t ,c =1-t ,在同一直角坐标系中分别画出函数y =e x ,y =ln x ,y =1-x 的图像,当0<t <1时,a >c >b ,当t =1时,a >c =b ,当t >1时,a >b >c ,故AB 正确.14.(多选)若b >c >32,13<a <12,则( )A.b log c a <c log b aB.bc a <cb aC.b a >c aD.log b a <log c a【解析】对于A 选项,因为b >c >32,13<a <12,则log c a <0,log b a <0,b b >b c >c c >1,b log c a c log b a =b lg a lg c ⋅lg b c lg a =lg b blg c c>1,所以,b log c a <c log b a ,A 对;对于B 选项,bc a cba =bc ⋅b c -a =b c 1-a >b c 0=1,则bc a >cb a ,B 错;对于C 选项,b a >c a ,C 对;对于D 选项,log b a log c a =lg a lg b ⋅lg c lg a =lg clg b<1,所以,log b a >log c a ,D 错.故选:AC .15.已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为___________.【解析】因为y =2x 在R 上为增函数,且-13<0,所以0<2-13<20=1,即0<a <1,c =log 1213=log 23因为y =log 2x 在(0,+∞)上为增函数,且0<13<1<2<3,所以log 213<log 21<log 22<log 23,即log 213<0<1<log 23,即b <0<1<c ,所以b <a <c ,16.若a =log 23,b =log 48,c =log 58,则a ,b ,c 的从大到小顺序为______________.【解析】由于b =log 48=12log 28=log 28<log 29=a ,即a >b .由b =log 48=1log 84>1log 85=c ,即b >c .所以a >b >c .17.已知a =35 25,b =25 35,c =2525,则a ,b ,c 的大小关系为____.(用“<”连接)【解析】由于函数y =25 x 在R 上是减函数,且35>25,∴c =25 25>b =2535,由于函数y =x 25在0,+∞ 上是增函数,且35>25,∴a =35 25>c =2525,故a ,b ,c 的大小关系是b <c <a .18.1.10.9,log 1.10.9,log 0.70.8的大小关系是________.【解析】因为y =1.1x 单调递增,所以1.10.9>1.10=1;因为y =log 1.1x 在0,+∞ 上单调递增,所以log 1.10.9<log 1.11=0;因为y =log 0.7x 在0,+∞ 上单调递减,所以0=log 0.71<log 0.70.8<log 0.70.7=1;所以1.10.9>log 0.70.8>log 1.10.9.19.已知a >b >0,且a +b =1,x =1a b ,y =log ab 1a +1b ,z =log b 1a,则x ,y ,z 从大到小为__________.【解析】∵a >b >0,a +b =1,∴1>a >12>b >0,∴1<1a <1b,∴x =1a b >1a 0=1,y =log (ab )1a +1b =log (ab )1ab =-1,z =log b 1a >log b 1b=-1.∴x >z >y .20.已知55<84,134<85,设a =log 53,b =log 85,c =log 138,则a ,b ,c 的大小关系是______.(用“<”连接)【解析】由题意,知a ,b ,c ∈0,1 .因为a b =log 53log 85=lg3lg5⋅lg8lg5<1lg52⋅lg3+lg82 2=lg3+lg82lg5 2=lg24lg25 2<1,所以a <b ,由b =log 85,得8b =5;由55<84,得85b <84,所以5b <4,可得b <45,由c =log 138,得13c =8;由134<85,得134<135c ,所以5c >4,可得c >45,综上所述,a ,b ,c 的大小关系是a <b <c .21.已知x ,y ,z 分别满足下列关系:18x =19,19y =20,log 1918z =2019,则x ,y ,z 的大小关系(从小写到大)_______.【解析】因为18x=19,19y=20,log 1918z =2019,所以x =log 1819,y =log 1920,z =1918 2019,x -y =log 1819-log 1920=ln19ln18-ln20ln19=ln19 2-ln20⋅ln18ln18⋅ln19ln20⋅ln18<ln20+ln182 2=ln3602 2<ln36122=ln19 2,所以x -y >0即x >y ,z =1918 2019>1918,z x >1918log 1819=1918⋅ln18ln19=ln1818÷ln1919>1所以z >x ,故有y <x <z22.设a ,b ,c 均为正数,且2a =log 12a ,12b =log 12b ,12 c=log 2c ,则a ,b ,c 的大小关系为______________.【解析】a ,b ,c 分别是函数y =2x ,y =log 12x 的交点,函数y =12x,y =log 12x 的交点,函数y =12x,y =log 2x 的交点,做出三函数图像,由图像可知a <b <c 23.比较下列各组数中两个数的大小:(1)25 0.3与13 0.3;(2)-23 -1与-35 -1;(3)25 0.3与0.325.【解析】(1)∵0<0.3<1,∴y =x 0.3在0,+∞ 上为增函数.又25>13,∴25 0.3>130.3;(2)∵y =x -1在-∞,0 上是减函数,又-23<-35,∴-23 -1>-35 -1;(3)∵y =x 0.3在0,+∞ 上为增函数,∴由25>0.3,可得250.3>0.30.3,①又y=0.3x在(-∞,+∞)上为减函数,∴0.30.3>0.325,②由①②知250.3>0.325.24.比较下列几组值的大小:(1)(-2.5)23和(-2.5)45;(2)25 -12和(0.4)-32;(3)13 -12和32 -12;(4)0.4-2.5,2-0.2,2.51.6.【解析】(1)由于(-2.5)23=2.523,(-2.5)45=2.545.∵y=2.5x在R上为增函数,且45>23,∴2.545>2.523,即(-2.5)45>(-2.5)23;(2)由于(0.4)-32=25 -32.∵y=25 x在R上为减函数,且-12>-32,∴25 -12<(0.4)-32;(3)∵y=13 x在R上为减函数,y=32 x在R上为增函数,且-12<0,∴13 -12>1,32 -12<1,∴13 -12>32 -12;(4)∵0.4-2.5=2.52.5,y=2.5x在R上为增函数,且2.5>1.6>0>-0.2∴2.52.5>2.51.6>1>2.5-0.2,∴0.4-2.5>2.51.6>2-0.2.25.已知正实数x,y,z满足3x=4y=6z.(1)求证:1z-1x=12y;(2)比较3x,4y,6z的大小.【解析】(1)证明:令3x=4y=6z=m,利用指数式和对数式的互化知x=log3m,y=log4m,z=log6m则1x=log m3,1y=log m4,1z=log m6∴1z-1x=log m6-log m3=log m2=12y.(2)3x<4y<6z,证明:因为正实数x,y,z,∴3x>0,4y>0,6z>0,∴3x4y=3log3m4log4m=3lg mlg34lg mlg4=34×lg4lg3=34log34=log3464又464<3,∴log3464<1,∴3x<4y∴4y6z=4log4m6log6m=4lg mlg46lg mlg6=23×lg6lg4=23log46=log236又36<2,∴log236<1,∴4y<6z,∴3x<4y<6z.专项突破二构造函数比较大小1.已知f (x)是定义在R上的函数f(x)的导函数,且满足xf (x)+f(x)>0对任意的x∈R都成立,则下列选项中一定正确的是( )A.f(1)>f(2)2 B.f(1)2>f(2) C.f(1)<f(2)2 D.f(1)2<f(2)【解析】令F x =xf x ,则F x =xf (x)+f(x)>0,故F x 为R上的增函数,所以F2 >F1 即2f2 >f1 ,故选:D.2.若a=ln33,b=e-1,c=5ln2010(e为自然对数的底数),则实数a,b,c的大小关系为( )A.b<a<cB.c<a<bC.c<b<aD.b<c<a【解析】令f(x)=ln xx,则f (x)=1-ln xx2,故当x∈(0,e)时,f(x)>0;当x∈(e,+∞)时,f (x)<0;而a=ln33=ln33=f(3),b=e-1=ln ee=f(e),c=5ln2010=ln2525=f25,而e<3<25,故b>a>c,故选:B3.已知a=ln33,b=1e,c=ln55,则以下不等式正确的是( )A.c>b>aB.a>b>cC.b>a>cD.b>c>a【解析】令f x =ln xx,则f x =1-ln xx2,当0<x<e时,f x >0,f x 单调递增,当x>e时,f x <0,f x 单调递减,因为e<3<5,所以f e >f3 >f5 ,所以b>a>c,故选:C 4.设a=3e2ln e23,b=1e,c=ln22,则a,b,c的大小顺序为( )A.a<c<bB.c<a<bC.a<b<cD.b<a<c【解析】令f x =ln xx x>0,则f (x)=1-ln xx2,当x>e时,f (x)<0,函数单调递减,当0<x<e时,f (x)>0,函数单调递增,故当x=e时,函数取得最大值f e =1 e,因为a=3e2ln e23=f e23,c=ln22=f2 ,b=1e=f e ,∵2<e23<e,当0<x<e时,函数f x 单调递增,可得f2 <fe23<f e ,即c<a<b.故选:B.5.已知a=810,b=99,c=108,则a,b,c的大小关系为( )A.b>c>aB.b>a>cC.a>c>bD.a>b>c【解析】构造f x =18-xln x,x≥8,f x =-ln x+18x-1,f x =-ln x+18x-1在8,+∞时为减函数,且f 8 =-ln8+94-1=54-ln8<54-ln e2=54-2<0,所以f x =-ln x+18x-1<0在8,+∞恒成立,故f x =18-xln x在8,+∞上单调递减,所以f8 >f9 >f10,即10ln8>9ln9>8ln10,所以810>99>108,即a>b>c.故选:D6.已知实数a,b满足a=log23+log86,5a+12a=13b,则下列判断正确的是( )A.a>2>bB.b>2>aC.b>a>2D.a>b>2【解析】a=log23+log86=log23+13log22×3=43log23+13>43log222+13=43×32+13=73>2,所以a>2;由5a+12a=13b且a>2,所以5a+12a>25+144=169,所以b>2,令f x =5x+12x-13x,x>2,令t=x-2>0,则x=t+2,则f x =5x+12x-13x,x>2等价于g t =25×5t+144×12t-169×13t,t>0;又g t =25×5t+144×12t-169×13t<169×12t-169×13t<0,所以当x>2时,f x =5x+12x-13x<0,故5a+12a=13b<13a,所以a>b>2.故选:D.7.设a=20202022,b=20212021,c=20222020,则( )A.a >b >cB.b >a >cC.c >a >bD.c >b >a【解析】∵ln a ln b =2022ln20202021ln2021=ln20202021ln20212022,构造函数f x =ln x x +1x ≥e 2,f x =x +1-x ln x x x +1 2,令g x =x +1-x ln x ,则gx =-ln x <0,∴g x 在e 2,+∞ 上单减,∴g x ≤g e 2 =1-e 2<0,故f x <0,∴f x 在e 2,+∞ 上单减,∴f 2020 >f 2021 >0,∴ln aln b =f 2020 f 2021>1∴ln a >ln b .∴a >b ,同理可得ln b >ln c ,b >c ,故a >b >c ,故选:A 8.设a =23e1.5,b =23(4-ln2),c =e 33,则a ,b ,c 的大小关系是( )A.b <c <aB.c <b <aC.b <a <cD.a <b <c【解析】①先比较a ,c :a =23e1.5=e3232,c =e 33,设函数f (x )=e xx 2,则f (x )=e x (x -2)x 3<0,得函数f (x )在(0,2)单调递减,f(x )=e x (x -2)x 3>0得函数f (x )在(2,+∞)单调递增 所以f (3)<f 32即c <a ;②再比较b ,c :由①知f min (x )=f (2)=e 24<f (3)=c ,而b =2232-12ln2 =232+ln 12 12, 设h (x )=23(ln x +2)x ,h (x )=-23(ln x +1)x 2当0<x <1e ,h (x )>0,h (x )单调递增,当x >1e,h(x )<0,h (x )单调递减,所以b =h 12 <h max (x )=h 1e =23e ,而23e <e 4.e =e 24<f (3)=c ,所以b <c ,故选:A9.已知a ,b ,c ∈(0,1),且a 2-2ln a +1=e ,b 2-2ln b +2=e 2,c 2-2ln c +3=e 3,其中e 是自然对数的底数,则( )A.a >b >cB.a >c >bC.c >a >bD.c >b >a【解析】设f x =x 2-2ln x ,g x =e x -x ,则f a =g 1 ,f b =g 2 ,f c =g 3 ,又g x =e x -1>0x >0 ,所以g x 在0,+∞ 上单调递增,所以g 3 >g 2 >g 1 ,即f c >f b >f a ,因为fx =2x -2x =2x 2-1 x<0x ∈0,1 ,所以f x 在0,1 上单调递减,所以a >b >c ,故选:A 10.设a =e 1.3-27,b =4 1.1-4,c =2ln1.1,则( )A.a <b <cB.a <c <bC.b <a <cD.c <a <b【解析】∵e 1.3 2=e 2.6<e 3<33,(27)2=28>33,∴e 1.3<27,∴a <0;b -c =4 1.1-4-2ln1.1=22 1.1-2-ln1.1 ,令f x =2x -2-ln x ,∴f x =1x-1x =x -1x ,∴当0<x <1时,f x <0,f x 单调递减;当x >1时,f x >0,f x 单调递增;∴f (x )min =f 1 =0,∴f 1.1 >0,即2 1.1-2-ln1.1>0,∴c <b ,又c =2ln1.1>2ln1=0,∴a <c <b .故选:B .11.已知定义在R 上的偶函数f x 满足f x +6 =f x ,且当x ∈0,3 时,f x =xe x ,则下面结论正确的是( )A.f ln3 <f e 3 <f -eB.f -e <f ln3 <f e 3C.f e 3 <f -e <f ln3D.f ln3 <f -e <f e 3【解析】∵x ∈0,3 ,f x =xe x ,∴f x =e x x +1 ,∴x ∈0,3 时,f x 单调递增;∵f x +6 =f x ,∴x ∈18,21 ,f x 单调递增;∵2+3×6<e 3<e +3×6 ,∴f 2+3×6 <f e 3 <f e +3×6 ,∴f 2 <f e 3 <f e ,∵f -x =f x ∴f -e =f e ,∴0<ln3<ln e 2=2,∴f ln3 <f 2 ,综上所述,f ln3 <f e 3 <f -e .故选:A .12.设a =10099,b =e 0.01,c = 1.02,则( )A.a >b >cB.a >c >bC.b >a >cD.c >a >b【解析】令f x =e x -x +1 ,则f x =e x -1,所以当x <0时f x <0,当x >0时f x >0,所以f x 在0,+∞ 上单调递增,在-∞,0 上单调递减,所以f x ≥f 0 =0,即e x -x +1 ≥0恒成立,即e x ≥x +1(当x =0时取等号),所以e 0.02>1+0.02⇒e 0.01> 1.02,∴b >c ,又e -x ≥1-x (当x =0时取等号),所以当x <1且x ≠0时,有1e x >1-x ⇒e x <11-x ,∴e 0.01<11-0.01=10099,∴a >b .故选:A13.已知a =e 0.1-1,b =sin0.1,c =ln1.1,则( )A.a <b <cB.b <c <aC.c <a <bD.c <b <a【解析】令f x =e x -1-sin x ,∴f x =e x -cos x ,当x >0时,e x >1,∴e x -cos x >0,∴f x >0,f x 单调递增,∴f 0.1 >f 0 ,即e 0.1-1-sin0.1>0,∴e 0.1-1>sin0.1,即a >b ,令g x =ln x +1 -sin x ,∴g x =1x +1-cos x =1-x +1 cos x x +1=1-x cos x -cos xx +1,令h x =1-x cos x -cos x ,∴h x =x +1 sin x -cos x 令φx =x +1 sin x -cos x ,∴φ x =2sin x +x +1 cos x ,当0<x <π6时,φ x >0,∴h x 单调递增,∴h x <h π6 =π6+1 sin π6-cos π6=π+61-3 12<0∴h x 在x ∈0,0.1 上单调递减,∴h x <h 0 =0,∴g x <0,∴g x 在x ∈0,0.1 上单调递减,∴g 0.1 <g 0 =0,即ln1.1-sin0.1<0,∴c <b 综上:c <b <a .故选:D .14.(多选)f x 是定义在非零实数集上的函数,f x 为其导函数,且x >0时,xf x -f x <0,记a =f 20.2 20.2,b =f 0.22 0.22,c =f log 25log 25,则错误的有( )A.a <b <cB.b <a <cC.c <a <bD.c <b <a【解析】令g x =f x x ,得gx =xf x -f x x 2,由x >0时,xf x -f x <0,得g x <0,g x 在0,+∞ 上单调递减,又log 25>log 24=2,1<20.2<2,0<0.22=0.04<1,可得log 25>20.2>0.22,故g log 25 <g 20.2 <g 0.22 ,故c <a <b ,故选:ABD 15.(多选)若正实数a ,b 满足13 a +log 13a =19 b+2log 19b ,则下列结论正确的有( )A.a >bB.a ≤bC.a <2bD.a ≥2b【解析】设f x =13x+log 13x ,则f x 在0,+∞ 为减函数,因为13 a +log 13a =19 b +2log 19b =19 b +log 13b ,所以f a -f b =13 a +log 13a -13 b+log 13b =19 b +log 13b -13 b +log 13b =19 b -13 b =13 2b -13 b ,因为2b >b >0,所以13 2b <13 b ,所以13 2b -13b<0,即f a <f b ,从而a >b ,所以A 正确,B 错误;而f a -f 2b =13 a +log 13a -13 2b +log 132b =13 2b +log 13b -13 2b +log 132b =log 13b -log 132b >0,所以f a >f 2b ,所以a <2b ,所以C 正确,D 错误.故选:AC .16.(多选)已知定义在0,π2上的函数f (x )的导函数为f (x ),且f (0)=0,f (x )⋅cos x +f (x )sin x <0,则下列选项中正确的是( )A.f π6<62f π4B.f π3>0 C.f π6>3f π3D.f π4>2f π3【解析】令g (x )=f (x )cos x ,x ∈0,π2 ,则g(x )=f(x )cos x +f (x )sin x cos 2x.因为f (x )cos x +f (x )sin x <0,所以g(x )=f (x )cos x +f (x )sin x cos 2x<0在0,π2 上恒成立,所以函数g (x )=f (x )cos x 在0,π2 上单调递减,所以g π6 >g π4 ,即f π6 cos π6>f π4 cos π4,f π6 >62f π4,故A 错误;又f (0)=0,所以g (0)=f (0)cos0=0,所以g (x )=f (x )cos x≤0在0,π2 上恒成立,因为π3∈0,π2,所以f π3 ≤0,故B 错误;又g π6 >g π3 ,所以f π6 cos π6>f π3cosπ3,即f π6 >3f π3 ,故C 正确;又g π4 >g π3 ,所以f π4 cos π4>f π3cosπ3,即f π4 >2f π3 ,故D 正确.故选:CD .17.若a =2ln (ln1.01),b =ln ln3π 2,c =23ln2,则a ,b ,c 的大小关系为____________.【解析】因为b =ln ln 3π 2=2ln ln 3π =2ln ln π3 ,c =23ln2=2ln213,所以构造函数f x =2ln x ,由对数函数的性质知,f x 在0,+∞ 上单调递增,所以只需比较ln1.01,ln π3,213的大小,由于1.01×3=3.03<π,故π3>1.01,所以ln1.01<lnπ3<1<213,所以a=2ln(ln1.01)<b=2ln ln π3<2ln213=23ln2=c,故答案为:a<b<c18.已知f x 是定义在R上的奇函数,对任意两个不相等的正数x1,x2,都有x2f x1-x1f x2x1-x2<0,记a=f4.10.24.10.2,b=f0.42.10.42.1,c=f log0.24.1log0.24.1,则a,b,c的大小关系__________.【解析】设0<x1<x2,因为x2f x1-x1f x2x1-x2<0,则x2f x1-x1f x2>0,即f x1x1>f x2x2,所以函数g x =f xx在0,+∞上单调递减.因为f x 是定义在R上的奇函数,所以g-x=f-x-x=-f x-x=f xx=g x ,所以g x 是定义在-∞,0∪0,+∞上的偶函数,因此a=f4.10.24.10.2=g4.10.2<g1 ,b=f0.42.10.42.1=g0.42.1>g0.42>g0.5,c=f log0.24.1log0.24.1=g log0.24.1=g log54.1∈g1 ,g12,即a<c<b.。
指数函数对数函数比较大小
题型总结
标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII
1、 已知0707..m n >,则m n 、的关系是( )
A 、 10>>>m n
B 、 10>>>n m
C 、 m n >
D 、 m n <
2、三个数a b c =-==(.)(.).030320203,,,则a b c 、、的关系是( )
A 、 a b c <<
B 、 a c b <<
C 、 b a c <<
D 、 b c a <<
3、三个数6log ,7.0,67.067.0的大小顺序是 ( )
A 、60.70.70.7log 66<<
B 、60.70.70.76log 6<<
B 、0.760.7log 660.7<< D 、60.70.7log 60.76<<
4、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )
A 、312y y y >>
B 、213y y y >>
C 、132y y y >>
D 、123y y y >>
5、当10<<a 时,a a a a a a ,,的大小关系是
( )
A 、a a a a a a >>
B 、a a a a
a a >> C 、a a a a a a >> D 、a a a a a a >> 6.设y 1=,y 2=,y 3=(12)-,则( )
A .y 3>y 1>y 2
B .y 2>y 1>y 3
C .y 1>y 2>y 3
D .y 1>y 3>y 2
7.设13<(13)b <(13)a <1,则( )
A .a a <a b <b a
B .a a <b a <a b
C .a b <a a <b a
D .a b <b a <a a
8.若x <0且a x >b x >1,则下列不等式成立的是( )
A .0<b <a <1
B .0<a <b <1
C .1<b <a
D .1<a <b
9.在⎝ ⎛⎭⎪⎫-12-1,2-12,⎝ ⎛⎭⎪⎫12-12,2-1
中,最大的数是( ) -1 B .2- 12 -12 D .2-1
10.若a =,b =,c =,则a ,b ,c 的大小关系是( )
A .a >b >c
B .a <b <c
C .a <c <b
D .b <c <a
11.比较下列各题中两个值的大小:
(1)-,-;(2);
(3),(a >0,且a ≠1).
12.设y 1=,y 2=,y 3=(12)-
,则( )
A .y 3>y 1>y 2
B .y 2>y 1>y 3
C .y 1>y 2>y 3
D .y 1>y 3>y 2
1.设a =log 54,b =(log 53)2,c =log 45,则( )
A .a <c <b
B .b <c <a
C .a <b <c
D .b <a <c
2.设a =lge ,b =(lg e)2,c =lg e ,则( )
A .a >b >c
B .a >c >b
C .c >a >b
D .c >b >a
3.已知a =,b =,c =,则( )
A .a >b >c
B .a >c >b
C .b >a >c
D .c >a >b
4.设a =log 1312,b =log 13
23,c =log 34
3,则a ,b ,c 的大小关系是( ) A .a <b <c
B .c <b <a
C .b <a <c
D .b <c <a
2.若a <0,则0.5a,5a,5-a 的大小关系是( )
A.5-a<5a<0.5a B.5a<0.5a<5-a C.0.5a<5-a<5a D.5a<5-a<0.5a 8.已知α>α,则α的取值范围是________.
9.把(2
3)-
1
3
,(
3
5)
1
2
,(
2
5)
1
2
,(
7
6)0按从小到大的顺序排列
____________________.。