递增.
4.当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.
5.做一做:已知函数f(x)=(m2-m-1)x-5m-3是幂函数且是(0,+∞)上的
增函数,则m的值为
.
答案:-1
解析:由题意知m2-m-1=1,
∴m2-m-2=0,
∴m=2或m=-1.
当m=2时,f(x)=x-13,不符合题意,故舍去;
当m=-1时,f(x)=x2,符合题意,故m的值为-1.
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解析:由m2+3m-17=1,解得m=3或m=-6,
分析:先利用f(x)在(0,+∞)内为减函数求出m的取值范围,再用代入检验的方法来验证是否为偶函数.
当m=-3时,m2-2m-3=12,y=x12是幂函数,但不满足当x∈(0,+∞)时,y随x的增大而减小,应舍去.
(-1,-1),(0,
(-1,1),(0,0),
定点 ),
0),
(0,0),(1,1)
(1,1)
(1,1)
(1,1)
(-1,-1),(1,1)
课前篇自主预习
一
二
三、幂函数共有的性质
1.幂函数在(0,+∞)上都有定义.
2.幂函数的图像过点(1,1).
3.当α>0时,幂函数的图像都过点(1,1)和(0,1),且在(0,+∞)上单调
人教版高中数学B版必修二
指数函数、对数函数与幂函数
4.4
幂函数
-1-
课标阐释
思维脉络
1.通过实例,了解幂函数的
概念.