函数导数不等式(含答案)
- 格式:doc
- 大小:775.01 KB
- 文档页数:8
限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。
利用导数解不等式考点与题型归纳考点一 f (x )与f ′(x )共存的不等式问题[典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________.[解析] (1)由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).[答案] (1)(0,10) (2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).(4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).[典例] (1)设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x[解析] (1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数. ∵f (x )是奇函数,f (-1)=0, ∴f (1)=-f (-1)=0, ∴g (1)=f (1)=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0. [答案] (1)A (2)A [解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n-1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )xn +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x,则F ′(x )=xf ′(x )-f (x )x 2>0. [典例] (1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0) B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0) C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0) D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e xf (x )-e 2x >0的解集为________.[解析] (1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ),则h ′(x )=12e 2x[f (x )+2f ′(x )]>0,所以函数h (x )=e 2x f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e x f (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e 2x >0的解集为(2,+∞).[答案] (1)D (2)(2,+∞) [解题技法](1)对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.考点二不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x,使得f(x)>0,只需f(x)min>0.类型2:任意x,使得f(x)<0,只需f(x)max<0.类型3:任意x,使得f(x)>k,只需f(x)min>k.类型4:任意x,使得f(x)<k,只需f(x)max<k.类型5:任意x,使得f(x)>g(x),只需h(x)min=[f(x)-g(x)]min>0.类型6:任意x,使得f(x)<g(x),只需h(x)max=[f(x)-g(x)]max<0.[典例]已知函数f(x)=ax+ln x+1,若对任意的x>0,f(x)≤x e2x恒成立,求实数a的取值范围.[解]法一:构造函数法设g(x)=x e2x-ax-ln x-1(x>0),对任意的x>0,f(x)≤x e2x恒成立,等价于g(x)≥0在(0,+∞)上恒成立,则只需g(x)min≥0即可.因为g′(x)=(2x+1)e2x-a-1x,令h(x)=(2x+1)e2x-a-1x(x>0),则h′(x)=4(x+1)e2x+1x2>0,所以h(x)=g′(x)在(0,+∞)上单调递增,因为当x―→0时,h(x)―→-∞,当x―→+∞时,h(x)―→+∞,所以h(x)=g′(x)在(0,+∞)上存在唯一的零点x0,满足(2x0+1)e2x0-a-1x0=0,所以a=(2x0+1)e2x0-1x0,且g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0e2x0-ax0-ln x0-1=-2x20e2x0-ln x0,则由g(x)min≥0,得2x20e2x0+ln x0≤0,此时0<x0<1,e2x0≤-ln x02x20,所以2x0+ln(2x0)≤ln(-ln x0)+(-ln x0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x >0,所以函数S (x )在(0,+∞)上单调递增, 因为S (2x 0)≤S (-ln x 0), 所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2]. 法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立.令m (x )=e 2x -ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln xx 2, 再令g (x )=2x 2e 2x +ln x (x >0),则g ′(x )=4(x 2+x )e 2x +1x >0,所以g (x )在(0,+∞)上单调递增,因为g ⎝⎛⎭⎫14=e 8-2ln 2<0,g (1)=2e 2>0, 所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0, 所以ln 2+2ln x 0+2x 0=ln(-ln x 0), 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0), 设s (x )=ln x +x (x >0),则s ′(x )=1x +1>0,所以函数s (x )在(0,+∞)上单调递增, 因为s (2x 0)=s (-ln x 0), 所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2]. [解题技法]求解不等式恒成立问题的方法(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.[题组训练](2019·陕西教学质量检测)设函数f (x )=ln x +kx,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 考点三 可化为不等式恒成立问题可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .[典例] 已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.[解] (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增, ∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-xe x ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,∴实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. [解题技法](1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.[题组训练]已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1, 所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0. (2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈⎣⎡⎦⎤13,12, 所以-6x +1∈[-3,-2], 所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ). 因为a <0,所以当x ∈[1,2]时,g ′(x )<0, 所以g (x )在[1,2]上单调递减, 故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3, 即g (x )在[1,2]上的值域为⎣⎡⎦⎤-3,-32a -12. 因为对于任意的x 1∈[1,2] ,总存在x 2∈[1,2], 使得f (x 1)=g (x 2),所以[0,1]⊆⎣⎡⎦⎤-3,-32a -12, 所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].[课时跟踪检测]1.(2019·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)解析:选A 根据题意,令g (x )=x 2f (x ),其导函数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).2.f (x )在(0,+∞)上的导函数为f ′(x ),xf ′(x )>2f (x ),则下列不等式成立的是( ) A .2 0182f (2 019)>2 0192f (2 018) B .2 0182f (2 019)<2 0192f (2 018)C .2 018f (2 019)>2 019f (2 018)D .2 018f (2 019)<2 019f (2 018)解析:选A 令g (x )=f (x )x 2,x ∈(0,+∞),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,则g (x )在(0,+∞)上为增函数, 即f (2 019)2 0192>f (2 018)2 0182, ∴2 0182f (2 019)>2 0192f (2 018).3.(2019·郑州质检)若对于任意的正实数x ,y 都有⎝⎛⎭⎫2x -y e ln y x ≤xm e 成立,则实数m 的取值范围为( )A.⎝⎛⎭⎫1e ,1 B.⎝⎛⎦⎤1e 2,1 C.⎝⎛⎦⎤1e 2,eD.⎝⎛⎦⎤0,1e 解析:选D 由⎝⎛⎭⎫2x -y e ln y x ≤xm e , 可得⎝⎛⎭⎫2e -y x ln y x ≤1m . 设yx=t ,令f (t )=(2e -t )·ln t ,t >0, 则f ′(t )=-ln t +2e t -1,令g (t )=-ln t +2e t -1,t >0,则g ′(t )=-1t -2et 2<0,∴g (t )在(0,+∞)上单调递减,即f ′(t )在(0,+∞)上单调递减. ∵f ′(e)=0,∴f (t )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴f (t )max =f (e)=e ,∴e ≤1m ,∴实数m 的取值范围为⎝⎛⎦⎤0,1e . 4.设函数f (x )=e x ⎝⎛⎭⎫x +3x -3-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min .而g ′(x )=e x (x 2-x ),由g ′(x )>0可得 x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1),∴函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e5.(2018·武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解:(1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e, ∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞. 综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x-32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x 变化时,h ′(x ),h (x )的变化情况如下表:∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).6.(2019·郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在点(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).∵f ′(x )=1x-a ,∴f ′(1)=1-a =0,∴a =1, ∴f ′(x )=1x -1=1-x x, 令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1). 令g (x )=ln x -x 22+x -12-k (x -1)(x >1), 则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x, 令h (x )=-x 2+(1-k )x +1(x >1),则h (x )的对称轴为x =1-k 2. ①当1-k 2≤1,即k ≥-1时,易知h (x )在(1,x 0)上单调递减, ∴h (x )<h (1)=1-k .若k ≥1,则h (x )<0,∴g ′(x )<0,∴g (x )在(1,x 0)上单调递减,∴g (x )<g (1)=0,不合题意;若-1≤k <1,则h (1)>0,∴必存在x 0使得x ∈(1,x 0)时g ′(x )>0,∴g (x )在(1,x 0)上单调递增,∴g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1,即k <-1时,易知必存在x ,使得h (x )在(1,x 0)上单调递增.∴h (x )>h (1)=1-k >0,∴g ′(x )>0,∴g (x )在(1,x 0)上单调递增.∴g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围为(-∞,1).7.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.解:(1)证明:f ′(x )=(x +1)e x+1-ln x x 2,x ∈(0,+∞), 易知当0<x <1时,f ′(x )>0,所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点, 所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0. 原不等式可化为x e x -ln x -1x≥k , 令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增, 故g (x 0) 为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t , 可得⎩⎪⎨⎪⎧ ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].。
专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。
不等式恒成立问题解题方法汇总(含答案)不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.例7.若不等式对于恒成立,求的取值范围.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.例10.关于的不等式在上恒成立,求实数的取值范围.答案部分1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为解:(I)(过程略).(II)(过程略)函数的单调减区间为,函数的单调增区间为.(III)由(II)可知,函数在处取得极小值,此极小值也是最小值.要使()恒成立,只需,解得或.所以的取值范围为.评注:最值法是我们这里最常用的方法.恒成立;恒成立.2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.解:(I)(过程略)函数的单调增区间为,的单调减区间为(II)不等式等价于不等式,由于,知;设,则.由(I)知,,即;于是,,即在区间上为减函数.故在上的最小值为.所以的最大值为.评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.解:在同一平面直角坐标系内作出函数与函数在上的图象(如右),从图象中容易知道:当且时,函数的图象恒在函数上方,不合题意;当且时,欲使函数的图象恒在函数下方或部分点重合,就必须满足,即.故所求的的取值范围为.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.解:设,,则原问题转化为恒成立的问题.故应该有,解得或.所以实数的取值范围是.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I)递推式可以化归为,,所以数列是等比数列,可以求得对于任意,.(II)假设对于任意有,取就有解得;下面只要证明当时,就有对任意有由通项公式得当()时,当()时,,可见总有.故的取值范围是评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.解:(i)当时,显然<0成立,此时,(ii)当时,由<0,可得<<,令则>0,∴是单调递增,可知<0,∴是单调递减,可知此时的范围是(—1,3)综合i、ii得:的范围是(—1,3).例7.若不等式对于恒成立,求的取值范围.解:(只考虑与本案有关的一种方法)解:对进行分段讨论,当时,不等式恒成立,所以,此时;当时,不等式就化为,此时的最小值为,所以;当时,不等式就化为,此时的最大值为,所以;由于对上面的三个范围要求同时满足,则所求的的范围应该是上三个的范围的交集即区间说明:这里对变量进行分段来处理,那么所求的对三段的要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.解:设,则,有.这样,,则,函数在为减函数.因此;而(当且仅当时取等号),又,所以的取值范围是.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.解:当时,不等式化为,显然对一切实数恒成立;当时,要使不等式一切实数恒成立,须有,解得.综上可知,所求的实数的取值范围是.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于的不等式在上恒成立,求实数的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵,∴不等式可以化为;下面只要求在时的最小值即可,分段处理如下.当时,,,再令,,它的根为;所以在区间上有,递增,在区间上有,递减,则就有在的最大值是,这样就有,即在区间是递减.同理可以证明在区间是递增;所以,在时的最小值为,即.技巧解:由于,所以,,两个等号成立都是在时;从而有(时取等号),即.评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
高考材料高考材料专题10 利用导数证明不等式1.〔2023·北京市第九中学模拟预测〕已知. ()sin 2f x k x x =+(1)当时,推断函数零点的个数; 2k =()f x (2)求证:.()sin 2ln 1,(0,2x x x x π-+>+∈(答案)(1)1; (2)证明见解析. (解析) (分析)〔1〕把代入,求导得函数的单调性,再由作答. 2k =()f x (0)0f =〔2〕构造函数,利用导数借助单调性证明作答.()2sin ln(1)g x x x x =--+(1)当时,,,当且仅当时取“=〞,所以在R 上单调2k =()2sin 2f x x x =+()2cos 20f x x '=+≥(21)π,Z x k k =-∈()f x 递增,而,即0是的唯—零点, (0)0f =()f x 所以函数零点的个数是1.()f x (2),令,则,因,则,因此,函数(0,)2x π∈()2sin ln(1)g x x x x =--+()12cos 1g x x x =-'-+1cos 1,11x x <<+()0g x '>在上单调递增,,,()g x (0,)2π(0,2x π∀∈()(0)0g x g >=所以当时,成立.(0,)2x π∈()sin 2ln 1x x x -+>+2.〔2023·河南·开封市东信学校模拟预测〔文〕〕已知函数. ()ln (0)f x x ax a a =-+>(1)当时,求的单调区间; 2a =()f x (2)设函数的最大值为m ,证明:.()f x 0m ≥(答案)(1)增区间为,减区间为;10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析. (解析)(分析)〔1〕利用导数研究的单调区间.()f x 〔2〕应用导数求得的最大值,再构造并利用导数证明不等式.()f x 1ln 1m f a a a ⎛⎫==-- ⎪⎝⎭()ln 1h a a a =--(1)当时,. 2a =()ln 22f x x x =-+∴,令,得. 112()2x f x x x -'=-=()0f x '=12x =∴当时,,函数单调递增; 102x <<()0f x '>()f x 当时,,函数单调递减. 12x >()0f x '<()f x 故函数的减区间为,增区间为;()f x 1,2⎛⎫+∞ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭(2)由,令,得. 1()axf x x -'=()0f x '=1x a=∴当时,,函数单调递增; 10x a<<()0f x '>()f x 当时,,函数单调递减. 1x a>()0f x '<()f x ∴.max 1()ln 1m f x f a a a ⎛⎫===-- ⎪⎝⎭令,则. ()ln 1h a a a =--11()1a h a a a-'=-=∴当时,,函数单调递减; 01a <<()0h x '<()h x 当时,,函数单调递增. 1a >()0h x '>()h x ∴,即.()(1)0h a h ≥=0m ≥3.〔2023·江苏无锡·模拟预测〕已知函数,其中m >0,f '(x )为f (x )的导函数,设,且()e (1ln )xf x m x =+()()ex f x h x '=恒成立.5()2h x ≥(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1. (答案)(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析 (解析)(分析)〔1〕求导可得解析式,即可得解析式,利用导数求得的单调区间和最小值,结合题意,即可()'f x ()h x ()h x 得m 的范围.〔2〕求得解析式,令,利用导数可得的单调性,依据零点存在性定理,可()f x ''22()1ln (0)m mt x m x x x x =++->()t x 得存在,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以21,12x ⎛⎫∈ ⎪⎝⎭,令,分析可得s (x 1)<0,即可得证 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭()1ln s x m x =+(1)由题设知, ()e (1ln xmf x m x x'=++则, 1ln (())0h mm x x xx ++>=所以 22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数, 当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数, 所以h (x )min =h 〔1〕=,解得,512m +≥32m ≥所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭高考材料高考材料(2) 222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令 22()1ln (0)m mt x m x x x x=++->则=恒成立, 2322()m m m t x x x x '=-+2233(1)1(22)0m x m x x x x⎡⎤-+-+⎣⎦=>所以t (x )在(0,+∞)单调递增.又,1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<所以存在,使得t (x 2)=0,21,12x ⎛⎫∈ ⎪⎝⎭当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减; 当x ∈(x 2,+∞) 时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增; 所以f '(x )在x =x 2处取得极小值.即x 1=x 2, 所以t (x 1)=0,即, 11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭所以, 1122111(12)21ln 0m x m m m x x x x -+=-=<令,则 s (x )在(0,+∞)单调递增; ()1ln s x m x =+所以s (x 1)<0因为f (x )的零点为x 0,则,即s (x 0)=0 01ln 0m x +=所以s (x 1)<s (x 0),所以x 0>x 14.〔2023·全国·郑州一中模拟预测〔理〕〕已知函数. ()()ln 0f x ax x a =≠(1)商量函数的单调性;()f x (2)当时,证明:.1a =()e sin 1xf x x <+-(解析) (1)依题意知,,()0,x ∈+∞()()ln ln 1f x a x a a x '=+=+令得,()0f x '=1ex =当时,在上,单调递减,在单调递增;0a >10,e ⎛⎫⎪⎝⎭()0f x '<()f x 1,e ⎛⎫+∞ ⎪⎝⎭当时,在上,单调递增,在单调递减.0a <10,e ⎛⎫⎪⎝⎭()0f x '>()f x 1,e ⎛⎫+∞ ⎪⎝⎭(2)依题意,要证,ln e sin 1x x x x <+-①当时,,,故原不等式成立, 01x <≤ln 0x x ≤1sin 0e x x -+>②当时,要证:,即证:,1x >ln e sin 1x x x x <+-ln sin 1e 0x x x x --+<令,则,, ()()e ln sin 11x h x x x x x =--+>()e ln cos 1xh x x x '=--+()e 1sin 0xh x x x''=-+<∴在单调递减,∴,∴在单调递减,∴()h x '()1,+∞()()11e cos10h x h ''<=--<()h x ()1,+∞,即,故原不等式成立.()()11e sin10h x h <=--<ln sin 1e 0xx x x --+<5.〔2023·浙江·三模〕已知实数,设函数. 0a ≥2()2ln(1)(1)ln ,0f x x ax a ax x x =-++-->(1)当时,求函数的单调区间; 0a =()f x (2)假设函数单调递增,求a 的最大值;()f x (3)设是的两个不同极值点,是的最大零点.证明:. 12,x x ()f x 3x ()f x 31211x x x +<注:是自然对数的底数.e 2.71828=⋅⋅⋅(答案)(1)在上单调递增;(2)1;(3)证明见解析. ()f x (0,)+∞(解析)(分析)〔1〕求导,结合导数正负可直接求解函数的单调区间. ()f x 〔2〕由题意得对任意的的恒成立,即可求出a 的最大值. 1()23ln 0f x x a a x x--'=+≥()0,x ∞∈+〔3〕由〔2〕知,当有两个不同极值点时,,则存在两个零点,故,()f x 1a >()0f x '=12,x x ()()111222123ln 0,123ln 0.x a x x x a x x ⎧+-+=⎪⎪⎨⎪+-+=⎪⎩由此可得出,再证明:. 12112a x x +<32x a >即可证明。
热点探究课(二) 函数、导数与不等式[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的X 围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点1 利用导数研究函数的单调性、极值与最值(答题模板)函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的X 围.(本小题满分14分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值X 围.【导学号:62172114】[思路点拨] (1)求出导数后对a 分类讨论,然后判断单调性;(2)运用(1)的结论分析函数的最大值,对得到的不等式进行等价转化,通过构造函数并分析该函数的单调性求a 的X 围.[规X 解答] (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .2分若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.3分若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0.5分所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.6分 (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.11分 因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.12分令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值X 围是(0,1).14分[答题模板] 讨论含参函数f (x )的单调性的一般步骤 第一步:求函数f (x )的定义域(根据已知函数解析式确定). 第二步:求函数f (x )的导数f ′(x ).第三步:根据f ′(x )=0的零点是否存在或零点的大小对参数分类讨论. 第四步:求解(令f ′(x )>0或令f ′(x )<0). 第五步:下结论.第六步:反思回顾,查看关键点、易错点、注意解题规X .温馨提示:1.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断f ′(x )的符号问题上,而f ′(x )>0或f ′(x )<0,最终可转化为一个一元一次不等式或一元二次不等式问题.2.若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.[对点训练1] 已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x,若函数g (x )在x ∈[-3,2]上单调递增,某某数c 的取值X 围.[解] (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.2分当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1,解得a =-1.4分(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎪⎫-∞,-3和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.8分(3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x, 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x=(-x 2-3x +c -1)e x,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立, 只要h (2)≥0,解得c ≥11,所以c 的取值X 围是[11,+∞).14分热点2 利用导数研究函数的零点或曲线交点问题研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图象交点的个数;(2)由函数的零点、图象交点的情况求参数的取值X 围.(2016·高考节选)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值X 围. [解] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .2分 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .4分 (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.6分令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.8分f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:x (-∞,-2)-2 ⎝⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,+∞ f ′(x ) +-+f (x )c c -3227所以,当c >0且c -27<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-3,x 3∈⎝ ⎛⎭⎪⎫-3,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.14分[规律方法] 用导数研究函数的零点,常用两种方法:一是用导数判断函数的单调性,借助零点存在性定理判断;二是将零点问题转化为函数图象的交点问题,利用数形结合来解决.[对点训练2] 设函数f (x )=ln x +m x,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x3零点的个数. 【导学号:62172115】[解] (1)由题设,当m =e 时,f (x )=ln x +ex,则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.2分 ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减; 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.4分(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).6分设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.10分又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.14分热点3 利用导数研究不等式问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题角度有:(1)证明不等式;(2)不等式恒成立问题;(3)存在型不等式成立问题. ☞角度1 证明不等式设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x>x 2-2ax +1.[解] (1)由f (x )=e x-2x +2a ,x ∈R ,f ′(x )=e x-2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2)ln 2 (ln 2,+∞)f ′(x ) - 0 + f (x )单调递减2(1-ln 2+a )单调递增故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).6分(2)设g (x )=e x -x 2+2ax -1,x ∈R .于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 又g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x-x 2+2ax -1>0,故e x >x 2-2ax +1.14分 ☞角度2 不等式恒成立问题(2016·全国卷Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1).(1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值X 围. [解] (1)f (x )的定义域为(0,+∞).1分 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.3分故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.6分 (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1x +1>0.设g (x )=ln x -a x -1x +1,则g ′(x )=1x-2a x +12=x 2+21-a x +1x x +12,g (1)=0.9分 ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -12-1,x 2=a -1+a -12-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0.综上,a 的取值X 围是(-∞,2].14分 ☞角度3 存在型不等式成立问题设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值X 围.[解] (1)f ′(x )=a x+(1-a )x -b . 由题设知f ′(1)=0,解得b =1.3分 (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x -1=1-a x ⎝ ⎛⎭⎪⎫x -a 1-a (x -1).5分①若a ≤12,则a1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)单调递增.所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.7分②若12<a <1,则a 1-a >1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0,f (x )在⎝⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.10分所以存在x 0≥1,使得f (x 0)<aa -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <aa -1. 而f ⎝ ⎛⎭⎪⎫a 1-a =a ln a 1-a +a 221-a +a a -1>a a -1,所以不合题意. ③若a >1,则f (1)=1-a 2-1=-a -12<a a -1恒成立,所以a >1.综上,a 的取值X 围是(-2-1,2-1)∪(1,+∞).14分 [规律方法] 1.运用导数证明不等式,常转化为求函数的最值问题.2.不等式恒成立通常可以利用函数的单调性求出最值解决.解答相应的参数不等式,如果易分离参数,可先分离变量,构造函数,直接转化为函数的最值问题,避免参数的讨论.3.“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.应特别关注等号是否成立问题.热点探究训练(二)1.设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值X 围. 【导学号:62172116】 [解] (1)对f (x )求导得f ′(x )= 6x +a e x -3x 2+ax exe x 2=-3x 2+6-a x +aex.3分 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e(x -1),化简得3x -e y =0.7分(2)由(1)知f ′(x )=-3x 2+6-a x +aex, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.9分当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.11分由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92.故a 的取值X 围为⎣⎢⎡⎭⎪⎫-92,+∞.14分2.(2017·某某模拟)设函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值X 围. [解] (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=x e x -2e x x 3-k x -2x 2=x -2e x-kx x 3.由k ≤0可得e x-kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).6分 (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x-kx ,x ∈[0,+∞). 因为g ′(x )=e x-k =e x-e ln k,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x-k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点; 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减,x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增.所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g 0>0,g ln k <0,g 2>0,0<ln k <2,解得e<k <e22.13分综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值X 围为⎝ ⎛⎭⎪⎫e ,e 22. 14分3.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值X 围.[解] (1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ).1分 (ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.3分 (ⅱ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ). ①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增. ②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减.5分③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.7分(2)(ⅰ)设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,所以f (x )有两个零点.9分(ⅱ)设a =0,则f (x )=(x -2)e x,所以f (x )只有一个零点.(ⅲ)设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值X 围为(0,+∞).14分4.(2017·某某模拟)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2]函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤f ′x +m 2在区间(t,3)上总不是单调函数,求m 的取值X 围;(3)求证:ln 22×ln 33×ln 44×…×ln n n <1n (n ≥2,n ∈N +). 【导学号:62172117】[解] (1)f ′(x )=a 1-xx(x >0). 当a >0时,f (x )的单调增区间为(0,1],减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1]; 当a =0时,f (x )不是单调函数.4分(2)由f ′(2)=-a 2=1得a =-2,∴f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,且g ′(0)=-2, ∴⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题意知:对于任意的t ∈[1,2],g ′(t )<0恒成立,所以有:⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0,∴-373<m <-9.8分(3)证明:令a =-1,此时f (x )=-ln x +x -3,所以f (1)=-2,由(1)知f (x )=-ln x +x -3在(1,+∞)上单调递增,∴当x ∈(1,+∞)时f (x )>f (1),即-ln x +x -1>0,∴ln x <x -1对一切x ∈(1,+∞)成立,∵n ≥2,n ∈N +,则有0<ln n <n -1,∴0<ln n n <n -1n.word11 / 11 ∴ln 22×ln 33×ln 44×ln n n <12×23×34×…×n -1n =1n(n ≥2,n ∈N +).16分。
一个经典的函数不等式链在高考大题中的应用武汉大学 兰老师导数是研究函数图像和性质的重要工具,是历年高考的热点。
尤其是利用导数证明不等式是高考考查的重点和学生解答的难点。
因此,对高考中的一些典型模型进行深入研究显得尤为重要。
函数ln(1)y x =+是高中教材中的重要模型,同时也是历年高考考查的核心内容。
本文介绍以ln(1)y x =+为主体的不等式链及其在高考中的应用。
1 函数不等式链及证明下面简单介绍下此函数不等式链并对其进行证明。
引 理 当0x ≥时,()211ln 1(1)1221x x x x x x x x ≤≤+≤+−≤+++. 证 明:(1)11(1)21x x x +−≤+; 令11()(1)21F x x x x =−+−+,则211'()22(1)F x x =++,当0x ≥时,'()0F x >, 故()F x 在[)0,+∞上单调递增,又因为()(0)0F x F ≥=,所以在[)0,+∞上()0F x ≥恒成立。
故0x ≥时,11(1)21x x x +−≤+恒成立。
(2)()11ln 1(1)21x x x +≤+−+; 令11()(1)ln(1)21G x x x x =+−−++,则22'()2(1)x G x x =+。
当0x ≥时,'()0G x ≥,故()G x 在[)0,+∞上单调递增,所以()(0)0G x G ≥=,则在[)0,+∞上()0G x >恒成立,故0x ≥时,()11ln 1(1)21x x x +≤+−+恒成立。
(3)()2ln 12xx x ≤++; 令()2()ln 12x W x x x =+−+,则22'()(1)(2)x W x x x =++。
当0x ≥时,'()0W x ≥恒成立,故()W x 在[)0,+∞上单调递增,又因为()(0)0W x W ≥=,所以在[)0,+∞上()0W x ≥恒成立。
函数导数、三角函数、不等式(二):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.函数41y x =-的定义域为()A .[)0,1B .()1,+∞C .()()0,11,+∞ D .[)()0,11,+∞ 2.设a >0,b >0,化简2115113366221()()()3a ab a ⋅-÷的结果是()A .2313a -B .233a -C .13a-D .-3a 3.已知不等式240x ax ++ 的解集为,R 则a 的取值范围是()A .[]4,4-B .()4,4-C .][(),44,∞∞--⋃+D .()(),44,-∞-+∞ 4.曲线31y x =+在点(1,)a -处的切线方程为()A .33y x =+B .31y x =+C .31y x =--D .33y x =--5.下列命题中正确的是()A .若0ab >,a b >,则11a b<B .若a b <,则22ac bc <C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d>6.下列判断正确的是()A .命题“对顶角相等”的逆命题是真命题B .命题“若1x <,则21x >”的否命题是“21x <,则1x <”C .“1a =”是“函数()22cos sin f x ax ax =-的最小正周期是π”的必要不充分条件D .“0b =”是“函数()2f x ax bx c =++是偶函数”的充要条件7.已知集合{lg(2)}A xy x ==-∣,{}2120B x x x =--<∣,则A B = ()A .()2,4B .()3,4-C .()2,3D .()4,3-8.已知函数21()23ln 2f x x x x =+-,则()f x 的单调递减区间是()A .(3,1)-B .(0,1)C .(,3)(1,)-∞-+∞ D .(1,)+∞9.已知函数f (x )=sin (ωx +2φ)﹣2sinφcos (ωx +φ)(ω>0,φ∈R )的图象的相邻两条对称轴相距2π个单位,则ω=()A .1B .12C .13D .210.公元前6世纪,古希腊毕达哥拉斯学派在研究正五边形和正十边形的作图时,发现了黄金分割数12,其近似值为0.618,这是一个伟大的发现,这一数值也表示为2sin18a =,若24a b +=,则21cos 72a b=-()A .12B .2CD .411.已知不等式5132-≤-x x 的解集为A ,关于x 的不等式2220-+>ax x 的解集为B ,且⊆ A B B ,则实数a 的取值范围为()A .(0,)+∞B .1,16⎛⎫+∞ ⎪⎝⎭C .2,9⎛⎫+∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭12.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦二、填空题13.若1tan 3α=-,则3sin 2cos 2sin cos αααα+=-_______.14.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >,则b 的值为______.15.已知tan 312πα⎛⎫-=- ⎪⎝⎭,则tan 6πα⎛⎫+= ⎪⎝⎭______.16.已知偶函数()f x 在(0,)+∞上是减函数,且(1)0f -=,则()0f x x<的解集__________三、解答题17.已知函数3()395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 在[]3,3-上的最大值和最小值.18.已知312sin ,,,cos ,5213πααπββ⎛⎫=∈=- ⎪⎝⎭是第三象限角,求(1)cos α与sin β的值;(2)cos()αβ-.19.已知函数()()21ln 12f x a x x a x =+-+.(1)求函数f (x )的单调区间;(2)若f (x )≥0对定义域内的任意x 恒成立,求实数a 的取值范围.20.已知函数()ln 2f x x x ax =-+(a 为实数)(1)若2a =,求()f x 在21,e ⎡⎤⎣⎦的最值;(2)若()0f x ≥恒成立,求a 的取值范围.21.在ABC 中,内角,,A B C 的对边分别为,,a b c ,满足cos cos 2cos a B b A c B +=,b .(1)求B ;(2)若2a c -=,求ABC 的面积.22.设函数22()3ln 1f x a x ax x =+-+,其中0a >.(1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.参考答案:1.D 【解析】【分析】由题意列不等式组求解【详解】由题意得2010x x ≥⎧⎨-≠⎩,解得0x ≥且1x ≠,故选:D 2.D 【解析】【分析】由分数指数幂的运算性质可得结果.【详解】因为0a >,0b >,所以2115211115113366326326221()()()333a b a b b a ba +-+-⋅-÷=-⋅=-.故选:D.3.A 【解析】【分析】利用判别式小于等于零列不等式求解即可.【详解】因为不等式240x ax ++ 的解集为,R 所以2Δ4140a =-⨯⨯ ,解得44a -,所以a 的取值范围是[]4,4-,故选:A.4.A 【解析】【分析】求出导函数,进而利用导数的几何意义得到切线的斜率,再求出a 的值,利用点斜式求出切线方程.【详解】()23f x x '=,所以()13f '-=,又当1x =-时,31110a x =+=-+=,所以31y x =+在点(1,)a -处的切线方程为:()31y x =+,即33y x =+故选:A 5.A 【解析】【分析】利用不等式的基本性质可判断A 选项,利用特殊值法可判断BCD 选项.【详解】因为0ab >,a b >,所以a b ab ab >,即11a b<,所以A 正确;若a b <,0c =,则22ac bc =,所以B 错误;取2a c ==,1b d ==,则a c b d -=-,所以C 错误;取2a =,1b =,2c =-,1d =-,则a bc d=,所以D 错误.故选:A.6.D 【解析】【分析】逐项进行判断,根据逆命题、否命题、充分条件、必要条件的定义进行判断即可.【详解】对A ,命题“对顶角相等”的逆命题为:“相等的两个角为对顶角”,假命题,故错;对B ,命题“若1x >,则21x >”的否命题是“1x ≤,则21x ≤”,故错;对C ,()22cos sin sin 2f x ax ax ax =-=,最小正周期为π,所以212a aππ=⇒=±所以“1a =”是“函数()22cos sin f x ax ax =-的最小正周期是π”的充分不必要条件,故错;对D ,函数()2f x ax bx c =++是偶函数,则函数不含有奇次项,所以0b =故“0b =”是“函数()2f x ax bx c =++是偶函数”的充要条件.7.A 【解析】【分析】求出集合,A B 可得A B .【详解】(2,)A =+∞,(3,4)B =-,故(2,4)A B ⋂=,故选:A.8.B 【解析】【分析】利用导数研究()f x 的单调递减区间.【详解】由题设,2323()2x x f x x x x+-'=-+=,又定义域为(0,)+∞,令()0f x '<,则223(3)(1)0x x x x +-=+-<,解得31x -<<,故01x <<,∴()f x 在(0,1)上递减.故选:B.9.D 【解析】【分析】分析角度的关系将sin(2)x ωϕ+展开,再合一变形求得()f x 的解析式,再根据图象的相邻两条对称轴相距2π个单位求得周期再求ω即可.【详解】()sin(2)2sin cos()sin()cos cos()sin 2sin cos ()f x x x x x x ωϕϕωϕωϕϕωϕϕϕωϕ=+-+=+++-+()sin()cos sin cos()sin sin x x x x ωϕϕϕωϕωϕϕω=+-+=+-=⎡⎤⎣⎦.即()f x =sin xω又图象的相邻两条对称轴相距2π个单位,故()f x 的周期为π.故22ππωω=⇒=.故选:D本题主要考查了三角函数的和差角公式以及周期的求法,属于基础题型.10.B 【解析】【分析】根据同角三角函数平方关系可求得24cos 18b = ,利用二倍角公式化简所求式子即可得到结果.【详解】2sin18a = ,()2222444sin 1841sin 184cos 18b a ∴=-=-=-=,22222216sin 18cos 184sin 3621cos 72112sin 362sin 36a b ===--∴+.故选:B.11.B 【解析】【分析】解出不等式5132-≤-x x 可得集合A ,由⊆ A B B 可得A B ⊆,然后可得2220-+>ax x 在(3,7]x ∈上恒成立,然后分离参数求解即可.【详解】由5132-≤-x x 得51032x x --≤-,()7023x x -≤-,解得37x <≤,因为⊆ A B B ,所以A B⊆所以可得2220-+>ax x 在(3,7]x ∈上恒成立,即222->x a x 在(3,7]x ∈上恒成立,故只需2max 22-⎛⎫> ⎪⎝⎭x a x ,222211111111,,2241673-⎛⎫⎡⎫=-+=--+∈ ⎪⎪⎢⎝⎭⎣⎭x x x x x x ,当114x =时,2max 21216-⎛⎫= ⎪⎝⎭x x ,故116a >.故选:B 12.C 【解析】【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即02e <≤;当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.13.35-【解析】【分析】利用同角三角函数的基本关系,分子、分母同除以cos α即可求解.【详解】将原式分子、分母同除以cos α3sin 2cos 3tan 212322sin cos 2tan 1513αααααα++-+===-----故答案为:35-【点睛】本题考查了同角三角函数的基本关系、齐次式,属于基础题.14.2【解析】【分析】由题意可得1和b 是方程2320ax x -+=的两个根,由根与系数的关系可得321,1b b a a+=⨯=,从而可求出b 的值【详解】因为关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个根,所以321,1b b a a+=⨯=,解得1,2a b ==,故答案为:215.12-【解析】【分析】tan tan 6124πππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,然后算出即可.【详解】tan tan1124tan tan 612421tan tan 124ππαπππααππα⎛⎫-+ ⎪⎛⎫⎛⎫⎝⎭+=-+==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.故答案为:12-【点睛】本题考查正切函数的和差公式,找出已知角与所求角的关系是解题的关键.16.(1,0)(1,)-È+¥【解析】【分析】分0x >和0x <两种情况讨论x 的范围,根据函数的单调性可得到答案.【详解】因为()f x 是偶函数,且(1)0f -=,所以(1)(1)0f f =-=,又()f x 在(0,)+∞上是减函数,所以()f x 在(,0)-∞上是增函数,①当0x >时,由()0f x x<得()0f x <,又由于()f x 在(0,)+∞上为减函数,且(1)0f =,所以()(1)f x f <,得1x >;②当0x <时,由()0f x x<得()>0f x ,又(1)0f -=,()f x 在(,0)-∞上是增函数,所以()>(1)f x f -,所以10x -<<.综上,原不等式的解集为:(1,0)(1,)-È+¥.故答案为:(1,0)(1,)-È+¥.【点睛】方法点睛:本题主要考查函数相关性质,利用函数性质解不等式,运用函数的奇偶性与单调性的关系是进行区间转换的一种有效手段.奇函数在对称区间上的单调性相同,且()() f x f x -=-.偶函数在对称区间上的单调性相反,且()()() f x f x f x =-=..17.(1)()1,1-;(2)最大值为59,最小值为49-【解析】(1)求出()f x ',令()0f x '<,得到函数()f x 的单调递减区间;(2)求出函数在[]3,3-的单调性,根据极值和端点值,求得最值.【详解】(1)()2999(1)(1)f x x x x =-+-'=,x ∈R令()0f x '<,得11x -<<,所以()f x 的减区间为()1,1-.(2)由(1),令()0f x '>,得1x <-或1x >知:[]3,1x ∈--,()f x 为增函数,[]1,1x ∈-,()f x 为减函数,[]1,3x ∈,()f x 为增函数.()349f -=-,()111f -=,()11f =-,()539f =.所以()f x 在区间[]3,3-上的最大值为59,最小值为49-.【点睛】本题考查了利用导数研究函数的单调性和求函数的最值,属于基础题.18.(1)4cos =5α-,5sin 13β=-;(2)3365【解析】【分析】(1)根据平方关系计算即可得出cos α,sin β;(2)由(1)的结果,结合两角差的余弦公式求解即可.【详解】(1)由3sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭,得4cos 5α=-.又由12cos 13b =-,β是第三象限角,得5sin 13β===-.(2)由(1)得4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.19.(1)答案见解析(2)12a ≤-【解析】【分析】(1)求导数,然后对a 进行分类讨论,利用导数的正负,可得函数()f x 的单调区间;(2)利用(1)中函数的单调性,求得函数在1x =处取得最小值,即可求实数的取值范围.(1)解:求导可得()(1)()(0)>'--=x a x f x x x①0a ≤时,令()0f x '<可得1x <,由于0x >知01x <<;令()0f x '>,得1x >∴函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;②01a <<时,令()0f x '<可得1<<a x ;令()0f x '>,得1x >或x a <,由于0x >知0x a <<或1x >;∴函数()f x 在(,1)a 上单调递减,在(0,),(1,)+∞a 上单调递增;③1a =时,()0f x '≥,函数()y f x =在(0,)+∞上单调递增;④1a >时,令()0f x '<可得1x a <<;令()0f x '>,得x a >或1x <,由于0x >知01x <<或x a>∴函数()f x 在(1,)a 上单调递减,在(0,1),(,)+∞a 上单调递增;(2)由(1)0a ≥时,1(1)02f a =--<,(不符合,舍去)当0a <时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故函数在1x =处取得最小值,所以函数()0f x ≥对定义域内的任意x 恒成立时,只需要(1)0f ≥即可∴12a ≤-.综上,12a ≤-.20.(1)最小值为 2e -,最大值为2;(2)(],1ln 2-∞+.【解析】【分析】(1)首先求出函数的导函数,即可得到函数的单调性,从而得到函数的最小值,再求出区间端点的函数值,即可求出函数在区间上的最大值;(2)首先求出函数的定义域,参变分离,即可得到2ln x a x +≥恒成立,令()2 ln =+g x x x ,利用导数研究函数的单调性,即可求出函数的最小值,从而得解;【详解】(1)当2a =时,() ln 22=-+f x x x x ,()ln 1f x x '=-由()0f x '<得0 x e <<,由()0f x '>得x e >,所以()f x 在()0,e 上单调递减,在()e +∞,上单调递增,且() ln 2 2 2=-+=-f e e e e e ,() 1 1ln12 2 0f =-+=,()2222 ln 2 2 2-+==f e e e e 则函数()f x 在区间21,e ⎡⎤⎣⎦上的最小值为 2e -,最大值为2.(2)由题得函数的定义域为()0,∞+,若()0f x ≥恒成立,则ln 20x x ax -+≥,即2ln x a x+≥恒成立,令()2 ln =+g x x x ,则()22122 x g x x x x -'=-=,当02x <<时,()0g x '<;当2x >时,()0g x '>,所以()g x 在()0,2上单调递减,在()2,+∞上单调递增,则()min 21ln 2()==+g x g ,所以1ln 2a ≤+,故a 的取值范围为(],1ln 2-∞+.21.(1)3π;(2【解析】(1)利用正弦定理的边角互化以及两角和的正弦公式可得sin()2sin cos A B C B +=,再利用三角形的内角和性质以及诱导公式即可求解.(2)根据余弦定理求出3ac =,再由三角形的面积公式即可求解.【详解】解:(1)由正弦定理知sin cos sin cos 2sin cos A B B A C B +=,sin()2sin cos A B C B +=,因为,(0,)A B C C ππ+=-∈,所以sin 2sin cos C C B =,由sin 0C ≠,故1cos 2B =.因为(0,)B π∈,所以3B π=.(2)由余弦定理及2a c -=知2222cos b a c ac B =+-.227a c ac ∴+-=,2()7a c ac ∴-+=,47ac ∴+=,3ac ∴=.11sin 32224ABC S ac B ∴==⨯⨯= .22.(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围.【详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>,当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.。
函数、导数和不等式1i.(北京卷8)某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高.m值为()A.5B.7C.9D.11由已知中图象表示某棵果树前n年的总产量S与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选C2ii(北京卷14) 已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①x∈R,f(x)<0或g(x)<0;②x∈(-∞,-4),f(x)g(x)<0.则m的取值范围是________.iii3(全国卷10) 已知函数y=x²-3x+c的图像与x轴恰有两个公共点,则c=()(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1求导函数可得y′=3(x+1)(x-1)令y′>0,可得x>1或x<-1;令y′<0,可得-1<x<1;∴函数在(-∞,-1),(1,+∞)上单调增,(-1,1)上单调减∴函数在x=-1处取得极大值,在x=1处取得极小值∵函数y=x^3-3x+c的图象与x轴恰有两个公共点∴极大值等于0或极小值等于0∴1-3+c=0或-1+3+c=0∴c=-2或24iv (福建卷9)若函数y=2x 图像上存在点(x ,y )满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m的最大值为( )A .12 B.1 C. 32D.2 解:约束条件x +y −3≤0x −2y −3≤0x ≥m确定的区域为如图阴影部分,即△ABC 的边与其内部区域,分析可得函数y=2x 与边界直线x+y=3交与点(1,2),若函数y=2x 图象上存在点(x ,y )满足约束条件,即y=2x 图象上存在点在阴影部分内部,则必有m≤1,即实数m 的最大值为1,故选B .5v .(湖北卷9)函数f (x )=xcosx ²在区间[0,4]上的零点个数为( )A.4B.5C.6D.7f(x)=xcosx²,0<=x<=4,0<=x²<=16<5.5πx=0是零点之一cos²x=0,cosx=0,x=π/2或者x=3π/2或者x=5π/2或者x=7π/2或者x=9π/2所以:零点共有6个6vi (江苏卷13)已知函数2()(,)f x x ax b a b R =++∈的值域为[)0,+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为∵函数f (x )=x^2+ax+b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x^2+ax+b=0只有一个根,即△=a^2-4b=0则b=a^2/4不等式f (x )<c 的解集为(m ,m+6),即为x^2+ax+a^2/4<c 解集为(m ,m+6),则x^2+ax+a^2/4-c=0的两个根为m ,m+6∴|m+6-m|=|x1-x2|=√[(x1+x2)^2-4x1x2)]=√[a^2-4(a^2/4-c)]=6解得c=97vii. (辽宁卷11)设函数f (x )()x R ∈满足f (x -)=f (x ),f (x )=f (2-x ),且当[0,1]x ∈时,f (x )=x 3.又函数g (x )=|x cos ()x π|,则函数h (x )=g (x )-f (x )在13[,]22-上的零点个数为( )(A)5 (B)6 (C)7 (D)8在同一坐标系内画出函数在[-1/2,3/2]上图象交点的个数既是h(x)零点的个数y=f(x)和y=g(x)的图象,在∵f(-x)=f(x),∴f(x)是偶函数∵f(x)=f(2-x)∴f(-x+2)=f(-x)∴f(x)=f(x+2)∴f(x)是周期函数,周期为2∵当x ∈[0,1]时,f (x )=x³∴当x ∈[-1,0]]时,f (x )=-x³∴x ∈[1,3/2]时,f(x)=f(x-2)=-(x-2)³g (x )=|xcos(πx)|g(-x)=g(x),g(x)是偶函数x ∈[-1/2,1/2], πx ∈[-π/2,π/2],cosπx>0g(x)=xcos(πx), g'(x)=cos(πx)-πsin(πx)=0x ∈[1,3/2],πx ∈[π,3π/2],cosπx<0g(x)=-xcos(πx)在同一坐标系内画出函数在[-1/2,3/2]上的简图,观察交点个数为6个∴h(x )=g (x )-f (x )在[-1/2,3/2]上的零点个数有6个8viii . (辽宁卷12)若[0,)x ∈+∞,则下列不等式恒成立的是( C )(A)21x e x x ≤++ (B)21111241x x x ≤-++ (C)21cos 12x x ≥- (D)21ln(1)8x x x +≥-9ix .(山东卷9)函数y =cos6x2x -2-x 的图像大致为( )解析:函数x x x x f --=226cos )(,)(226cos )(x f x x f x x -=-=--为奇函数, 当0→x ,且0>x 时+∞→)(x f ;当0→x ,且0<x 时-∞→)(x f ;当+∞→x ,+∞→--x x 22,0)(→x f ;当-∞→x ,-∞→--x x 22,0)(→x f .答案应选D 。
x 10xi.(天津卷14))已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 .解答:y=|x²-1|/(x-1)①x>1或x≤-1,y=(x²-1)/(x-1)=x+1②-1<x<1, y=(1-x²)/(x-1)=-(x+1)y=kx-2的图像是过(0,-2)的直线向左转|向右转设C(0,-2)图中的虚线是两个极端情形,k(CA)=4蓝色线的斜率是1利用图像,要有两个交点,k的范围是(0,1)U(1,4)11xii.(新课标10)已知函数1()ln(1)f xx x=+-;则()y f x=的图像大致为()【解析】选B()ln(1)()1()010,()00()(0)0xg x x x g x xg x x g x x g x g '=+-⇒=-+''⇒>⇔-<<<⇔>⇒<= 得:0x >或10x -<<均有()0f x < 排除,,A C D12xiii (浙江卷9)设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.【答案】A13xiv.(重庆卷8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是( )(A )函数()f x 有极大值(2)f 和极小值(1)f(B )函数()f x 有极大值(2)f -和极小值(1)f(C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f图像是函数y=(1-x)f'(x)的图像,其中x=1是因子(1-x)带来的根∴f'(x)=0的根其实只有-2和2,即函数f(x)只在x=-2和2处取得极值而(1-x)为减函数,∴f'(x)的增减性正好与图中所示相反x y O 11x y O 11x yO 11xy O 11当x≤1时,1-x≥0,f'(x)的符号与y 的符号相同,即图中在x=1左边的图像符号与f'(x)相同 当x≥1时,1-x≤0,f'(x)的符号与y 的符号相反,即图中在x=1右边的图像符号与f'(x)相反 将x=1右边的图像反号后,可得f'(x)在[-2,2]上小于等于0,在(-∞,-2]∪[2,+∞)上大于等于0∴函数f(x)在(-∞,-2]上为增函数,在[-2,2]上为减函数,在[2,+∞)上为增函数∴函数f(x)在x=-2处取得极大值,在x=2处取得极小值可知,答案选 D14(重庆卷10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为( D )(A )34π (B )35π (C )47π (D )2π。