导数的应用利用导数证明不等式
- 格式:doc
- 大小:133.50 KB
- 文档页数:3
利用导数证明或解决不等式问题
导数在解决不等式问题中起着非常重要的作用,利用导数可以轻松地证明和解决各种
不等式问题。
本文将通过一些具体的例子,来展示导数在不等式问题中的应用。
我们来看一个简单的例子:证明当x>0时,e^x\geq1+x。
我们可以利用导数来证明这
个不等式。
我们计算e^x和1+x的导数,分别为e^x和1。
然后我们发现e^x-1\geq x,这意味着在x>0时,e^x\geq1+x。
这样就利用导数证明了这个不等式。
除了证明不等式,我们还可以利用导数来解决不等式问题。
我们要求解不等式
x^2-5x+6>0。
我们可以通过求解x^2-5x+6的导数来判断x^2-5x+6的增减性。
首先求导得
到2x-5,然后令2x-5=0,解得x=\frac{5}{2}。
这说明在x<\frac{5}{2}时,x^2-5x+6<0,而在x>\frac{5}{2}时,x^2-5x+6>0。
不等式x^2-5x+6>0的解集是x<\frac{5}{2}或
x>\frac{3}{2}。
浅析导数在不等式证明中的应用
导数是数学中一个重要的概念,它可以证明许多数学定理,也是很多学科研究的基础。
比如,在做不等式证明时,导数会保证证明的连贯性和有效性。
误差分析和最优化问题是数学研究中常常遇到的问题,解决这些问题的关键在于找到较好的函数,以便评估结果的可靠性。
一个函数对于给定的变量可以描述为一个函数模型,那么我们可以利用导数来推测变量之间的关系,其中,导数也可以证明不等式定理。
在不等式领域,可以借助导数分析函数的变化情况,找出函数拐点或者极值,以证明不等式定理。
此外,导数也可以用来证明概率采样的中心极限定理,以及熵的最小值定理。
更重要的是,导数还有助于优化不等式的解,例如证明梯度下降优化算法最优解是全局最优解,以此来满足最优性原理要求。
总之,导数是研究数学问题中一个不可缺少的重要概念,它在不等式证明中的作用是非常重要的。
特别是,根据导数的微分性质,可以衡量函数变化的快慢,从而有效解决不等式证明问题。
导数在不等式证明中的应用摘 要本文归纳、介绍了用导数证明不等式的几种证明思路和证明方法.使用这些方法可以简洁、快速地解决一些不等式的证明问题.关键词 导数; 不等式; 函数在数学学习中,不等式是证明定理与公式的工具,不等式的证明又蕴涵着许多数学做题的技巧.其证明方法有很多且难易不同,所用技巧也不相同.结合对微分学的学习发现导数在不等式的证明中有着广泛的应用.本文我们就导数在不等式证明中的应用作以下五方面的归纳,分别介绍具体的证明思路和证明方法.1 利用函数单调性证明不等式该方法使用于某区间I 上成立的函数不等式,一般地,证明区间I 上的不等式()()f x g x >时,可以选择()()()F x f x g x =-作为辅助函数.对()F x 求导,判断()F x '是大于0或小于0,判定()F x 的单调性,从而证明不等式.定理 [1]1 设函数)(x f 在区间I 上可导,则)(x f 在I 上递增(递减)的充要条件是()0(()0)f x f x ''><.例1 设0>x ,证明不等式)1(2)1ln(222x x x x x x +-<+<-成立. 证明 令2)1ln()(xx x x f +-+=,显然.0)0(=f 当0>x 时,有 01111)(2>+=+-+='xx x x x f从而)(x f 在),0(+∞内严格递增,又)(x f 在0=x 处连续,所以,当0>x 时,.0)0()(=>f x f即 .2)1ln(2x x x ->+ (1) 设)1(2)1ln()(2x x x x x g ++-+=,则0>x 时,0)1(2)1(2)1(2111)(2222<+-=+-+⋅+-+='x x x x x x x x g 所以)(x g 在),0(+∞内递减,又)(x g 在0=x 处连续,故0>x 时,有0)0()(=<g x g即 )1(2)ln(2x x x x +-<(2)由(1)、(2)可知,当0>x 时,有)1(2)1ln(222x x x x x x +-<+<-. 注 构造适当的辅助函数,使得证明简洁些是很有必要的.为此,往往对待证的不等式作适当的恒等变形.2 利用函数的极值证明不等式此法使用范围也是在某区间上成立的不等式,这里所作的辅助函数()F x 比较的不是函数的端点,而是极值和最值.定理]1[3 设函数)(x f 在点0x 连续,在某邻域),(00δx U 内可导,)1(若当),(00x x x δ-∈时0)(≤'x f ,当),(00δ+∈x x x 时0)(≥'x f ,则)(x f 在点0x 取得极小值.)2(若当),(00x x x δ-∈时0)(≥'x f ,当),(00δ+∈x x x 时0)(≤'x f ,则)(x f 在点0x 取得极大值.定理]1[4 设函数)(x f 在0x 的某邻域),(0δx U 内一阶可导,且0)(0='x f ,0)(0≠''x f .)1(若0)(0<''x f ,则)(x f 在0x 取得极大值. )2(若0)(0>''x f ,则)(x f 在0x 取得极小值.例3 证明:121-p ≤p p x x )1(-+≤1.,10≤≤x 1>p .分析 由待证不等式建立辅助函数,当)(x f 在定义域内可导时,只须解方程()0f x '=得出稳定点,再对每个稳定点应用定理3或定理4判定是否为极值点,求出极大(小)值,再借助函数的单调性证明不等式成立.证明 引入辅助函数)(x f =ppx x )1(-+,则有])1([)(11----='p p x x p x f ,求得稳定点21=x , 又0)1()[1()(]22>-+-=''--p p x x p p x f故21=x 是)(x f 在)1,0(的唯一极值点,且有极小值121)21(-=p f ,而1)1()0(==f f 为)(x f 在]1,0[上最大值,于是有121-p ≤p p x x )1(-+≤1.例4 设12ln ->a 为任一常数,试证:当0>x 时,xe ax x <+-122. 证明 当0>x 时,取2()21xf x e x ax ≡-+-.因0)0(='f ,所以只要证明当0>x 时022)(>+-='a x e x f x,或0)(min 0>'>x f x令 02)(=-=''xe xf ,解得稳定点 2ln =x 当2ln <x 时,0)(<''x f 2ln >x 时,0)(>''x f所以,2ln =x 是)(x f 的最小值点.即有 a f x f x 22ln 22)2(ln )(min 0+-='='>02)2ln 1(2>+-a 故 当0>x 时,xe ax x <+-122成立.注 利用最值证明不等式,如果函数()()()F x f x g x =-在I 上不是单调函数,要证在I 上有()()f x g x ≥成立,不妨证明()F x 在I 上的最小值0()0F x ≥;要证在I 上有()()f x g x ≤成立,不妨证明()F x 在I 上的最大值0()0F x ≤.4 利用函数的凸凹性证明不等式函数的凸凹性的重要应用之一是证明不等式,许多不等式问题用以前的方法(如中值定理、泰勒公式等)证明起来十分困难,但利用函数的凸凹性质,可以方便、快捷地得到结论.定理]6[5 )(x f 为I 上的凸函数的充要条件是:对于I 上的任意三点321x x x <<总有32212132()()()()f x f x f x f x x x x x --≤--. 例5 利用)(x f ln x =-(0)x >是凸函数,证明:1212nnx x x λλλ≤ 1122n n x x x λλλ+++ .其中0i x >,0i λ>,11nii λ==∑.证明 因为)(x f ln x =-(0)x >是凸函数,所以詹森不等式11()()nni iiii i f x f x λλ==≤∑∑成立.即 1122ln()n n x x x λλλ-+++ ≤1122[ln ln ln ]n n x x x λλλ-+++1122ln()n n x x x λλλ-+++ ≤1212ln()n n x x x λλλ-亦即 1122ln()n n x x x λλλ+++ ≥1212ln()n n x x x λλλ从而 1212nnx x x λλλ≤ 1122n n x x x λλλ+++注 如果)(x f 是I 上凸(凹)函数,那么由定义,对于I 上的任意两点1x ,2x 总有12121212()()()()()(())2222x x f x f x x x f x f x f f ++++≤≥, 所以只需证明)(x f 在I 上是凸(凹)函数即可证上述不等式.6 利用两导数的不等性证明不等式使用该方法,可以有待证不等式建立两个再端点值相等的函数,比较两函数导数的大小 ,应用下面定理证明不等式.定理]4[7设函数(),()f x g x 满足:(1)在区间[,]a b 上可导;(2)在半开区间(,]a b 上有,()()f x g x ''>; (3)()()f a g a =, 则,在[,]a b 上,有()()f x g x >.证明 设()()()F x f x g x =-,则在[,]a b 上,有()()()0F x f x g x '''=->因而,()F x 是(,]a b 上的增函数另一方面,()()()0F a f a g a =-=,且lim ()()0x a F x F a +→==,故()F x 在[,]a b 上递增且()0F a =于是,当(,]x a b ∈时,(,]x a b ∈,即()()f x g x >.此定理具有明显的几何意义:如果曲线(),()y f x y g x ==,都过一点(,())M a f a ,且当a xb <≤时,曲线()y f x =的切线斜率大于曲线()y g x =的切线斜率,则曲线()y f x =必在曲线 ()y g x =的上方.类似地可以得到定理]3[8 设函数(),()f x g x 满足: (1)在区间[,]a b 上可导;(2)在半开区间[,)a b 上,有()()f x g x ''<; (3)()()f b g b =, 则, 在[,]a b 上,有()()f x g x >.例8 证明3sin 6x x x ->. (0)x <证明 设3(),6x f x x =- ()sin g x x =,显然(0)(0)f g =,对(),()f x g x 求导得,2()12x f x '=-,()cos g x x '=为在(,0)-∞上判断()f x '与()g x '的大小,在求一次导数,得()f x x ''=-,()sin sin()g x x x ''=-=-因0x <,即0x ->,故sin()x x ->-.又因为(0)(0)1f g ''==,在(,0)-∞上应用定理7即知()()f x g x ''<,再在(,0)-∞上应用定理7,知()()f x g x >,即3sin 6x x x -> (0)x <.以上介绍了六种应用导数证明不等式的方法,并且举例说明了其证明思路及方法,体现了导数在证明不等式中的应用,关于文献[5]、[7]、[8]、[10]中给出的方法对于知识理论研究具有十分重要的价值.证明不等式的方法有很多种,在这里只介绍了其中的六种方法,对于文献[9]中的介值性的应用,其用来证明不等式的应用还有待于研究.在证明不等式中,通常需要根据待证不等式构造辅助函数,然后借助导数知识分别利用相应的方法去证明,许多情况下可以应用多种方法综合地进行证明.参考文献[1] 华东师范大学数学系.编数学分析上册[M]. 北京: 高等教育出版社,2001,119-156.[2] 裴礼文.数学分析内容、方法与技巧[M].(上)北京: 高等教育出版社,1993,170-205.[3] 邵剑等.大学数学考研专题复习[M]. 北京: 科学出版社,2001,300-309.[4] 周晓农.导数在不等式证明中的应用[J].金筑大学学报,2000,39(3):107-111.[5] 赵朋军.用导数证明不等式[J].商洛师范专科学校学报,2005,19(1):96-98.[6] 刘绛玉,郝香芝,陈佩宁.不等式的证明方法[J].石家庄职业技术学院学报,2001,16(6):39-41.[7] 刘恒群.用导数研究不等式[J].宁夏工学院学报,1997,9(1):63-64.[8] 梁俊平.导数在不等式证明中的应用[J].龙岩师专学报,1997,15(3):167-170.[9] 苏农.关于导数的介值性的简单应用[J].高等数学研究,2006,9(5):55-56.[10] 尚肖飞,贾计荣.利用导数证明不等式的若干方法[J].太原教育学院学报,2002,20(2):35-37.。
导数在不等式证明中的应用齐雨萱高中数学学习中,不等式是研究各项数学问题的基础工具,不等式证明是一种常见数学题型,也是同学们较为头疼的数学题型之一,要想提高自身的不等式证明准确率和效率,就必须充分掌握运用导数理论展开科学解题,导数理论证明不等式是最为高效和基本的一种解题方法,合理利用导数工具进行不等式实践证明,能够有效将不等式证明过程从困难转化为简单,帮助自身建立起更好的数学自信心,并提高数学解题综合能力。
本文将对导数在不等式证明中的应用展开分析与探讨,为不等式证明过程提供一定借鉴与参考。
1 合理运用导数单调性证明不等式在实践计算函数某个区间导数最大值或者小于0时,可以通过合理运用导数单调性展开科学高效证明。
首先,必须准确计算出该函数在此区间中表现出来的递减或者递增过程,这样才能够顺利证明不等式问题。
在日常证明数学不等式过程中,要学会结合不等式的不同特点,合理运用不同形式构造出对应的函数,同时科学采用导数工具去证明出实际构造出函数的单调性,这样一来就能够根据函数单调性特征去完成对该不等式的有效证明,提高整个证明解题过程的效率。
通过去科学准确判断出函数单调性,就可以比较出区间大小,同时在该区间中融入不等式,有效将不等式与函数结合在一起,除此之外,要正确认识到利用导数单调性进行证明不等式能够为自身提供极为实用的解题思路,无论是多复杂的曲线,往往只需要经过两个步骤就可以实现对不等式题目的高效准确证明。
这两个解题步骤是先将不等式与函数有机结合起来,接着准确判断出该函数在对应区间的单调性。
比如,当遇到这个问题时,已知X〉0,证明X-X2/2-1N (1+X)〈0,我们在证明这个不等式的时候,可以合理利用导数单调性去进行有效证明。
在相应单调区间内,通过判断函数是递减还是递增去得出该不等式是否成立。
证明解题步骤如下所示:假设函数f(X)=X-X2/2-1N(1+X)(X〉0),则f (X)=X-X2/2,当X〉0时,f(X)〈0,这样我们就能够准确判定出f(X)在X〉0区间中该函数是一种递减的发展趋势,X=0可以去除函数的最大值,通过f(X)〈f(0)有效证明出f(X)〈0成立,并且也能够准确证明出X-X2/2-1N(1+X)〈0是成立的。
导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。
具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。
例如,考虑函数$f(x)=x^2-4x+3$。
我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。
通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。
因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。
因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。
进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。
因此,我们得到了函数$f(x)$的最值以及最值的取值点。
2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。
其中一个常见的方法是使用导数的定义和可微函数的局部性质。
考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。
如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。
这意味着$f(x)$在$(a,b)$内是单调递增的。
我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。
因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。
根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。
例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。
导数在不等式证明中的应用在数学中,导数是一种评估函数变化速度的工具。
它可以用于证明不等式,特别是在优化问题中非常有用。
本文将探讨导数在不等式证明中的应用,并通过例子来说明其重要性。
在证明不等式时,我们通常需要使用比较函数值的差异来推断函数的相对值。
导数的主要作用是帮助我们研究函数的增减性质,进而推导出不等式。
首先,我们来看一个简单的例子。
假设我们需要证明当$x>0$时,函数$f(x) = \ln(x)$是递增的。
我们可以通过求导来证明。
首先,求导$f'(x)$:$$f'(x) = \frac{1}{x}$$我们可以发现,$f'(x)>0$对于$x>0$始终成立。
这意味着函数$f(x)$在该区间是递增的。
因此,我们可以得出结论:当$x>0$时,函数$f(x) = \ln(x)$是递增的。
这个例子展示了导数在证明函数性质中的应用。
接下来,我们将探讨导数在不等式证明中的更广泛应用。
一种常见的应用是利用导数研究函数的凹凸性质。
如果一个函数在一些区间上是凹的,那么它的导数在该区间上是递增的。
反之,如果函数在一些区间上是凸的,那么它的导数在该区间上是递减的。
考虑一个例子:证明函数$f(x)=x^2$在$x>0$时是凹的。
首先,求导$f'(x)$:$$f'(x)=2x$$然后,求二阶导数$f''(x)$:$$f''(x)=2$$我们可以看到$f''(x)>0$,对于$x>0$恒成立。
这意味着函数$f(x)$在该区间上是凹的。
因此,我们可以得出结论:当$x>0$时,函数$f(x)=x^2$是凹的。
这个例子显示了利用导数来证明函数的凹凸性质的方法。
凹凸性质在不等式证明中非常有用,因为它可以帮助我们推断函数值的大小关系。
另一个应用是利用导数求解优化问题中的最值。
如果一个函数在一些点处取得极小值,那么它的导数在该点处为零或不存在。
导数的应用——利用导数证明不等式导数是微积分中的重要概念,它不仅在数学中有广泛的应用,还能帮助我们解决一些实际问题。
利用导数来证明不等式是导数的另一个重要应用之一、在本文中,我们将探讨如何使用导数来证明一些不等式。
在开始之前,我们需要回顾一下导数的定义。
对于函数f(x),如果在特定点x处的导数存在,那么导数的定义为:f'(x) = lim(h->0) (f(x+h)-f(x))/h其中,f'(x)表示函数f(x)在点x处的导数。
证明不等式的基本方法是比较函数在一些区间内的导数大小关系。
如果可以证明在这个区间内,一个函数的导数始终大于另一个函数的导数,那么我们可以推断出,这个区间内的一个函数始终大于另一个函数,从而得到不等式的证明。
下面将通过一些具体的例子来说明如何利用导数证明不等式。
例1:证明当x>0时,e^x>1+x首先,我们定义函数f(x)=e^x-(1+x),我们需要证明当x>0时,f(x)>0。
对于上述函数,我们可以计算它的导数f'(x)=e^x-1、现在我们只需要证明当x>0时,f'(x)>0即可。
对于x>0,显然有e^x>1,因此f'(x)=e^x-1>1-1=0,即f'(x)>0。
由此可知,当x>0时,f(x)是递增函数。
由此得到,f(x)>f(0),即e^x-(1+x)>1-(1+0)=0。
因此,当x>0时,e^x>1+x。
例2:证明当 x>-1 时,(1+x)^n>1+nx在这个例子中,我们需要证明当 x>-1 时,(1+x)^n>1+nx,其中 n是正整数。
我们定义函数 f(x) = (1+x)^n-(1+nx),我们需要证明当 x>-1 时,f(x)>0。
同样地,我们计算这个函数的导数f'(x)=n(1+x)^(n-1)-n。
利用导数知识证明不等式的常用方法一.导数知识包括微分中值定理和导数应用。
微分中值定理主要有:Rolle 定理,lagrange 中值定理,Cauchy 中值定理。
它们可以用于以后的定理推证,这里主要用于证明恒等式、不等式、证中值的存在性、根的存在性等问题。
导数的应用包括:利用导数判断函数的单调性、极值、凸性。
本次习题课主要讲用它们证明不等式。
一、 例题1. 利用lagrange 中值公式例1 证明不等式ln ,(0)b a b b a a b b a a--<<<<。
分析 把不等式可以改写成 1()b a b -<ln b -ln a <1a ()b a - 可见中项是函数ln x 在区间[,]a b 两端值之差,而()b a -是该区间的长度,于是可对ln x 在[,]a b 上使用拉格朗日中值定理。
证 设()f x =ln x ,则'()f x =1x.在[,]a b 上运用拉格朗日中值公式,有ln b a=ln b -ln a =1ξ()b a -,()a b ξ<< 又因111b a ξ<<,于是,有()b a b -<ln b -ln a <b a a - 即 ()b a b -<ln b a <b a a- 2.-()x ϕ,就可以利用()F x 的单调增性来推导.也就是说,在()F x 可导的前提下,只要证明'()F x >0即可.利用函数的单调性我们知道,当()F x 在[,]a b 上单调增加,则x a >时,有()F x ()F a >.如果()f a =()a ϕ,要证明当x a >时,()f x >()x ϕ,那么,只要令()F x =()f x例2 试证 x >sin x >2x π,(0)2x π<<分析 改写不等式为 1>sin x x >2π,当x →0时,sin x x →1,当x =2π,sin x x 之值为2π.于是要证的不等式相当于要证函数()f x =sin x x 之值介于2π与1之间. 证 考虑函数 ()f x =sin ,021,0x x x x π⎧<<⎪⎨⎪=⎩,当02x π<<时,有'()f x =2cos sin x x x -=2cos x x(tg )x x -0<. 所以,()f x 在(0,)2π内单调减少,又()f x 在[0,]2π上连续,所以有 (0)()()2f f x f π>> 即 1>sin x x >2π或 2sin x x x π>>. 本例也可将联立不等式分为sin x x >与2sin x x π>两步证明. 2. 利用函数的最值如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.例4 证明不等式ax ax -≤1a -(0,01)x a ><<证:设()f x =a x ax --(1a -)则 11()(1)a a f x ax a a x --'=-=-11()(1)a a f x ax a a x --'=-=-()0f x '=令()0f x '=,得唯一驻点1x =,又当时01x <<,()0f x '>;当1x >时,()0f x '<,从而(1)f 是()f x ,在上(0,)+∞的最大值,即有()f x ≤(1)f =0所以a x ax --(1a -)≤0或a x ax -≤1a -(0,01)x a ><<.5.利用函数图形的凸性我们知道,在(,)a b 内,若()0f x ''>,则函数()y f x =的图形下凸,即位于区间12[,]x x 中点122x x -处弦的纵坐标不小于曲线的纵坐标,即有: 1212()()()22x x f x f x f -+≤ 其中1x ,2x 为(,)a b 内任意两点.等号仅在1x =2x 时成立.例5 设0,0x y >>,证明不等式ln ln ()ln2x y x x y y x y ++≥+ 且等号仅在x y =时成立。
利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
导数在不等式证明中的应用引言不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。
不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学习的重要内容之一,也是难点之一。
其常用的证明方法有: 比较法、综合法、分析法、重要不等法、数学归纳法等等,然而有一些问题用上面的方法来解决是很困难的,我们在学完导数及其应用这一内容以后,可以利用导数的定义、函数的单调性、最值性(极值性)等相关知识解决一些不等式证明的问题。
导数也是微积分的初步基础知识,是研究函数、解决实际问题的有力工,它包括微分中值定理和导数应用。
不等式的证明在数学课题中也是一个很重要的问题,此类问题能够培养我们理解问题、分析问题的能力。
本文针这篇论文是在指导老师的悉心指导和严格要求下完成的。
这篇论文是在指导老师的悉心指导和严格要求下完成的。
对导数的定义、微分中值定理、函数的单调性、泰勒公式、函数的极值、函数的凹凸性在不等式证明中的应用进行了举例。
一、利用导数的定义证明不等式定义 设函数()f f x =在点0x 的某领域内有定义,若极限()()00limx x f x f x x x →-- 存在则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作()'0f x令 0x x x =+∆,()()00y f x x f x ∆=+∆-,则上式可改写为 所以,导数是函数增量y ∆与自变量增量x ∆之比y x∆∆的极限。
这个增量比称为函数关于自变量的平均变化率( 又称差商),而导数()'0f x 则为f在0x 处关于x 的变化率。
以下是导数的定义的两种等价形式: (1)()()()0'00limx xf x f x f x x x →-=-(2)()()()0'00lim x f x x f x f x x∆→+∆-=∆例1: 设()12sin sin 2sin n f x r x r x r nx =+++,并且()sin f x x ≤, 证明:1221n r r nr +++≤证明 ()12sin sin 2sin n f x r x r x r nx =++,可得出()00f =, 因为 ()'12cos 2cos2cos n f x r x r x nr nx =+++, 则 ()'1202n f r r nr =+++ 又由导数的定义可知 所以 ()'01f ≤, 即可得 1221n r r nr +++≤.例2、 已知函数()21ln 2f y y y =+,求证: 22211,ln 32y y y y >>+. 分析 令()2221ln 32h y y y y =--,(1,)y ∈+∞,因为()1106h =>, 要证当1x >时,()0h x >,即()()10h x h ->,只需证明()h y 在(1,)+∞上是增函数。
用导数证明函数不等式地四种常用方法本文将介绍用导数证明函数不等式地四种常用方法.例1 证明不等式:)0)1ln(>+>x x x (.证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数.而这用导数易证:1()10(0)1f x x x '=->>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥).设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥).若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥).接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决.例2 证明不等式:)1ln(+≥x x .证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-.显然,本题不能用例1地单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 地最小值是0,而这用导数易证:1()1(1)11x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得min ()(1)0(1)f x f x =-=>-所以欲证结论成立.注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0()f x g x x I ->≥∈.设()()()()h x f x g x x I =-∈,即证()()0()h x x I >≥∈,也即证min ()()0()h x x I >≥∈(若min ()h x 不存在,则须求函数()h x 地下确界),而这用导数往往容易解决.例3 (2014年高考课标全国卷I 理科第21题)设函数1e ()e ln x xb f x a x x -=+,曲线()y f x =在点(1,(1))f 处地切线为e(1)2y x =-+.(1)求,a b ;(2)证明:()1f x >.解 (1)112()e ln e e e x x x x a b b f x a x x x x--'=+-+. 题设即(1)2,(1)e f f '==,可求得1,2a b ==.(2)即证2ln e (0)ex x x x x ->->,而这用导数可证(请注意11e ≠): 设()ln (0)g x x x x =>,得min 11()e e g x g ⎛⎫==- ⎪⎝⎭. 设2()e (0)ex h x x x -=->,得max 1()(1)e h x h ==-. 注 i)欲证函数不等式()()(,f x g x x I I ≥∈是区间),只需证明min max ()()()f x g x x I ≥∈,而这用导数往往可以解决.欲证函数不等式()()(,f x g x x I I >∈是区间),只需证明min max ()()()f x g x x I >∈,或证明min max ()()()f x g x x I ≥∈且两个最值点不相等,而这用导数往往也可以解决.ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:已知函数2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上地最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 地取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln e e x x x>-成立. 例4 (2013年高考北京卷理科第18题)设L 为曲线C :y =ln x x在点(1,0)处地切线.(1)求L 地方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 地下方.解 (1)(过程略)L 地方程为y =x -1.(2)即证1ln -≤x xx (当且仅当1=x 时取等号). 设x x x x g ln 1)(--=,得g ′(x )=x 2-1+ln x x 2)0(>x . 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,得g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,得g (x )单调递增.所以0)1()(min ==g x g ,得欲证结论成立.(2)地另解 即证1ln -≤x x x (当且仅当1=x 时取等号),也即证0ln 2≥--x x x (当且仅当1=x 时取等号).设x x x x g ln )(2--=,可得)0)(1(12)(>-+='x x xx x g . 进而可得0)1()(min ==g x g ,所以欲证结论成立.(2)地再解 即证1ln -≤x xx (当且仅当1=x 时取等号),也即证x x x -≤2ln (当且仅当1=x 时取等号). 如图1所示,可求得曲线x y ln =与)0(2>-=x x x y 在公共点(1,0)处地切线是1-=x y ,所以接下来只需证明)0(1,1ln 2>-≤--≤x x x x x x (均当且仅当1=x 时取等号)前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.图1例5 (2013年高考新课标全国卷II 理21(2)地等价问题)求证:e ln(2)x x >+.分析 用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式地第四种常用方法.设()e (2),()ln(2)(2)xf x xg x x x =>-=+>-,我们想办法寻找出一个函数()h x ,使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到.当然,函数()h x 越简洁越好.但()h x 不可能是常数(因为函数()ln(2)(2)g x x x =+>-地值域是R ),所以我们可尝试()h x 能否为一次函数,当然应当考虑切线.如图2所示,可求得函数()e (2)x f x x =>-在点(0,1)A 处地切线是1y x =+,进而可得()()(2)f x h x x ≥>-;还可求得函数()ln(2)(2)g x x x =+>-在点(1,0)B -处地切线也是1y x =+,进而可得()()(2)h x g x x ≥>-.图2进而可用导数证得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,所以欲证结论成立.当然,用例2地方法,也可给出该题地证明(设而不求):设)2ln(e )(+-=x x f x ,得1()e (2)2x f x x x '=->-+. 可得()f x '是增函数(两个增函数之和是增函数),且1e 20,(1)e 102f f ⎛⎫''=<=-> ⎪⎝⎭,所以函数()g x '存在唯一地零点0x (得21e ,e 2,1e )2(000000+==+=+-x x x x x x ),再由均值不等式可得 00min 0000011()()e ln(2)ln e 22022x x f x f x x x x x -⎛⎫==-+=-=++-> ⎪++⎝⎭(因为可证01x ≠-)所以欲证结论成立.例6 求证:e ln 2x x >+.证法1 (例5地证法)用导数可证得1e +≥x x (当且仅当0=x 时取等号),2ln 1+≥+x x (当且仅当1=x 时取等号),所以欲证结论成立.证法2 (例2地证法)设x x f x ln e )(-=,得1()e (0)x f x x x'=->.可得()f x '是增函数且1110,(0)02 1.52g g ⎛⎫''-=-<=> ⎪⎝⎭,所以函数)(x g 存在唯一地零点0x (得00001e ,e x x x x -==),再由均值不等式可得 00min 0000011()()e ln ln e 2x x f x f x x x x x -==-=-=+>(因为可证01x ≠) 所以欲证结论成立.注 欲证函数不等式()()(,f x g x x I I >∈是区间),只需寻找一个函数()h x (可以考虑曲线()y h x =是函数(),()y f x y g x ==地公切线)使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,而这用导数往往容易解决.下面再给出例5和例6地联系.对于两个常用不等式e 1,ln 1x x x x ≥+≤-,笔者发现e xy =与ln y x =互为反函数,1y x =+与1y x =-也互为反函数,进而得到了本文地几个结论.定理 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若()f x 是增函数,()()f s g s ≥恒成立,则11()()ft g t --≤恒成立; (2)若()f x 是减函数,()()f s g s ≥恒成立,则11()()ft g t --≥恒成立; (3)若()f x 是增函数,()()f s g s ≤恒成立,则11()()ft g t --≥恒成立; (4)若()f x 是减函数,()()f s g s ≤恒成立,则11()()ft g t --≤恒成立. 证明 下面只证明(1),(4);(2),(3)同理可证.(1)设不等式()()f s g s ≥中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≤中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≥恒成立,得00()()g x f x ≤.由()f x 是增函数,得1()f x -也是增函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.(4)设不等式()()f s g s ≤中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≥中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≤恒成立,得00()()g x f x ≥.由()f x 是减函数,得1()f x -也是减函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.推论1 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若(),()f x g x 都是增函数,则()()f s g s ≥恒成立11()()ft g t --⇔≤恒成立; (2)若(),()f x g x 都是减函数,则()()f s g s ≥恒成立11()()ft g t --⇔≥恒成立. 证明 (1)由定理(1)知“⇒”成立.下证“⇐”:因为()g x 是增函数,11()()g t f t --≥恒成立,11(),()g x f x --地反函数分别是(),()g x f x ,所以由“⇒”地结论得()()g s f s ≤恒成立,即()()f s g s ≥恒成立.(2)同(1)可证.推论2 把定理和推论1中地“,≥≤”分别改为“,><”后,得到地结论均成立. (证法也是把相应结论中地“,≥≤”分别改为“,><”.)在例5与例6这一对姊妹结论“e ln(2),ln e 2x x x x >+<-”中e x y =与ln y x =互为反函数,ln(2)y x =+与e 2x y =-也互为反函数,所以推论2中地结论“若(),()f x g x 都是增函数,则()()f s g s >恒成立11()()ft g t --⇔<恒成立”给出了它们地联系.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
利用导数证明不等式的几种方法导数是微积分的一个重要概念,它可以用来研究函数的变化趋势和性质。
在证明不等式时,利用导数是一种常见的方法。
下面将介绍几种常用的利用导数证明不等式的方法。
一、极值点法这种方法的基本思路是通过求函数的导数,并找出函数的极值点,来确定不等式的成立条件。
具体步骤如下:1.求函数的导数。
2.找出导数存在的区间。
3.求出导数的零点即函数的极值点。
4.判断在极值点附近函数的变化情况,从而确定不等式的成立条件。
例如,我们要证明一个函数f(x)在区间[a,b]上是单调递增的。
则可以通过求函数的导数f'(x),找出f'(x)的零点,然后判断f'(x)的符号来确定f(x)的变化趋势。
这种方法的特点是简单直观,容易理解和操作。
但是要求函数的导数存在,在一些特殊情况下可能无法使用。
二、Lagrange中值定理法Lagrange中值定理是微积分中的一个重要定理,它表明:如果一个函数在区间 [a, b] 上连续,并且在 (a, b) 上可导,则在 (a, b) 存在一个点 c,使得函数在 c 处的导数等于函数在 [a, b] 上的平均变化率。
利用这个定理,可以通过求函数在区间两个点处的导数差值,来推导出不等式。
具体步骤如下:1.假设函数在区间[a,b]上连续,并且在(a,b)上可导。
2.设点a和点b为函数的两个不同取值,即f(a)和f(b)。
3. 由Lagrange中值定理,存在点 c 在 (a, b) 上,使得 f'(c) = (f(b) - f(a)) / (b - a)。
4.判断f'(c)的符号,从而确定不等式的成立条件。
Lagrange中值定理法的优点是具有普适性,可以应用于各种函数。
但是要求函数在区间上连续,在一些特殊情况下可能无法使用。
三、Cauchy中值定理法Cauchy中值定理是微积分中的另一个重要定理,它是Lagrange中值定理的推广形式。
导数证明不等式的几个方法在高等数学中,我们学习了很多种方法来证明不等式。
其中一种常见的方法是使用导数。
导数是用来描述函数变化率的概念,因此可以很好地用来证明不等式。
本文将介绍几种使用导数证明不等式的方法。
一、利用导数的正负性来证明不等式这种方法是最直接的方法之一、假设我们要证明一个函数f(x)在一个区间上大于等于0,我们可以先求出函数f(x)的导数f'(x),然后根据f'(x)的正负性来判断f(x)的增减情况。
如果f'(x)大于等于0,则说明f(x)在整个区间上是递增的;如果f'(x)小于等于0,则说明f(x)在整个区间上是递减的。
根据递增或递减的性质,我们可以得出f(x)大于等于0的结论。
例如,我们要证明函数f(x)=x^2在区间[0,∞)上大于等于0。
首先求出f(x)的导数f'(x)=2x。
然后我们发现在整个区间上,f'(x)大于等于0,说明f(x)是递增的。
由于f(0)=0,因此可以得出f(x)大于等于0的结论。
二、利用导数的单调性来证明不等式这种方法是一种延伸和推广。
与前一种方法类似,我们可以根据导数的单调性来判断函数f(x)的增减情况。
如果f'(x)在一个区间上是递增的,那么f(x)在该区间上是凸的;如果f'(x)在一个区间上是递减的,那么f(x)在该区间上是凹的。
利用这个性质,我们可以得出一些重要的结论。
例如,如果我们要证明一个凸函数在一个区间上大于等于一个常数c,那么只需要证明在这个区间的两个端点上的函数值大于等于c,同时导数在这个区间上是递增的。
三、利用导数的极值来证明不等式这种方法利用了导数的极值特性。
如果一个函数f(x)在一些点x0处的导数为0,并且在这个点的左右两侧的导数符号发生了改变,那么我们可以得出结论,在x0处取得极值。
如果f(x)在x0处取得最大值,那么在这个点的左侧函数值都小于等于f(x0),而在这个点的右侧函数值都大于等于f(x0);反之,如果f(x)在x0处取得最小值,那么在这个点的左侧函数值都大于等于f(x0),而在这个点的右侧函数值都小于等于f(x0)。
2024年2月上半月㊀学习指导㊀㊀㊀㊀导数在不等式证明中的应用探究◉浙江省宁波中学㊀夏奕雯㊀㊀摘要:不等式常见的证明方法有构造法㊁比较法㊁反证法等,但是,一些不等式利用这些方法证明比较困难,而利用导数证明不等式不但能精简证明流程,而且能确保证明结果的准确性.本文中主要分析了利用函数凹凸性㊁导数定义㊁拉格朗日中值定理证明不等式的详细方式,且给出了多种方式的适用范畴,结合实际情况整理了使用多种方式开展不等式证明的主要观点.关键词:导数;不等式证明;拉格朗日中值定理;函数凹凸性1利用函数凹凸性证明不等式判断函数凹凸性并以此来证明不等式较为直观.首先要明确凸(凹)函数的定义.定义1[1]:若f (x )为定义在区间I 上的函数,若对I 上的任意两点x 1,x 2和任意实数λɪ(0,1),总有f (λx 1+(1-λ)x 2)ɤλf (x 1)+(1-λ)f (x 2),则称f (x )即为I 上的凸函数.反之,如果总有f (λx 1+(1-λ)x 2ȡλf (x 1)+(1-λ)f (x 2),则称f (x )为I 上的凹函数.如果函数二阶可导,则可得出以下定理.定理1[2]:若f (x )为开区间I 上的二阶可导函数,且满足f ᵡ(x )>0(fᵡ(x )<0),x ɪI ,则f (x )为区间I 上的凹(凸)函数.因此,可以通过凹凸函数定义对不等式进行证明.现通过以下例题来详细说明.例1㊀证明:对于任意实数a ,b ,总有e a +b2ɤ12(e a +e b).证明:假设f (x )=e x ,则f ᵡ(x )=e x>0,于是可证明f (x )是(-ɕ,+ɕ)上的一个凸函数.假设λ=12,则1-λ=12,由此可得f (12a +12b )=f (a +b )2)ɤ12f (a )+12f (b )=12[f (a )+f (b )],从而可证明不等式e a +b2ɤ12(e a +e b).已知闭区间上的连续函数存在着最大值与最小值,根据以上函数的凹凸性,能够得出以下定理.定理2:若f (x )在区间[a ,b ]上为连续凸函数,则f (x )ɤm a x {f (a ),f (b )};若f (x )在区间[a ,b ]上为连续凹函数,则f (x )ȡm a x {f (a ),f (b )}.通过以上定理,可以有效证明部分不等式,但必须要采用构造函数的方法,一般是对不等式的两边作差,可通过以下例题进行详细说明.例2㊀已知x ɪ[0,1],证明s i nπɤπ22x (1-x ).证明:令f (x )=s i nπx -π22x (1-x ),x ɪ(0,1),则得f ᶄ(x )=πc o sπx -π22(1-2x ),且f ᶄᶄ(x )=π2(1-s i nπx )>0,则证明f (x )在[0,1]上为连续凸函数,根据定理2得出f (x )ɤm a x {f (0),f (1)}=0,由此可证明该不等式.通过例1~2的分析不难看出,利用函数凹凸性来证明不等式,虽然过程较为繁复,但是也更加清晰明了.因此,在具体实践当中,若是遇到一些相对特殊的不等式题型,可合理利用函数凹凸性来求解,但首先必须要掌握函数凹凸的定义,进而对问题进行准确判断,消除解题过程中的不利因素,思路才会更加清晰明了.2利用拉格朗日中值定理证明不等式利用拉格朗日中值定理解决一些不等式的证明问题,可以简化解题的过程,并且非常直观清晰,所以,有必要深入探究其在不等式证明中的具体应用.为此,我们首先需要明确该定理,具体如下:定理3[3]:假如f 为闭区间[a ,b ]上的连续函数,且在开区间(a ,b )上可导,那么,其必然存在一点ξɪ(a ,b ),使得㊀㊀㊀㊀f ᶄ(ξ)=f (b )-f (a )b -a.①利用拉格朗日中值定理证明不等式时,一般都要重点考虑函数的增减性,而导函数的增减性并不需要考虑.若判断出所讨论区间中导函数的正负性没有变化,则可以对所设函数的增减性进行准确的判断,以此证明不等式.一般而言,利用该方法证明不等式的重点在于:(1)需要将不等式做变形处理,以此出现f (b )-f (a )b -a这一形式,从而明确区间[a ,b ],准确选取函数f (x );(2)对函数f (x )在区间[a ,b ]上是否满足拉格朗日中值定理进行验证;(3)根据导函数f ᶄ(x )75学习指导2024年2月上半月㊀㊀㊀在区间[a ,b ]中的具体取值,可以得出相应的不等式.以下通过具体的例题进行详细分析和说明.例3㊀证明:对于任意实数x 1,x 2,总有|s i n x 1-s i n x 2|ɤ|x 1-x 2|.例3在三角函数中非常具有代表性,是证明函数连续和一致连续的关键所在.三角函数不等式证明题一般都是通过三角函数的和差化积公式来证明不等式.下面利用拉格朗日中值定理来对该不等式证明,当x 1ʂx 2时,将不等式变形为|s i n x 1-s i n x 2x 1-x 2|ɤ1.证明:若x 1=x 2时,不等式成立.若x 1ʂx 2,可令x 1<x 2,此时,设f (x )=s i n x ,则在[x 1,x 2]上函数f (x )符合拉格朗日中值定理的相关条件,则存在ξɪ(x 1,x 2),使得s i n x 1-s i n x 2x 1-x 2=|c o s ξ|ɤ1,由此完成该不等式的证明.对于例3,可以轻易判断出所需要构造的具体函数f (x ),因此,利用拉格朗日中值定理证明该类不等式非常简单.但是,在具体的实践当中,通常会遇到许多特殊的题型,此时就需要将不等式作适当的变形,才可以判断出具体的函数.比如例4:例4㊀若x >0,证明:0<1l n (1+x )-1x<1.通过分析可知,若要将其化为式①的形式,就需要对其进行相应的变形处理.在两边分别加上1x,并对其进行化简处理,继而取两边的倒数,由此可得x1+x<l n (1+x )<x .再将不等式两边都同除以x ,由x >0,可得11+x <l n (1+x )-l n 1x<1.这种情况下,通过构造函数即可利用拉格朗日中值定理证明该不等式.证明:令f (t )=l n (1+t ),t ɪ[0,x ].不难看出,函数f (t )在区间[0,x ]上符合拉格朗日中值定理相应的条件,所以存在ξɪ(0,x ),使得f (x )-f (0)x -0=l n (1+x )-l n 1x =11+ξ.由11+x <11+ξ<1,可得出11+x <l n (1+x )x<1,对其进行简化,即可证明该不等式.通过上述例题的分析可知,利用拉格朗日中值定理证明不等式,关键在于要使构造的函数f (x )符合拉格朗日中值定理的相应要求,且需要明确具体的区间[a ,b ],因此,学生在日常学习当中要加强相关的练习,以此巩固对该方法的有效掌握.3利用导数定义证明不等式在利用导数定义证明不等式时,首先需要构造函数,将不等式一边变形为导数形式,再通过导数定义证明不等式.若不等式一边无法变形为导数形式,则不能采用该方法.在具体的解题实践当中,首先假设函数y =f (x )在点x 0的某邻域有定义,并且存在极限l i m x ңx f (x )-f (x 0)x -x 0,则表示函数f (x )在点x 0处可导,且函数f (x )在点x 0处的导数值就是这一极限值,即fᶄ(x 0).在不等式的证明中,要根据现有条件,将信息转变成适当的数学表达式,使用正确的方式表达导数的定义,进而得出结果.例5㊀设f (x )=a 1s i n x +a 2s i n2x + +a n s i n n x ,并且满足|f (x )|ɤ|s i n x |,由此证明|a 1+2a 2+ +n a |ɤ1.证明:由题意知f ᶄ(x )=a 1c o s x +2a 2c o s2x + +n a n c o s n x .由f (x )=a 1s i n x +a 2s i n2x + +a n s i n n x ,可得f (0)=0.又f ᶄ(0)=a 1+2a 2+ +n a n ,所以由导数定义可得|f ᶄ(0)|=l i m x ң0f (x )-f (0)x -0=l i m x ң0f (x )x ɤl i mx ң0s i n xx =1.故|a 1+2a 2+ +n a n |ɤ1.本题就是利用导数定义证明不等式的典型案例,有如下两点特征:(1)在对f (x )=a 1s i n x +a 2s i n 2x + +a n s i n n x 求导后,得出的结构实际就是需要待证明的不等式的左边;(2)通过导数的定义得出f ᶄ(0),继而利用不等关系|f (x )|ɤ|s i n x |建立f ᶄ(0)和l i m x ң0s i n xx =1之间的不等关系,以此对不等式进行证明.本文中对导数在不等式证明中的具体应用进行了探讨,并给出了几道例题,值得关注的是通过导数证明不等式,不只有本文当中所阐述的几种方式,还包括其他方法,如导数与积分的融合等.利用导数证明不等式时,一般要构造辅助函数,然后结合具体问题和函数的性质灵活加以运用.当然,证明不等式,还可以通过综合多种方式达到目的.参考文献:[1]李德琳.一道不等式证明的探究[J ].中学数学,2022(19):44G46.[2]仁清义,华腾飞.不等式证明妙法显奇能[J ].数学教学研究,2021(1):44G47,67.[3]凌冶昊林.例谈导数在高中数学解题中的具体运用[J ].数理天地(高中版),2023(3):22G23.Z85。
利用导数证明不等式 沁阳一中 尚思红导数是高中新课程的新增内容,它既是研究函数性态的有力工具,又是与高等数学接轨的有力点。
而不等式证明是高中数学的重要内容,也是不等式的难点,虽然证明不等式有众多的方法,但有些问题也很难下手。
导数这一工具性知识的引入,为我们证明不等式开辟了一条新的路径,将导数与不等式证明有机结合起来,不仅可以设计出新颖题型,相信也必将成为高考命题的新方向。
下面,通过一些具体实例,来就利用导数证明不等式的基本方法做一探讨。
1.直接做差构造函数.:关键点①做差后证明函数的单调性②找到新函数的零点(通常为最值点) 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
解:1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证),现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 例2:当0>x 时,证明不等式2211x x e x++>成立。
函数导数的性质在证明不等式中的应用摘要:本文探讨在导数性质教学过程中,利用导数判别函数的单调性、凹凸性,引导学生使用求导的方式,判断或证明不等式,从而加深对遇到属性值运用的理解,提高教学质量。
关键词:不等式单调性凹凸性琴生不等式正文:在导数性质的教学过程中,利用导数判断函数的的单调性和凹凸性是重要的教学内容,可以利用这一教学重点解决一些不等式的判断与证明。
一、构造函数,通过求导得到函数的单调性,判断或证明不等式利用导数对函数y=f(x)的单调性判定是:y=f(x)在区间[a,b]内连续,(a,b)内可导,则在(a,b)内:由导数的正负可以判定函数的单调性,可以根据已知不等式构造函数,通过求导,判定正负,得到函数的增减情况,以此判断或证明不等式。
例1.证明:x>1时,x>1+lnx证明:构造函数f(x)=x-(1+lnx),由函数性质可知,函数在[1,+∞)连续,在(1,+∞)可导。
求导计算:f'(x)=1-=,当x>1时,f'(x)>0,即函数单调递增。
因此,f(x)>f(1)=1-(1+ln1)=0,由x-(1+lnx)>0,可得当x>1时,x>1+lnx。
倘若出现问题中出现使得f'(x)=0的稳定点,则可以继续通过区间分析或二阶导数判定函数的增减性。
例2.证明:x>0时,0.5x2+cosx>1证明:构造函数f(x)=0.5x2+cosx-1,由函数性质可知,函数在[0,+∞)连续,在(0,+∞)可导。
求导计算:f'(x)=x-sinx,可知f'(0)=0,再此需要进一步判断x-sinx与0之间的大小关系,可通过二阶导数的正负来判断一阶导数的单调性,则f''(x)=1-cosx≥0,且x≠2kπ(k∈Z)时,f''(x)>0,由此可以判定f'(x)=x-sinx为增函数,f'(0)=0为f'(x)的最小值。
导 数 的 应 用
--------利用导数证明不等式
教学目标:1、进一步熟练并加深导数在函数中的应用并学会利用导数证明不等式
2、培养学生的分析问题、解决问题及知识的综合运用能力; 教学重点:利用导数证明不等式
教学难点:利用导数证明不等式
教学过程:
一、复习回顾
1、利用导数判断函数的单调性;
2、利用导数求函数的极值、最值;
二、新课引入
引言:导数是研究函数性质的一种重要工具.例如:求函数的单调区间、求函数的最大(小)值、求函数的值域等等.然而,不等式是历年高考重点考查的内容之一.尤其是在解答题中对其的考查,更是学生感到比较棘手的一个题.因而在解决一些不等式问题时,如能根据不等式的特点,恰当地构造函数,运用导数证明或判断该函数的单调性, 出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把证明不等式问题转化为函数求最值问题.然后用函数单调性去解决不等式的一些相关问题,可使问题迎刃而解. 因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题. 下面具体讨论导数在解决与不等式有关的问题时的作用.
三、新知探究
1、利用导数得出函数单调性来证明不等式
例1:当x>0时,求证:x 2x 2
-<ln(1+x) . 证明:设f(x)= x 2x 2--ln(1+x) (x>0), 则f '(x)=2x 1x
-+. ∵x>0,∴f '(x)<0,故f(x)在(0,+∞)上递减,
所以x>0时,f(x)<f(0)=0,即x 2x 2
--ln(1+x)<0成立. 小结:把不等式变形后构造函数,然后用导数证明该函数的单调性,达到证明不等式的目的.
随堂练习:课本P32:B 组第一题第3小题
2、利用导数解决不等式恒成立问题(掌握恒成立与最值的转化技巧;构造函数证明不等式)
例2.已知函数21()2
x f x ae x =- (1)若f(x)在R 上为增函数,求a 的取值范围;
(2)若a=1,求证:x >0时,f(x)>1+x
解:(1)f ′(x)= ae x -x,
∵f(x)在R上为增函数,∴f ′(x)≥0对x∈R恒成立,
即a≥xe-x对x∈R恒成立
记g(x)=xe-x,则g′(x)=e-x-xe-x=(1-x)e -x ,
当x>1时,g′(x)<0,当x<1时,g′(x)>0.
知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数,
∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a ≥1/e,
即a 的取值范围是[1/e, + ∞)
(2)记F(X)=f(x) -(1+x) =)0(12
12>---x x x e x 则F ′(x)=e x -1-x,
令h(x)= F ′(x)=e x -1-x,则h ′(x)=e x -1
当x>0时, h ′(x)>0, ∴h(x)在(0,+ ∞)上为增函数,
又h(x)在x=0处连续, ∴h(x)>h(0)=0
即F ′(x)>0 ,∴F(x) 在(0,+ ∞)上为增函数,又F(x)在x=0处连续, ∴F(x)>F(0)=0,即f(x)>1+x .
小结:当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为)(x f m >(或)(x f m <)恒成立,于是m 大于)(x f 的最大值(或m 小于)(x f 的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法.
例3.(2004年全国)已知函数x x x g x x x f ln )(,)1ln()(=-+=
(1)求函数)(x f 的最大值;
(2)设b a <<0,证明 :2ln )()2
(
2)()(0a b b a g b g a g -<+-+<. 分析:对于(II )绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.证明如下: 证明:对x x x g ln )(=求导,则1ln )('+=x x g . 在)2
(2)()(b a g b g a g +-+中以b 为主变元构造函数, 设)2(2)()()(x a g x g a g x F +-+=,则2
ln ln )]2([2)()('''x a x x a g x g x F +-=+-=. 当a x <<0时,0)('<x F ,因此)(x F 在),0(a 内为减函数.
当a x >时,0)('>x F ,因此)(x F 在),(+∞a 上为增函数.
从而当a x =时, )(x F 有极小值)(a F .
因为,,0)(a b a F >=所以0)(>b F ,即.0)2(
2)()(>+-+b a g b g a g 又设2ln )()()(a x x F x G --=.则)ln(ln 2ln 2ln ln )('x a x x a x x G +-=-+-=.
当0>x 时,0)('<x G .因此)(x G 在),0(+∞上为减函数.
因为,,0)(a b a G >=所以0)(<b G ,即2ln )()2
(2)()(a b b a g b g a g -<+-+. 综上结论得证。
对于看起来无法下手的一个不等式证明,对其巧妙地构造函数后,运用导数研究了它的单调性后,通过利用函数的单调性比较函数值的大小,使得问题得以简单解决.
四、课堂小结
1、利用导数证明不等式或解决不等式恒成立问题,关键是把不等式变形后构造恰当的函数,然后用导数判断该函数的单调性或求出最值,达到证明不等式的目的;
2、利用导数解决不等式恒成立问题,应特别注意区间端点是否取得到;
3、学会观察不等式与函数的内在联系,学会变主元构造函数再利用导数证明不等式;
总之,无论是证明不等式,还是解不等式,我们都可以构造恰当的函数,利用到函数的单调性或最值,借助导数工具来解决,这种解题方法也是转化与化归思想在中学数学中的重要体现.
五、思维拓展
(2008联考)已知函数)0(1)(>--=x x e x f x ,)0(2)(2
>⋅=x e ax x g x ; (1) 求证:当1≥a 时对于任意正实数x , )(x f 的图象总不会在)(x g 图象的上方;
(2) 对于在(0,1)上任意的a 值,问是否存在正实数x 使得)()(x g x f >成立?
如果存在,求出符合条件的x 的一个取值;否则说明理由。
(3)。