根轨迹法的基本概念共40页文档
- 格式:ppt
- 大小:2.04 MB
- 文档页数:40
根轨迹法一、定义:〈①〉()()()01111*0=+++=+∏∏==nj imi ip s z s Ks G 。
其中*K 为根轨迹增益。
开环放大倍数∏∏===nj jmi ipzKK 11*闭环特征方程的根随参数*K 而变化的轨迹,称为根轨迹。
其符合两个条件:()()()()⎪⎩⎪⎨⎧=∠+=∠=非最小相位系统或最小相位系统相角条件:幅值条件:,2,121000ππk s G k s G s G〈②〉几条规则:①实轴上的根轨迹〈最小相位系统〉右边有奇数个零极点时,有根轨迹 〈非最小相位系统〉右边有偶数个零极点时,有根轨迹 ②根轨迹条数=Max (n,m ),起点为开环极点(0=g K ),终点为开环零点(∞→g K )③渐进线条数:(n-m )条,与实轴交点坐标:mn --=∑∑零点极点1σ与实轴夹角:()mn k -+±=πϕ121。
④分离点与会合点:使0*=dsdK ,并使*K >0的点 ⑤复数极点出射角:∑∑-+︒=量辐角其他极点至该极点的向零点至极点的向量辐角1801p θ对非最小相位系统∑∑-='量辐角其他极点至该极点的向零点至极点的向量辐角1p θ 复数零点的入射角:∑∑+-︒=角极点至该零点的向量辐量辐角其他零点至该零点的向1801z θ对非最小相位系统∑∑+-='角极点至该零点的向量辐量辐角其他零点至该零点的向1z θ⑥与虚轴交点:(a )用劳斯判据确定,用辅助方程求得(b )ωj s =代入闭环特征方程,由实部=0,虚部=0求得例1:()()()210++=s s s Ks G解:渐进线(3条):()()10321-=--+-=σ,()πππϕ,3312=+±=k由()()0211=+++s s s K,则()()21++-=s s s K ,()()026323223*=++-=++-=s s dsss s d ds dK ,得 ⎩⎨⎧-=-==-=385.0,577.1385.0,423.0*22*11K s K s 与虚轴的交点:方法一02323=+++K s s s ,劳斯阵:Ks K sKs s 0123323021-要与虚轴有交点,则有一行全零,即6032=⇒=-K K辅助方程:j s s 20632,12±=⇒=+ 方法二将ωj s =代入特征方程:()()()02323=+++K j j j ωωω2,60320332==⇒=-=-ωωωωK K 虚部:实部:,则与虚部的交点6,22,1=±=K j s 根轨迹如下图例2:()()32220+++=s s s K s G 解:渐进线一条。
四.根轨迹法反馈系统的稳定性由系统的闭环极点确定。
研究系统参数变化对闭环系统特性的影响,是分析系统和设计控制器的重要内容。
参数变化的作用,体现在对闭环极点的影响上。
对于高阶系统,用解析方法说明这种影响,很困难,且不易理解。
图解法是一种方便的近似方法。
4-1 根轨迹法的基本概念 1. 根轨迹概念根轨迹法:根据参数变化∞→0,研究系统闭环极点变化轨迹的一种图解方法。
即在参数变化时图解特征方程。
近似作图;重要区域,如与虚轴的交点与实轴的交点等,根轨迹要准确;依据根轨迹图,可以确定合适的系统参数,为设计控制器提供依据。
例图4-1,研究系统的开环增益K 的变化∞→0, 对闭环极点的影响。
开环传递函数)15.0()(+=s s Ks G ,闭环传递函数Ks s K s 222)(2++=Φ,特征方程0222=++K s s ,根轨迹方程1)2(-=+s s k ,∞→=0,2K k 。
该例的解析分析为2/11)21(1K s -+-=,2/12)21(1K s ---=。
参见图4-2。
开环极点X ,开环零点O ;根轨迹上的箭头表示参数增大的方向。
2. 根轨迹与系统性能 以图4-2为例,(1) 稳定性: 根轨迹始终都处于S 平面左半部,则无论参数取多大的值,闭环系统稳定;若在参数的某些取值范围,有根轨迹段(闭环极点)处于S 平面右半部,则闭环系统在该参数范围不稳定。
根轨迹与虚轴的交点出的参数值,为参数临界值。
(2) 稳态性能:在研究开环增益K 对闭环极点作用时,据在原点处的开环极点个数就可以知道系统的误差型别。
(3) 动态性能:从根轨迹上的共轭复数极点,能够知道该振荡模态的阻尼系数,对高阶系统的动态性能有粗略估计。
3. 根轨迹方程根轨迹方程实际上是便于应用规则绘制根轨迹图的标准形式的特征方程。
例 已知负反馈开环传递函数:∏∏==------=++++++++=ni i mj j nn n n mm m m p s z s k a s a s a s b s b s b s b s H s G 111111110)()()()( ;根轨迹方程1)()(11-=--∏∏==ni i mj j p s z s k 。