理科数学高考总复习
- 格式:docx
- 大小:6.67 MB
- 文档页数:10
2020年高考总复习 理科数学题库第一章 集合学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞)2.若集合{},,M a b c =中的元素是ABC ∆的三边长,则△ABC 一定不是 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形3.若集合{}1213A x x =-≤+≤,20,x B xx-⎧⎫=≤⎨⎬⎩⎭则A B ⋂=( ) A.{}10x x -≤< B.{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤(2011江西理2)【精讲精析】选B.由题意得A={}{}x 12x 13x 1x 1,-≤+≤=-≤≤{}x 2B x 0x 0x 2x ⎧-⎫=≤=<≤⎨⎬⎩⎭{}{}{}A B x 1x 1x 0x 2x 0x 1.==⋂-≤≤⋂<≤<≤所以4.已知集合2{|1},{}P x x M a =≤=,若P M P =U ,则a 的取值范围是( ) (A )(,1]-∞- (B )[1,)+∞ (C )[1,1]- (D )(,1][1,)-∞-+∞U (2011北京理1)【思路点拨】先化简集合P ,再利用M 为P 的子集,可求出a 的取值范围. 【精讲精析】选C.[1,1]P =-.由P M P =U 得,M P ⊆,所以[1,1]a ∈-.5.设f (n )=2n +1(n ∈N),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N|f (n )∈P },Q ∧={n ∈N|f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( ) (A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}(2005浙江理) 6.已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =U ( )(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x -≤≤(2008浙江文) (1)7. i 是虚数单位,若集合{}1,0,1S =-,则( ). A .i S ∈ B .2i S ∈ C . 3i S ∈ D .2iS ∈(2011福建理)8.若集合{}20A x x x =|-<,{|03}B x x =<<,则A B I 等于( )A .{}01x x |<<B .{}03x x |<<C .{}13x x |<<D .∅(2008福建文)(1)9.满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a =I 的集合M 的个数是( ) A .1 B .2 C .3 D .4(2008山东理) 1.(文科1)10.定义集合运算*{,,},{1,2},{0,2}A B Z Z xy x A y B A B =|=∈∈==设,则集合*A B 的所有元素之和为( )。
第5讲 对数与对数函数一、选择题1.已知实数a =log 45,b =⎝ ⎛⎭⎪⎫120,c =log 30.4,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a解析 由题知,a =log 45>1,b =⎝ ⎛⎭⎪⎫120=1,c =log 30.4<0,故c <b <a .答案 D 2.设f (x )=lg(21-x+a )是奇函数,则使f (x )<0的x 的取值范围是( ). A .(-1,0) B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) 解析 ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lgx +11-x ,由f (x )<0得,0<x +11-x<1, ∴-1<x <0. 答案 A3.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( ). A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2解析 由于y =x 2-ax +1是开口向上的二次函数,从而有最小值4-a 24,故要使函数y =log a (x 2-ax +1)有最小值,则a >1,且4-a 24>0,得1<a <2,故选C. 答案 C4.若函数f (x )=log a (x +b )的大致图象如图所示,其中a ,b 为常数,则函数g (x )=a x +b 的大致图象是 ( ).解析 由已知函数f (x )=log a (x +b )的图象可得0<a <1,0<b <1.则g (x )=a x +b 的图象由y =a x 的图象沿y 轴向上平移b 个单位而得到,故选B. 答案 B5.若函数f (x )=log a (x 2-ax +3)(a >0且a ≠1)满足对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0,则实数a 的取值范围为( ).A .(0,1)∪(1,3)B .(1,3)C .(0,1)∪(1,23)D .(1,23)解析 “对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0”实质上就是“函数单调递减”的“伪装”,同时还隐含了“f (x )有意义”.事实上由于g (x )=x 2-ax +3在x ≤a2时递减,从而⎩⎨⎧a >1,g ⎝ ⎛⎭⎪⎫a 2>0.由此得a 的取值范围为(1,23).故选D.答案 D6.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是 ( ). A .(22,+∞) B .[22,+∞) C .(3,+∞)D .[3,+∞)解析 作出函数f (x )=|lg x |的图象,由f (a )=f (b ),0<a <b 知0<a <1<b ,-lg a =lg b ,∴ab =1,∴a +2b =a +2a ,由函数y =x +2x 的单调性可知,当0<x <1时,函数单调递减,∴a +2b =a +2a >3.故选C. 答案 C 二、填空题。
高考各题型知识点详细罗列一、集合● 子集、真子集等集合个数若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个● 绝对值不等式和一元二次不等式设集合{}22A x a x a =-<<+,{}2450B x x x =--<,若A B A =⋂,则实数a 的取值范围为( )A .[]1,3B .()1,3C .[]3,1--D .()3,1-- ●对数指数函数不等式设集合{}13x x P =+≤,()1Q ,2,13xy y x ⎧⎫⎪⎪⎛⎫==∈-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则Q P =I ( )A .14,9⎛⎫- ⎪⎝⎭ B .1,29⎛⎤ ⎥⎝⎦ C .1,23⎛⎤ ⎥⎝⎦ D .1,23⎛⎫ ⎪⎝⎭● 分式不等式已知集合,,则( ) A . B . C . D .● 定义域和值域若集合}1,log |{}1,2|{2≥==-<==x x y y P x y y M x,,则=P M I ( ) A .}210|{<<y y B .}10|{<<y y C .}121|{<<y y D .}210|{<≤y y}013|{≥+-=x x x A }2log |{2<=x x B =B A C I )(R )3,0(]3,0(]4,1[-)4,1[-二、复数 ● 复数计算复数=( )A. B. C. D.● 共轭复数z 满足(3)(2)5z i --=(i 为虚数单位),则z 的共轭复数z 为( ) A .2i + B .2i - C .5i + D .5i -● 求模若复数满足,则的实部为 (A ) (B ) (C ) (D )已知复数z 满足11zi z-=+ ,则1z += ( ) A 、1 B 、0 C 、2 D 、2● 象限已知复数,则z-|z|对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限● i 的多次方复数等于( )A .iB .1-C .i -D .1z 11z i i i -=-+()z 212-21-1212+iz -=11三、向量● 数量积已知,,,则=( )A .﹣8B .﹣10C .10D .8设x R ∈ ,向量(,1),(1,2),a x b ==-r r 且a b ⊥r r ,则||a b +=r r( )A .5B .10C .25D .10● 夹角公式已知两个非零向量,a b r r 满足()0a a b ⋅-=r r r ,且2a b =r r ,则,a b <>=r r( )A .30oB .60oC .120oD .150o ●平行与垂直已知向量()()()3,1,1,3,,2a b c k ===-r r r,若()//a c b -r r r ,则向量a r 与向量c r 的夹角的余弦值是( ) A .55 B .15 C .55- D .15- ● 投影已知点(1,1).(1,2).(2,1).(3,4)A B C D ---则向量AB uu u r 在CD uuu r方向上的投影为( )A .322B .3152C .322-D .3152-● 平面向量基本定理已知||=1,||=2,∠AOB=150°,点C 在∠AOB 的内部且∠AOC=30°,设=m+n,则=( ) A . B .2C .D .1在△ABC 中,已知D 是BC 延长线上一点,若,点E 为线段AD 的中点,,则λ=( )A .B .C .D .四、三角函数平方和1、三角函数关系已知是第二象限角,8tan 15α=-,则sin α=( ) A .18 B .18- C .817- D .817如果角θ满足sin cos 2θθ+=,那么1tan tan θθ+的值是( ) A .-1 B .-2 C .1 D .2已知3tan 5α=-,则sin2=α( ) A.1517 B.1517- C.817- D.817已知()7cos ,,025θθπ=-∈-,则sin cos 22θθ+=( ) A .125B .15C .15-D .15±若,则sin2α的值为( )A .B .C .D .α● 诱导公式若1cos()63πα-=,则54cos()cos(2)63ππαα+--=( ) A .109- B .109 C .45 D .45-● 齐次式已知ααααα2222cos sin 22cos sin ,2tan ++-=则等于( )A .913B .911C .76D .74● 三角函数图像已知函数f (x )=sin (ωx+φ)(ω>0)的图象如图所示,则f ()=( )A .B .C .D .● 平移伸缩变换将函数sin y x =的图象上所有的点的横坐标缩短到原来的倍(纵坐标不变),再把所得图象上所有点向左平移个单位,得到的图象的函数解析式是 ( ) A . B .C .1sin()26y x π=+ D .sin(2)6y x π=+已知函数()()()sin 20f x x ϕϕπ=+<<,若将函数()y f x =的图像向左平移6π个单位后所得图像对应的函数为偶函数,则实数ϕ=( ) A .56π B .23π C .3π D .6π126πsin(2)3y x π=+1sin()212y x π=+已知函数()cos(2)(||)f x x ϕϕπ=+<的图象向右平移12π个单位后得到()sin(2)3g x x π=-的图象,则ϕ的值为( )A 、-23π B 、-3π C 、3π D 、23π ●对称轴、对称点性质已知函数()()sin f x x ωϕ=A +(0A ≠,0ω>,22ππϕ-<<)在23x π=时取得最大值,且它的最小正周期为π,则( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上是减函数 C .()f x 的一个对称中心是5,012π⎛⎫⎪⎝⎭D .()f x 的图象的一条对称轴是512x π=函数x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( ) A .π3 B .34π C .23π D .67π若将函数y =tan(ω>0)的图象向右平移个单位长度后,与函数y =tan的图象重合,则ω的最小值为( )A .B .C .D .设函数对任意的 ,都有,若函数,则的值是( )A .1B .-5或3C .-2D .● 单调区间与最值1()cos()2f x x ωϕ=+x R ∈()()66f x f x ππ-=+()3sin()2g x x ωϕ=+-()6g π12如图是函数()()⎪⎭⎫⎝⎛≤+=22sin πϕϕx A x f 图像的一部分,对不同的[]b a x x ,,21∈,若()()21x f x f =,有()321=+x x f ,则( )A .()x f 在⎪⎭⎫ ⎝⎛-12,125ππ上是减函数 B .()x f 在⎪⎭⎫⎝⎛65,3ππ上是减函数 C .()x f 在⎪⎭⎫ ⎝⎛-12,125ππ上是增函数 D .()x f 在⎪⎭⎫⎝⎛65,3ππ上是增函数 cos 26x y π⎛⎫=- ⎪⎝⎭(x ππ-≤≤)的值域为 ( )A . 11,22⎡⎤-⎢⎥⎣⎦B .[]1,1-C .1,12⎡⎤-⎢⎥⎣⎦ D .13,22⎡⎤-⎢⎥⎣⎦函数 cos 22cos y x x =+的值域是( ) A .[1,3]- B .3[,3]2- C .3[,1]2-- D .3[,3]2三角恒等变换与角之间的关系(互余、互补)若1sin()63πα-=,则22cos ()162πα+-=( ) A. 31 B. 31- C. 97 D. 97-3110 170cos sin ︒︒-=( )A .4B .2C .-2D .-4若1sin()63πθ-=,则2cos(2)3πθ+的值为( )A .13B .13-C .79D .79-在三角形ABC 中,角A 、B 、C 的对边分别为,,a b c ,且满足643a b c ==,则sin 2sin sin AB C=+( ) A .1114- B .127 C .1124- D .712-五、线性规划● 画可行域目标函数斜截式设x ,y 满足约束条件,则x+2y 的最大值是( )A .1B .2C .1D .﹣1已知实数x ,y 满足⎪⎩⎪⎨⎧≤-≤+≥-32302y x y x y x ,则y x -的最大值为( )A .1B .3C .1-D .3-● 目标函数几何意义已知实数x 、y 满足约束条件则目标函数的最大值为( )A .3B .4C .﹣3D .设实数x ,y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩则y x z x y =+的取值范围是( )A 、110[,]33B 、15[,]32C 、5[2,]2D 、10[2,]3已知,x y 满足满足约束条件+10,2,3x y x y x ≤⎧⎪-≤⎨⎪≥⎩,那么22z x y =+的最大值为___.● 含参数设y x z +=,其中实数x ,y 满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为( )A .3-B .2-C .1-D .0已知为区域内的任意一点,当该区域的面积为4时,的最小值是( )A .0B .2C .D .6已知变量x ,y 满足条件若目标函数z =ax +y (其中a>0)仅在点(3,0)处取得最大值,则的取值范围是( )A .B .C .D .1(,)2+∞● 含绝对值的若,x y 满足+20,40,0,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则2||z y x =-的最大值为A .8-B .4-C .1D .2若不等式组33(x 1)x y y k ⎧+≤⎪⎨+≤+⎪⎩表示的平面区域是三角形,则实数k 的取值范围是( )A .3324k -<≤ B .32k <-或34k ≥C .302k -<<或34k ≥D .32k <-或304k <≤(),P x y ()22000y x x a a ⎧-≤⎪⎨≤≤>⎪⎩2z x y =-22a 1[,)2+∞1[,)3+∞1(,)3+∞已知实数y x ,满足⎩⎨⎧≤--≥+-01.012y x y x 则z=2x+y 的最大值为A .4B .6C .8D .10六、二项式定理● 基本的通项公式求解在251()x x-的二项展开式中,第二项的系数为( )A.10B. -10C. 5D. -5在154)212(+x 的展开式中,系数是有理数的项共有( ) A.4项 B.5项 C.6项 D.7项 在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项● 多因式乘积的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .4043(1)(1)x x --展开式中2x 的系数是( )A .3B .0C .﹣3D .﹣6● 括号里三式展开(x 2+x+y )5的展开式中,x 7y 的系数为( ) A .10 B .20 C .30 D .603031()x x+x 4567512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭● 系数之和与积分 已知nx x ⎪⎪⎪⎭⎫ ⎝⎛+313展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( )A .4B .5C .6D .7七、三视图与外接球● 三视图之求体积一个几何体的三视图如图所示,则该几何体的体积为( )A .403B .203C .20D .40● 三视图之求表面积某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .2865+B .3065+C .56125+D .60125+● 外接球之放在正方体或长方体一个几何体的三视图如图所示,则该几何体的外接球的体积为( )A .32πB .92πC .43πD .83π● 外接球之直接找球心和球半径已知如图所示的三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为A .π4B .π12C .π16D .π36● 球与球的切面过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的( )A .316 B .916C .38D .58 九、直线和圆● 直线里的一些公式(直线的方程、直线平行与垂直、点到直线距离公式、两点之间距离公式、)已知12:20,:(1)210,l mx y l m x my +-=+-+=若12l l ⊥ 则m =( )A .m=0B .m=1C .m=0或m=1D .m=0或m=1-B AC D若点(1,a )到直线x -y +1=0的距离是,则实数a 为( ).A .-1B .5C .-1或5D .-3或3已知点(,)P x y 在直线250x y ++=上,那么22x y +的最小值为( )A .5B .25C .5D .210不论k 为何值,直线0)4()2()12(=+----k y k x k 恒过的一个定点是( )A .)0,0(B .)3,2(C .)2,3(D .)3,2(-● 直线里的对称点)3,4(P 关于直线01=+-y x 的对称点Q 的坐标是A .)4,2(B .)4,3(C .)5,2(D .)5,3(● 直线与圆的位置关系 若直线:(2)l y k x =-与曲线221(0)x y x -=>相交于A B 、两点,则直线l 的倾斜角的取值范围是( )A .[)0,πB .3,,4224U ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .0,2π⎡⎫⎪⎢⎣⎭ D .3,,4224U ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦【2015高考重庆,理8】已知直线l :x+ay-1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB|= ( )A 、2B 、42C 、6D 、210● 直线与圆的弦长(2010•江西)直线y=kx+3与圆(x ﹣3)2+(y ﹣2)2=4相交于M ,N 两点,若|MN|≥2,则k 的取值范围是( )A .[﹣,0]B .[﹣∞,﹣]∪[0,+∞]C .[﹣,]D .[﹣,0]● 圆的方程及三角形外接圆方程确定【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10● 圆与圆的位置关系圆1C :2220x y x ++=与圆2C :224840x y x y +-++=的位置关系是A .相交B .外切C .内切D .相离● 直线与圆的模型圆x 2+y 2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( )A .36B .18C .6D .5若圆C :x 2+y 2+2x ﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a ,b )向圆C 所作切线长的最小值是( )A .2B .3C .4D .6 ● 圆与圆的相交弦、弦长及交点坐标已知圆与圆,则两圆的公共弦长为( )A .B .C .D .1 十、解三角形● 边角互化型ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,,且a A b B A a 35cos sin sin 2=+. (1)求ab ; (2)若22258b a c +=,求角C .● 两角互补正弦、余弦的关系型已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--=.(1)求A 的大小;(2)若7a =,求ABC ∆的周长的取值范围.● 平面图形型如图,平面四边形中,,,,,322,求(Ⅰ); (Ⅱ)的面积.● 最值问题型在ABC ∆中,内角A 、B 、C 所对的边分别为c ,b ,a ,其外接圆半径为6,241cos b B =-,4sin sin 3A C += (Ⅰ)求B cos ;(Ⅱ)求ABC ∆的面积的最大值.十一、数列● 做数列题的小技巧已知正数组成的等比数列,若,那么的最小值为( )A .20B .25C .50D .不存在已知{}n a 为等差数列,99,105642531=++=++a a a a a a ,则20a 等于( )A 、-1B 、1C 、3D 、7{}n a 120100a a ⋅=714a a +A B DC设等差数列{}n a 的前n 项和为n S ,若359,30S S ==,则789a a a ++=( )A .63B .42C .36D .27等差数列{}n a 的前n 项和为n S ,若3426235a a a +-=,则7S 等于( )A .28B .21C .14D .7已知等比数列中,各项都是正数,且成等差数列,则 A 、 B 、 C 、 D 、等比数列{}n a 中,4021=+a a ,6043=+a a ,=+87a a A .135 B .100 C .95 D .80求通项公式的一些方法① 累加法已知数列{n a },满足11,a =1n n n a a --=,则10a =( )A .45B .50C .55D .60在数列{}n a 中,若12a =-,12n n n a a n +=+⋅,则n a =( )A .(2)2n n -⋅B .112n -C .21(1)34n -D .21(1)32n - ② 累乘法在数列{}a n 中,,)(*12N a a n n n n ∈•=+,求通项a n 。
2023高考总复习江苏专用(理科):第四篇 三角函数、解三角形《第20讲 函数y =Asin(ωx +φ)的图象与性质》(根底达标演练+综合创新备选,含解析)A 级 根底达标演练(时间:45分钟 总分值:80分)一、填空题(每题5分,共35分)1.(2023·苏州调研)函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))的图象如下图,那么φ=________.解析 T =2×(7-3)=8,所以2πω=8,ω=π4,f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ.又由sin ⎝ ⎛⎭⎪⎫3π4+φ=0,φ∈[0,2π),得φ=π4.答案π42.(2023·盐城调研)函数y =cos ⎝ ⎛⎭⎪⎫2x -3π4-22·sin 2x 的最小正周期为________.解析 y =cos ⎝ ⎛⎭⎪⎫2x -3π4-2(1-cos 2x )=cos 2x cos 3π4+sin 2x sin 3π4+2cos 2x-2=22 sin 2x +22cos 2x -2=sin ⎝⎛⎭⎪⎫2x +π4-2,所以f (x )的最小正周期T =2π2=π. 答案 π3.(2023·苏北四市调研)函数y =sin ⎝ ⎛⎭⎪⎫2x +π6+cos ⎝ ⎛⎭⎪⎫2x -π3的最大值为________.解析 法一 由题意可知y =sin 2x cos π6+cos 2x sin π6+cos 2x cos π3+sin 2x sin π3=3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6,所以最大值为2.法二 y =sin ⎝ ⎛⎭⎪⎫2x +π6+cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π6-π2= 2sin ⎝ ⎛⎭⎪⎫2x +π6,所以最大值为2.答案 24.(2023·泰州学情调查)要使sin α-3cos α=4m -64-m 有意义,那么应有________.解析4m -64-m =sin α-3cos α=2sin ⎝⎛⎭⎪⎫α-π3∈[-2,2],所以-2≤4m -64-m ≤2,解得-1≤m ≤73.答案 ⎣⎢⎡⎦⎥⎤-1,73 5.(2023·镇江调研)函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4+2sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是________.解析 f (x )=2⎝ ⎛⎭⎪⎫sin x cos π4+cos x sin π4+2sin x cos x =sin x +cos x +2sin x cos x .设t =sin x +cos x ,那么t 2=1+2sin x cos x ,∴2sin x cos x =t 2-1,且由π4≤x ≤π2,得t =2sin ⎝⎛⎭⎪⎫x +π4∈[1,2],所以y =t +t 2-1=t 2+t -1,当t =2时,y max =2+1.答案2+16.(2023·江苏)设定义在区间⎝⎛⎭⎪⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,那么线段P 1P 2的长为________.解析 由⎩⎪⎨⎪⎧y =6cos x ,y =5tan x 消去y 得6cos x =5tan x .整理得6cos 2x =5sin x,6sin 2x +5sin x -6=0,(3sin x -2)·(2sin x +3)=0,所以sin x =23或sin x =-32(舍去). 所以P 1P 2=sin x =23.答案 237.给出以下命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数α,使得sin α+cos α=32;③假设α,β是第一象限角且α<β,那么tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎪⎫2x +5π4的一条对称轴; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形.其中正确命题的序号为________.(填所有正确命题的序号) 解析 ①y =cos ⎝⎛⎭⎪⎫2x 3+π2⇒y =-sin 23x 是奇函数; ②由sin α+cos α=2sin ⎝ ⎛⎭⎪⎫α+π4的最大值为2,2<32,所以不存在实数α,使得sin α+cos α=32.③α=60°,β=390°,显然有α<β,且α,β都是第一象限角,但tan α=3,tanβ=tan 390°=33,tan α>tan β,所以③不成立. ④∵2×π8+54π=π4+54π=32π,而sin 32π=-1,∴④成立.⑤∵sin ⎝ ⎛⎭⎪⎫2×π12+π3=sin ⎝ ⎛⎭⎪⎫π6+π3=1≠0,∴⑤不成立. 答案 ①④二、解答题(每题15分,共45分) 8.已知函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,|φ|<π2,ω>0的图象的一局部如下图. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 解 (1)观察图象可知:A =2且点(0,1)在图象上,所以1=2sin(ω·0+φ),即sin φ=12,因为|φ|<π2,所以φ=π6.又因为1112π是函数的一个零点,且是图象上升穿过x 轴形成的零点,所以11π12ω+π6=2π,所以ω=2.故f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.(2)设2x +π6=B ,那么函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解上式得x =k π2+π6(k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z ).9.(2023·华东师大附中模拟)已知函数f (x )=A sin ωx +B cos ωx (A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎢⎡⎦⎥⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解 (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π,又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2(k ∈Z ),φ=2k π+π6(k ∈Z ),所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx +2k π+π6=2sin ⎝ ⎛⎭⎪⎫πx +π6(k ∈Z ).故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫πx +π6.(2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512,又k ∈Z ,知k =5,由此可知在闭区间⎣⎢⎡⎦⎥⎤214,234上存在f (x )的对称轴,其方程为x =163.10.(★)(2023·深圳一调)已知函数f (x )=23·sin ⎝ ⎛⎭⎪⎫x 2+π4cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π).(1)求f (x )的最小正周期;(2)假设将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解 (1)因为f (x )=3sin ⎝ ⎛⎭⎪⎫x +π2+sin x =3cos x +sin x =2⎝ ⎛⎭⎪⎫32cos x +12sin x =2sin ⎝⎛⎭⎪⎫x +π3,所以f (x )的最小正周期为2π. (2)∵将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,∴g (x )=f ⎝⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π6+π3=2sin ⎝ ⎛⎭⎪⎫x +π6.∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴当x +π6=π2,即x =π3时,sin ⎝ ⎛⎭⎪⎫x +π6=1,g (x )取得最大值2.当x +π6=7π6,即x =π时,sin ⎝⎛⎭⎪⎫x +π6=-12,g (x )取得最小值-1. 【点评】 解决三角函数的单调性及最值值域问题主要步骤有:,第一步:三角函数式的化简,一般化成y =A sin ωx +φ+h 或y =A cos ωx +φ+h 的形式.,第二步:根据sin x 、cos x 的单调性解决问题,将“ωx +φ”看作一个整体,转化为不等式问题.,第三步:根据已知x 的范围,确定“ωx +φ”的范围.,第四步:确定最大值或最小值.,第五步:明确标准表述结论B 级 综合创新备选(时间:30分钟 总分值:60分)一、填空题(每题5分,共30分)1.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如下图,那么ω=________.解析 由函数y =A sin(ωx +φ)的图象可知.T 2=⎝⎛⎭⎪⎫-π3-⎝ ⎛⎭⎪⎫-23π=π3,所以T =23π.因为T =2πω=23π,所以ω=3.答案 32.(2023·连云港模拟)设函数y =2sin ⎝⎛⎭⎪⎫2x +π3的图象关于点P (x 0,0)成中心对称,假设x 0∈⎣⎢⎡⎦⎥⎤-π2,0,那么x 0=________.解析 因为函数图象的对称中心是其与x 轴的交点,所以y =2sin ⎝⎛⎭⎪⎫2x 0+π3=0,x 0∈⎣⎢⎡⎦⎥⎤-π2,0,解得x 0=-π6. 答案 -π63.(2023·四川改编)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________. 解析 将函数y =sin x 的图象上所有点向右平移π10个单位得y =sin ⎝ ⎛⎭⎪⎫x -π10,再把所得各点横坐标伸长到原来的2倍得y =sin ⎝ ⎛⎭⎪⎫12x -π10.答案 y =sin ⎝ ⎛⎭⎪⎫12x -π10 4.(2023·福建)已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.假设x ∈⎣⎢⎡⎦⎥⎤0,π2,那么f (x )的取值范围是________.解析 由f (x )与g (x )的图象对称轴完全相同知两函数的周期相同,∴ω=2. 所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,56π,f (x )的取值范围是⎣⎢⎡⎦⎥⎤-32,3.答案 ⎣⎢⎡⎦⎥⎤-32,3 5.(2023·南通调研)函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=-2,f (β)=0,且|α-β|的最小值等于π2,那么正数ω的值为________.解析 f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3,由题意得f (x )的最小正周期T =4×π2=2π,所以2πω=2π,即ω=1. 答案 16.(2023·菏泽模拟)函数f (x )=3sin ⎝⎛⎭⎪⎫2x -π3的图象为C ,以下结论:①图象C 关于直线x =π6对称;②图象C 关于点⎝⎛⎭⎪⎫-π6,0对称;③f (x )在区间⎝⎛⎭⎪⎫-π12,5π12上是增函数;④函数g (x )=3sin 2x 的图象向右平移π3个单位长度可以得到f (x )的图象,其中正确的命题序号是________.解析 ①当x =π6时,2x -π3=2×π6-π3=0,所以C 关于点⎝ ⎛⎭⎪⎫π6,0对称,所以①不正确.②当x =-π6时,3sin ⎝ ⎛⎭⎪⎫2x -π3=3sin ⎝ ⎛⎭⎪⎫-2π3≠0,所以②不正确.③当x ∈⎝ ⎛⎭⎪⎫-π12,5π12时,2x -π3∈⎝ ⎛⎭⎪⎫-π2,π2,y =f (x )在⎝ ⎛⎭⎪⎫-π2,π2上单调增,所以③正确.④g ⎝⎛⎭⎪⎫x -π3=3sin2⎝ ⎛⎭⎪⎫x -π3=3sin ⎝ ⎛⎭⎪⎫2x -2π3≠f (x ),所以④不正确,故正确的题号是③.答案 ③二、解答题(每题15分,共30分)7.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如下图.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y=f (x )+g (x )的图象在(0,π)内所有交点的坐标. 解 (1)由题图知A =2,T =π,于是ω=2πT=2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=-2cos ⎝⎛⎭⎪⎫2x +π6.故y =f (x )+g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6-2cos ⎝ ⎛⎭⎪⎫2x +π6=22sin ⎝ ⎛⎭⎪⎫2x -π12.由22sin ⎝ ⎛⎭⎪⎫2x -π12=6,得sin ⎝ ⎛⎭⎪⎫2x -π12=32.因为0<x <π,所以-π12<2x -π12<2π-π12.所以2x -π12=π3或2x -π12=2π3,所以x =524π或x =38π,故所求交点坐标为⎝⎛⎭⎪⎫5π24,6或⎝ ⎛⎭⎪⎫3π8,6.8.(2023·南通调研)已知函数f (x )=2cos x 2⎝⎛⎭⎪⎫3cos x 2-sin x 2.(1)设θ∈⎣⎢⎡⎦⎥⎤-π2,π2,且f (θ)=3+1,求θ的值;(2)在△ABC 中,AB =1,f (C )=3+1,且△ABC 的面积为32,求sin A +sin B 的值. 解 (1)f (x )=23cos 2 x 2-2sin x 2cos x 2=3(1+cos x )-sin x =2cos ⎝⎛⎭⎪⎫x +π6+ 3.由2cos ⎝ ⎛⎭⎪⎫θ+π6+3=3+1,得cos ⎝ ⎛⎭⎪⎫θ+π6=12.于是θ+π6=2kπ±π3(k ∈Z ).因为θ∈⎣⎢⎡⎦⎥⎤-π2,π2, 所以θ=-π2或π6.(2)因为C ∈(0,π),由(1)知C =π6.因为△ABC 的面积为32,所以32=12ab sin π6.于是ab =2 3.① 在△ABC 中,设内角A ,B 的对边分别是a ,b . 由余弦定理,得1=a 2+b 2-2ab cos π6=a 2+b 2-6.所以a 2+b 2=7.② 由①②,可得⎩⎨⎧a =2,b =3,或⎩⎨⎧a =3,b =2.于是a +b =2+ 3.由正弦定理,得sin A a =sin B b =sin C 1=12.所以sin A +sin B =12(a +b )=1+32.。
第2讲函数的单调性与最值一、知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y=f(x)在区间A上是递减的①如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.②如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,那么就称函数y=f(x)在这个子集上具有单调性.(3)单调函数如果函数y=f(x)在整个定义域内是增加的或是减少的,我们称这个函数为增函数或减函数,统称为单调函数.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(1)对于任意的x∈I,都有f(x)≥M;(2)存在x ∈I ,使得f (x )=M(2)存在x ∈I ,使得f (x )=M结论 M 为最大值M 为最小值1.函数单调性的两种等价形式 设任意x 1,x 2∈[a ,b ]且x 1≠x 2,(1)f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.(2)(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.2.五条常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”. (4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值. 二、教材衍化1.函数f (x )=x 2-2x 的递增区间是________. 答案:[1,+∞)(或(1,+∞))2.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. 解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的递增区间是[1,+∞).( ) (3)函数y =1x 的递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到. ( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区|K(1)求单调区间忘记定义域导致出错; (2)对于分段函数,一般不能整体单调,只能分段单调; (3)利用单调性解不等式忘记在单调区间内求解; (4)混淆“单调区间”与“在区间上单调”两个概念. 1.函数y =log 12(x 2-4)的递减区间为________.答案:(2,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是定义在R 上的减函数,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝⎛⎭⎫122-1, 解得⎩⎪⎨⎪⎧a <2,a ≤138,即a ≤138.答案:⎝⎛⎦⎤-∞,138 3.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,即⎩⎪⎨⎪⎧-3≤a ≤1,-1≤a ≤1,a <1.所以-1≤a <1. 答案:[-1,1)4.(1)若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是________;(2)若函数f (x )=x 2+2(a -1)x +2的递减区间为(-∞,4],则a 的值为________. 答案:(1)a ≤-3 (2)-3确定函数的单调性(区间)(多维探究) 角度一 给出具体解析式的函数的单调性(1)函数f (x )=|x 2-3x +2|的递增区间是( )A.⎣⎡⎭⎫32,+∞ B .⎣⎡⎦⎤1,32和[2,+∞) C .(-∞,1]和⎣⎡⎦⎤32,2D .⎝⎛⎦⎤-∞,32和[2,+∞) (2)函数y =x 2+x -6的递增区间为________,递减区间为________.【解析】 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2. 如图所示,函数的递增区间是⎣⎡⎦⎤1,32和[2,+∞);递减区间是(-∞,1)和⎝⎛⎭⎫32,2.故选B.(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的递减区间为(-∞,-3],递增区间为[2,+∞). 【答案】 (1)B (2)[2,+∞) (-∞,-3] 角度二 含参函数的单调性(一题多解)判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上是减少的;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上是增加的. 法二:f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为减函数, 当a <0时,f (x )在(-1,1)上为增函数.确定函数单调性的4种方法(1)定义法.利用定义判断.(2)导数法.适用于初等函数、复合函数等可以求导的函数.(3)图象法.由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法.利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.[提醒] 求函数的单调区间,应先求定义域,在定义域内求单调区间.1.函数y =-x 2+2|x |+3的递减区间是________. 解析:由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图,由图象可知,函数y =-x 2+2|x |+3的递减区间为[-1,0],[1,+∞).答案:[-1,0],[1,+∞)2.判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-⎝⎛⎭⎫ax 21+1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上是增加的.求函数的最值(师生共研)(1)函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. (2)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (x )的最小值是________.【解析】 (1)由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)当x ≤1时,f (x )min =0,当x >1时,f (x )min =26-6,当且仅当x =6时取到最小值,又26-6<0,所以f (x )min =26-6.【答案】 (1)3 (2)26-6求函数最值的5种常用方法及其思路1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4. 所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1.答案:1函数单调性的应用(多维探究) 角度一 比较大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称. 所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e),所以b >a >c . 【答案】 D角度二 解函数不等式已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)【解析】 因为当x =0时,两个表达式对应的函数值都为零,所以函数f (x )的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数, 当x >0时,f (x )=ln(x +1)也是增函数, 所以函数f (x )是定义在R 上的增函数. 因此,不等式f (2-x 2)>f (x )等价于2-x 2>x , 即x 2+x -2<0,解得-2<x <1. 【答案】 D角度三 根据函数的单调性求参数(1)(2020·南阳调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a的取值范围是________.【解析】 (1)法一:设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数, 所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞). 法二:由f (x )=x -a x +a 2得f ′(x )=1+ax 2,由题意得1+ax2≥0(x >1),可得a ≥-x 2,当x ∈(1,+∞)时,-x 2<-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)[-1,+∞) (2)(-∞,1]∪[4,+∞)函数单调性应用问题的3种常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.(2020·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a -2x +2a +3,x <a , 因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调, 所以a >1.所以a 的取值范围是(1,+∞).故选B.2.定义在[-2,2]上的函数f (x )满足(x 1-x 2)·[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)解析:选C.因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2, 所以函数f (x )在[-2,2]上是增加的,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1,故选C.[基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( )A .(-∞,0)B .⎣⎡⎦⎤0,12C .[0,+∞)D .⎝⎛⎭⎫12,+∞ 解析:选B.y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0函数y 的草图如图所示.由图易知原函数在⎣⎡⎦⎤0,12上递增.故选B. 3.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3]解析:选B.由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].4.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D.因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=4-x -x +2的值域为________.解析:因为⎩⎪⎨⎪⎧4-x ≥0,x +2≥0,所以-2≤x ≤4,所以函数f (x )的定义域为[-2,4].又y 1=4-x ,y 2=-x +2在区间[-2,4]上均为减函数, 所以f (x )=4-x -x +2在[-2,4]上为减函数, 所以f (4)≤f (x )≤f (-2). 即-6≤f (x )≤ 6. 答案:[-6,6]7.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)8.若f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围是________.解析:由题意知,⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎪⎨⎪⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13. 答案:⎣⎡⎭⎫18,139.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值.解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上是增加的;(2)若a >0且f (x )在(1,+∞)上是减少的,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上是增加的. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.[综合题组练]1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D.函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B.因为函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.故选B.3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2. 答案:[0,2]4.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1, 3 ]上递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上是增加的,求实数a 的取值范围. 解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上是增加的,所以当x >2时,f (x ) 是增加的,则-a2≤2,即a ≥-4.当-1<x ≤2时,f (x ) 是增加的,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].6.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。