蛋白质生物合成范玉莹
- 格式:ppt
- 大小:6.56 MB
- 文档页数:25
樊文婷,李康静,宋婕,等. 装载β-乳球蛋白纳米颗粒的海藻酸钠三层复合膜构建及特性[J]. 食品工业科技,2023,44(13):45−52.doi: 10.13386/j.issn1002-0306.2022070353FAN Wenting, LI Kangjing, SONG Jie, et al. Construction and Properties of Alginate-based Trilayer Composite Film Loaded with β-Lactoglobulin Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 45−52. (in Chinese with English abstract).doi: 10.13386/j.issn1002-0306.2022070353· 研究与探讨 ·装载β-乳球蛋白纳米颗粒的海藻酸钠三层复合膜构建及特性樊文婷1,李康静1,宋 婕1,姜紫菡1,许浩田1,朱俊向1,2,吴 昊1,2,*(1.青岛农业大学食品科学与工程学院,山东青岛 266109;2.青岛特种食品研究院,山东青岛 266109)摘 要:本文基于层层组装法构建载有β-乳球蛋白纳米颗粒的海藻酸钠-聚乙烯吡咯烷酮-海藻酸钠三层复合膜。
通过调节环境pH 和温度,同时联合芹菜素配体,诱导β-乳球蛋白形成纳米颗粒。
利用粒径、多分散性和Zeta 电位表征,研究β-乳球蛋白纳米颗粒的形成规律和贮藏稳定性。
然后,将β-乳球蛋白纳米颗粒装载到海藻酸钠-聚乙烯吡咯烷酮-海藻酸钠三层复合膜中,研究纳米载量对膜机械特性、透过特性、光学特性和热特性的影响。
结果表明:调整环境pH 为7.1,加热温度为75 ℃,在蛋白/配体摩尔比1:8条件下可得到稳定性较好的β-乳球蛋白纳米颗粒。
㊀山东农业科学㊀2023ꎬ55(3):9~14ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2023.03.002收稿日期:2022-06-28基金项目:山东省农业良种工程项目(2019LZGC01702)ꎻ山东省自然科学基金青年项目(ZR2020QC114)ꎻ国家自然科学基金青年项目(32001542)ꎻ山东省农业良种工程项目(2021LZGC013)ꎻ小麦玉米国家工程实验室开放课题(2018LYZWS06)作者简介:李永波(1986 )ꎬ男ꎬ博士ꎬ助理研究员ꎬ主要从事小麦新品种培育研究ꎮE-mail:lyb920327@sina.com通信作者:樊庆琦(1980 )ꎬ男ꎬ博士ꎬ副研究员ꎬ主要从事小麦新品种培育研究ꎮE-mail:fanqingqi@163.com楚秀生(1963 )ꎬ男ꎬ博士ꎬ研究员ꎬ主要从事小麦新品种培育研究ꎮE-mail:xschu2007@sina.com小麦DREB4蛋白的原核表达及多克隆抗体制备李永波1ꎬ鲁琳1ꎬ方会见2ꎬ崔德周1ꎬ孟福燕3ꎬ黄琛1ꎬ隋新霞1ꎬ樊庆琦1ꎬ楚秀生1ꎬ4(1.山东省农业科学院作物研究所/黄淮北部小麦生物学与遗传育种重点实验室/山东省小麦技术创新中心/济南市小麦遗传改良重点实验室ꎬ山东济南㊀250100ꎻ2.山东鲁研良种有限公司ꎬ山东济南㊀250100ꎻ3.郓城县种子公司ꎬ山东郓城㊀274700ꎻ4.烟台大学生命科学学院ꎬ山东烟台㊀264000)㊀㊀摘要:DREB(dehydrationresponsiveelementbinding)转录因子在小麦非生物胁迫中起着非常重要的作用ꎬ但由于目前缺乏可识别小麦内源性DREB蛋白的抗体ꎬ导致其在蛋白水平上的研究进展非常缓慢ꎮ本研究通过分析DREB4A㊁4B和4C三种蛋白序列ꎬ将DREB4A在大肠杆菌中进行表达ꎬ并利用纯化后的蛋白作为抗原免疫兔子ꎬ在国内外首次获得小麦DREB4的多克隆抗体ꎮWesternblot结果证明ꎬ该抗体可特异性识别小麦内源性DREB4蛋白ꎮ该抗体介导的免疫组织化学结果显示ꎬDREB4蛋白定位于细胞核内ꎮ本研究为深入研究植物DREB信号通路提供了有力的检测工具ꎮ关键词:小麦ꎻ非生物胁迫ꎻDREB4转录因子ꎻ多克隆抗体中图分类号:S512.1:Q786㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2023)03-0009-06ProkaryoticExpressionandPolyclonalAntibodyPreparationofWheatDREB4ProteinLiYongbo1ꎬLuLin1ꎬFangHuijian2ꎬCuiDezhou1ꎬMengFuyan3ꎬHuangChen1ꎬSuiXinxia1ꎬFanQingqi1ꎬChuXiusheng1ꎬ4(1.CropResearchInstituteꎬShandongAcademyofAgriculturalSciences/KeyLaboratoryofWheatBiologyandGeneticsandBreedinginNorthernHuang ̄HuaiRiverPlainꎬMinistryofAgricultureandRuralAffairs/ShandongTechnologyInnovationCenterofWheat/JinanKeyLaboratoryofWheatGeneticImprovementꎬJinan250100ꎬChinaꎻ2.ShandongLuyanSeedCo.ꎬLtd.ꎬJinan250100ꎬChinaꎻ3.YunchengCountrySeedCompanyꎬYuncheng274700ꎬChinaꎻ4.CollegeofLifeSciencesꎬYantaiUniversityꎬYantai264000ꎬChina)Abstract㊀DREB(dehydration ̄responsiveelement ̄binding)transcriptionfactorplaysaveryimportantroleinwheatabioticstress.HoweverꎬduetothelackofantibodiesthatcanrecognizewheatendogenousDREBproteinꎬitsresearchprogressatproteinlevelisveryslow.InthisstudyꎬbyanalyzingthreeproteinsequencesofDREB4Aꎬ4Band4CꎬtheDREB4AwasselectedtoexpressinEscherichiacoliꎬandthepurifiedproteinwasusedasanantigentoimmunizerabbitsꎬthenthepolyclonalantibodyofwheatDREB4wasobtainedforthefirsttimeathomeandabroad.TheWesternblotresultsshowedthattheantibodycouldspecificallyrecognizewheatendogenousDREB4protein.Theantibody ̄mediatedimmunohistochemicalresultsshowedthatDREB4proteinwaslocalizedinthenucleus.Thisstudycouldprovideapowerfuldetectiontoolforin ̄depthresearchofplantDREBsignalingpathway.Keywords㊀WheatꎻAbioticstressꎻDREB4transcriptionfactorꎻPolyclonalantibody㊀㊀干旱㊁盐㊁高温㊁冷等各种非生物胁迫会严重影响小麦产量ꎮDREB蛋白含有一个保守的AP2结构域ꎬ可以和顺式作用元件DRE核心序列(A/GCCGAC)发生特异性结合ꎬ通过在转录水平上调控下游基因的表达[1]ꎬ进而应对各种非生物胁迫ꎮ到目前为止ꎬDREB转录因子在拟南芥[2]㊁大豆[3]㊁水稻[4]㊁玉米[5]㊁大麦[6]和小麦[7]等多种植物中被鉴定出来ꎮDREB分为六大类(DREB1~6)[8]ꎬ其中ꎬDREB1在拟南芥㊁水稻㊁玉米中主要应答冷胁迫[4]ꎬDREB2主要应答干旱㊁盐胁迫[9]ꎬDREB3参与ABA和糖信号途径[10]ꎬDREB4应答干旱㊁冷胁迫及在乙烯与茉莉酸途径中起作用[11]ꎬDREB5参与应答干旱㊁冷胁迫[12]ꎬDREB6应答干旱㊁盐胁迫[13]ꎮ大量研究已验证了DREB在植物应对非生物胁迫中的功能ꎮ如在小麦中过表达拟南芥DREB1A㊁大豆GmDREB1或棉花GhDREB基因ꎬ可通过提高根系活力㊁光合作用及渗透调节能力提高小麦的抗旱性[14-16]ꎻ在拟南芥中过表达大豆GmDREB2㊁GmDREB3或小麦TaDREB3基因ꎬ可提高拟南芥抗旱㊁耐盐㊁耐高温及抗冻性[1ꎬ17ꎬ18]ꎻ过表达GmDREB6基因ꎬ可增强大豆的耐盐能力[19]ꎮ然而ꎬ目前几乎所有关于DREB的研究是集中在转录水平上的调控ꎬ缺乏蛋白质水平上的调控研究ꎬ且DREB蛋白发挥生物学功能是否通过磷酸化㊁乙酰化等蛋白水平上的调控尚未可知ꎬ因此ꎬ研究识别内源性DREB蛋白的特异性多克隆抗体ꎬ对于DREB在蛋白水平的调控研究具有非常重要的意义ꎮ本研究通过对小麦中已有的DREB4A㊁4B和4C进行序列分析ꎬ选取DREB4A进行原核表达㊁纯化ꎬ并以其作为抗原ꎬ首次制备出可识别小麦内源DREB4蛋白的多克隆抗体ꎬ以期为进一步研究植物DREB4在蛋白水平上的调控机理提供方法学基础ꎮ1㊀材料与方法1.1㊀试验材料供试小麦品种为济麦379ꎬ由山东省审定(鲁审麦20210017)ꎮ取其幼苗期根㊁叶为材料进行试验ꎮ1.2㊀DREB4序列分析与合成本研究通过DNAMAN8软件对NCBI中提交的DREB4A(AY781354.1)㊁4B(AY781355.1)和4C(AY781356.1)序列进行分析ꎻDREB4A序列的合成由北京擎科生物科技有限公司进行ꎮ1.3㊀DREB4A载体构建、原核表达及纯化将上述合成的DREB4A序列与大肠杆菌表达载体PET30a通过同源重组的方法(pEASY®-BasicSeamlessCloningandAssemblyKitꎬCU201-02ꎬ北京全式金生物技术股份有限公司)连接ꎬ将连接产物转入DH5α(北京擎科生物科技有限公司)感受态细胞中ꎬ冰上放置15minꎬ42ħ水浴热激90sꎬ再冰上放置2minꎬ加入1mL无任何抗生素的LB液体培养基ꎬ37ħ㊁210r/min水平摇1hꎬ然后取100μL菌液ꎬ涂于含有卡那霉素的LB固体培养基上ꎬ37ħ过夜培养ꎮ挑取10个单克隆进行PCR检测ꎬ选取2个阳性信号最强的单克隆由北京擎科生物科技有限公司进行测序ꎬ对测序正确的单克隆进行摇菌㊁质粒提取(质粒小提试剂盒ꎬDP103ꎬ北京天根生化科技有限公司)ꎮ将提取好的质粒转入BL21(DE3)感受态细胞(CD701-02ꎬ北京全式金生物技术股份有限公司)中ꎬ剩余步骤同DH5α感受态细胞转化ꎮ挑单克隆ꎬ置于5mLLB液体培养基中ꎬ37ħ过夜培养ꎬ然后吸取1mL菌液ꎬ加入到300mLLB液体培养基中进行扩大培养ꎬ待菌液OD值为0.6~0.8时ꎬ加入终浓度为50mmol/L的IPTG(G5042-1Gꎬ武汉塞维尔生物科技有限公司)进行诱导表达ꎬ28ħ过夜培养ꎻ菌液于6000r/min离心10minꎬ收集菌体沉淀ꎬ用1ˑPBS(phosphatebuffersaline)清洗沉淀1次ꎬ然后加入40mL1ˑPBS重悬ꎬ超声破碎(开3sꎬ关3sꎻ共计30min)ꎬ6000r/min离心10minꎬ分别将沉淀㊁上清液进行SDS电泳检测ꎮ利用His标签蛋白纯化试剂盒(P2226ꎬ上海碧云天生物技术有限公司)对上清液进行纯化ꎬ然后置于透析袋中4ħ过夜透析ꎬ将透析后的蛋白置于01山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀-20ħ保存备用ꎮ1.4㊀小麦DREB4多克隆抗体制备选取实验级日本大耳白兔和新西兰大白兔各1只ꎬ饲养体重至1~2kg时ꎬ用注射器将充分混匀的1mL完全弗氏佐剂(液体石蜡ʒ羊毛脂=2ʒ1)和0.3mgDREB4A融合蛋白对每只兔子进行皮下注射第1针ꎬ标记为第1天ꎻ第12天ꎬ将充分混匀的1mL不完全弗氏佐剂(完全弗氏佐剂+终浓度20mg/mL的卡介苗)和0.15mg融合蛋白对每只兔子进行皮下注射第2针ꎻ第26天ꎬ将充分混匀的1mL不完全弗氏佐剂和0.15mg融合蛋白对每只兔子进行肌肉注射第3针ꎻ第40天ꎬ将充分混匀的1mL不完全弗氏佐剂和0.15mg融合蛋白对每只兔子进行肌肉注射第4针ꎻ第53天ꎬ取兔子血清进行Westernblot验证ꎮ1.5㊀Westernblot分析利用植物组织蛋白裂解液提取小麦幼苗期根㊁叶部的总蛋白(植物蛋白提取试剂盒ꎬCW0885ꎬ康为世纪生物技术有限公司)ꎬ配制15%的聚丙烯酰胺凝胶进行电泳ꎻ通过湿法转膜ꎬ将凝胶中的蛋白转移到硝酸纤维素薄膜上ꎬ然后将膜放入含有2%脱脂奶粉的TBS(25mmol/LTris-HClꎬ137mmol/LNaCl)中ꎬ封闭1hꎻ加入DREB4多克隆抗体(1ʒ1000稀释于2%脱脂奶粉中)ꎬ4ħ过夜ꎻ用TBST(TBS+20%吐温-20)洗涤3次后ꎬ向封闭液中加入碱性磷酸酶(alkalinephosphataseꎬAP)标记的二抗ꎬ缓慢摇动24hꎬ然后TBST洗涤3次ꎬ每次10minꎻ最后用发色液(TBS10mLꎬ5%NBT45μLꎬ5%BCIP35μL)进行发色ꎮ1.6㊀免疫组织化学法进行亚细胞定位将小麦叶片下表皮撕下ꎬ置于4%多聚甲醛中ꎬ室温放置24hꎬ弃掉多聚甲醛ꎬ用1ˑPBS清洗3次ꎬ加入2%脱脂奶粉于37ħ封闭30minꎬ然后在4ħ下加入DREB4多克隆抗体(1ʒ200稀释于2%脱脂奶粉中)过夜ꎻ用PBS洗涤3次后ꎬ加入1μL二抗(山羊抗兔-AlexaFluor555抗体)和10mLBSAꎬ37ħ继续孵育1hꎬ然后用TBS清洗3次ꎬ在室温下用4ᶄꎬ6-二脒基-2-苯基吲哚(DA ̄PIꎬAnaSpecInc.ꎬSanJoseꎬCAꎬUSA)染色10minꎬ然后用TBS清洗3次ꎬ置于荧光显微镜(HT7700ꎬHitachiꎬTokyoꎬJapan)下观察并拍照ꎮ2㊀结果与分析2.1㊀小麦DREB4序列分析在普通小麦中ꎬDREB4存在DREB4A㊁4B㊁4C三种转录本ꎬ其中ꎬDREB4A编码394个氨基酸ꎬ分子量为42.8kDaꎻDREB4B编码346个氨基酸ꎬ分子量为37.7kDaꎻDREB4C编码68个氨基酸ꎬ分子量为7.1kDa(图1)ꎮ三个蛋白氨基酸序列的保守性为61.28%ꎬ第1~25位的氨基酸完全一致ꎬ其中ꎬDREB4B除第26~73位氨基酸缺失外ꎬ其它位置的氨基酸与DREB4A完全一致ꎮDREB4A㊁4B和4C存在序列间的差异ꎬ可能是应对不同非生物胁迫产生的可变剪切所致ꎮ图中深蓝色区域为保守区域ꎮ图1㊀普通小麦DREB4A、4B和4C的氨基酸序列分析2.2㊀小麦DREB4A的原核表达鉴于DREB4A的氨基酸序列最长ꎬ选其进行后续分析ꎮ首先ꎬ将人工合成的DREB4A序列与表达载体PET30a连接后ꎬ在大肠杆菌中进行表达ꎬ上清液中的蛋白纯化后进行SDS-PAGE检测ꎮ结果显示ꎬ在大约50kDa处出现清晰的蛋白条带(图2)ꎬ与预期的蛋白分子量相符ꎬ表明DREB4A成功表达ꎮ11㊀第3期㊀㊀㊀㊀㊀㊀㊀李永波ꎬ等:小麦DREB4蛋白的原核表达及多克隆抗体制备图2㊀小麦DREB4A的原核表达及纯化2.3㊀DREB4多克隆抗体的制备本研究以上述获得的纯化DREB4A融合蛋白为抗原免疫兔子ꎬ从兔血清中获取了DREB4多克隆抗体ꎮWesternblot结果显示ꎬ该抗体在目的蛋白位置清楚地识别到DREB4A蛋白(图3)ꎮ图3㊀DREB4多克隆抗体对DREB4A融合蛋白的识别2.4㊀DREB4多克隆抗体对小麦内源性DREB4蛋白的识别及特异性检测为了进一步验证该抗体能否识别小麦内源性DREB4蛋白ꎬ分别提取小麦苗期根㊁叶总蛋白进行免疫识别ꎮWesternblot结果显示ꎬ仅在37kDa处检测到清晰的蛋白条带ꎬ这与预测的DREB4B蛋白分子量一致(图4)ꎮ表明该抗体可以识别小麦内源性DREB4B蛋白ꎬ而且特异性好ꎬ可以用于后续植物DREB分子机理的相关研究ꎮ图4㊀小麦内源性DREB4蛋白检测2.5㊀DREB4亚细胞定位分析DREB4定位于细胞核中(图5)ꎬ与前人报道的DREB转录因子核定位的结果一致[20]ꎬ进一步证实了该抗体特异性较好ꎬ可用于开展免疫组织或细胞化学研究的可行性ꎮ对照为前血清ꎮ图5㊀利用免疫组织化学法进行的㊀㊀㊀DREB4亚细胞定位分析结果3㊀讨论与结论DREB是一类抗非生物胁迫的转录因子ꎬ目前主要用于抗逆转基因植物的培育及相关分子机理的解析[21]ꎮ小麦DREB4蛋白是一种对动物和人类无危害的蛋白ꎬ将其用于粮食作物抗逆性转基因改良有着广阔的市场前景[22]ꎮDREB4在小麦中存在三种转录形式(DREB4A㊁4B和4C)[23]ꎬ其中ꎬDREB4A编码的多肽链最长ꎬ涵盖的蛋白信21山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀息最丰富ꎬ推测由此蛋白作为抗原产生的抗体可识别DREB4的所有三种形式ꎬ因此本研究利用DREB4A蛋白作为抗原ꎬ进行了DREB4多克隆抗体的制备ꎮ经过抗原上清蛋白的纯化㊁免疫注射ꎬ最终研制出能识别小麦内源性DREB4蛋白的多克隆抗体ꎮ尽管从植物中已克隆出多种类型的DREB基因ꎬ但由于其抗体类型匮乏以及识别内源性蛋白抗体的空白ꎬ导致有关DREB在蛋白水平上的调控机理研究进展相对缓慢ꎮ目前ꎬ只有拟南芥DREB1A的抗体制备成功ꎬ且仅对大肠杆菌中表达的拟南芥DREB1A融合蛋白进行了检测[24]ꎮ本研究首次开发了特异性识别小麦内源DREB4蛋白的多克隆抗体ꎬ既丰富了植物DREB的抗体类型ꎬ也为进一步推动DREB在蛋白水平上的研究提供了方法学基础ꎮ利用本研究制备的DREB4多克隆抗体检测小麦苗期根㊁叶内源性DREB4蛋白时ꎬ仅识别到了DREB4B蛋白条带ꎬ与预测的该抗体能识别小麦中DREB4三种蛋白形式的结果不一致ꎬ这可能是因为DREB4具有组织器官以及不同发育阶段表达特异性ꎬ在小麦苗期根㊁叶中主要以DREB4B的形式表达ꎬ而在花㊁籽粒等其它组织器官以及不同发育阶段中则以其它形式表达ꎻ另外ꎬDREB4在不同小麦品种中的表达形式也可能存在一定的差异ꎬ本研究所用小麦品种济麦379为抗旱节水型品种ꎬ在其苗期根㊁叶中主要以DREB4B的形式表达ꎬ但在其它类型的小麦品种中以哪种形式表达还有待进一步研究ꎮ传统DREB基因亚细胞定位是采用构建DREB-GFP过表达载体转入组织或细胞中的方法进行定位[20]ꎬ而本研究是利用该抗体对内源DREB4进行免疫定位ꎬ与传统方法相比可避免因过表达造成目的蛋白移位的现象ꎮ综上所述ꎬ本研究通过对DREB4A进行大肠杆菌表达㊁纯化ꎬ并以此作为抗原成功制备出可识别小麦内源性DREB4蛋白的高度特异性多克隆抗体ꎬ可为深入研究植物DREB4在蛋白水平上参与非生物胁迫的调控机理奠定方法学基础ꎮ参㊀考㊀文㊀献:[1]㊀NiuXꎬLuoTꎬZhaoHꎬetal.IdentificationofwheatDREBgenesandfunctionalcharacterizationofTaDREB3inresponsetoabioticstresses[J].Geneꎬ2020ꎬ740:144514. [2]㊀StockingerEJꎬGilmourSJꎬThomashowMF.ArabidopsisthalianaCBF1encodesanAP2domain ̄containingtranscrip ̄tionalactivatorthatbindstotheC ̄repeat/DREꎬacis ̄actingDNAregulatoryelementthatstimulatestranscriptioninre ̄sponsetolowtemperatureandwaterdeficit[J].Proc.Natl.Acad.Sci.USAꎬ1997ꎬ94(3):1035-1040. [3]㊀MizoiJꎬOhoriTꎬMoriwakiTꎬetal.GmDREB2Aꎻ2ꎬacanonicalDEHYDRATION ̄RESPONSIVEELEMENT ̄BINDINGPROTEIN2 ̄typetranscriptionfactorinsoybeanꎬisposttranslationallyregu ̄latedandmediatesdehydration ̄responsiveelement ̄dependentgeneexpression[J].PlantPhysiol.ꎬ2013ꎬ161(1):346-361.[4]㊀DubouzetJGꎬSakumaYꎬItoYꎬetal.OsDREBgenesinriceꎬOryzasativaL.ꎬencodetranscriptionactivatorsthatfunctionindrought ̄ꎬhigh ̄salt ̄andcold ̄responsivegeneexpression[J].PlantJ.ꎬ2003ꎬ33(4):751-763.[5]㊀QinFꎬKakimotoMꎬSakumaYꎬetal.Regulationandfunction ̄alanalysisofZmDREB2AinresponsetodroughtandheatstressesinZeamaysL.[J].PlantJ.ꎬ2007ꎬ50(1):54-69. [6]㊀XueGP.AnAP2domaintranscriptionfactorHvCBF1acti ̄vatesexpressionofcold ̄responsivegenesinbarleythroughin ̄teractionwitha(G/a)(C/t)CGACmotif[J].Biochim.Bio ̄phys.Actaꎬ2002ꎬ1577(1):63-72.[7]㊀ShenYGꎬZhangWKꎬHeSJꎬetal.AnEREBP/AP2 ̄typeproteininTriticumaestivumwasaDRE ̄bindingtranscriptionfactorinducedbycoldꎬdehydrationandABAstress[J].Theor.Appl.Genet.ꎬ2003ꎬ106(5):923-930.[8]㊀SakumaYꎬLiuQꎬDubouzetJG.DNA ̄bindingspecificityoftheERF/AP2domainofArabidopsisDREBsꎬtranscriptionfac ̄torsinvolvedindehydration ̄andcold ̄induciblegeneexpres ̄sion[J].Biochem.Biophys.Res.Commun.ꎬ2002ꎬ290(3):998-1009.[9]㊀ChenHꎬLiuLꎬWangLꎬetal.VrDREB2AꎬaDREB ̄bindingtranscriptionfactorfromVignaradiataꎬincreaseddroughtandhigh ̄salttoleranceintransgenicArabidopsisthaliana[J].J.PlantRes.ꎬ2016ꎬ129(2):263-273.[10]NiuXꎬHelentjarisTꎬBateNJ.MaizeABI4bindscouplingel ̄ement1inabscisicacidandsugarresponsegenes[J].PlantCellꎬ2002ꎬ14(10):2565-2575.[11]SunSꎬYuJPꎬChenFꎬetal.TINYꎬadehydration ̄responsiveelement(DRE) ̄bindingprotein ̄liketranscriptionfactorcon ̄nectingtheDRE ̄andethylene ̄responsiveelement ̄mediatedsignalingpathwaysinArabidopsis[J].J.Biol.Chem.ꎬ2008ꎬ283(10):6261-6271.[12]DongCJꎬLiuJY.TheArabidopsisEAR ̄motif ̄containingpro ̄teinRAP2.1functionsasanactivetranscriptionalrepressortokeepstressresponsesundertightcontrol[J].BMCPlantBiol.ꎬ2010ꎬ10:47.31㊀第3期㊀㊀㊀㊀㊀㊀㊀李永波ꎬ等:小麦DREB4蛋白的原核表达及多克隆抗体制备[13]LinRCꎬParkHJꎬWangHY.RoleofArabidopsisRAP2.4inregulatinglight ̄andethylene ̄mediateddevelopmentalproces ̄sesanddroughtstresstolerance[J].Mol.Plantꎬ2008ꎬ1(1):42-57.[14]PellegrineschiAꎬReynoldsMꎬPachecoMꎬetal.Stress ̄in ̄ducedexpressioninwheatoftheArabidopsisthalianaDREB1Agenedelayswaterstresssymptomsundergreenhouseconditions[J].Genomeꎬ2004ꎬ47(3):493-500.[15]ZhouYꎬChenMꎬGuoJꎬetal.OverexpressionofsoybeanDREB1enhancesdroughtstresstoleranceoftransgenicwheatinthefield[J].J.Exp.Bot.ꎬ2020ꎬ71(6):1842-1857. [16]刘洋洋ꎬ郭栋ꎬ楚秀生ꎬ等.转DREB基因小麦新品系抗旱生理指标测定[J].山东农业科学ꎬ2013ꎬ45(3):38-41. [17]ChenMꎬXuZꎬXiaLꎬetal.Cold ̄inducedmodulationandfunctionalanalysesoftheDRE ̄bindingtranscriptionfactorgeneꎬGmDREB3ꎬinsoybean(GlycinemaxL.)[J].J.Exp.Bot.ꎬ2009ꎬ60(1):121-135.[18]ChenMꎬWangQYꎬChengXGꎬetal.GmDREB2ꎬasoybeanDRE ̄bindingtranscriptionfactorꎬconferreddroughtandhigh ̄salttoleranceintransgenicplants[J].Biochem.Biophys.Res.Commun.ꎬ2007ꎬ353(2):299-305.[19]TuTQꎬVaciaxaPꎬLoTTMꎬetal.GmDREB6ꎬasoybeantranscriptionfactorꎬnotablyaffectsthetranscriptionoftheNtP5CSandNtCLCgenesintransgenictobaccoundersaltstressconditions[J].Saudi.J.Biol.Sci.ꎬ2021ꎬ28(12):7175-7181.[20]倪志勇.小麦DREB转录因子的分子生物学特性分析及功能鉴定[D].杨凌:西北农林科技大学ꎬ2008.[21]SarkarTꎬThankappanRꎬMishraGPꎬetal.AdvancesinthedevelopmentanduseofDREBforimprovedabioticstresstoler ̄anceintransgeniccropplants[J].PhysiologyandMolecularBiologyofPlantsꎬ2019ꎬ25(6):1323-1334.[22]CaoBꎬHeXꎬLuoYꎬetal.Safetyassessmentofdehydration ̄responsiveelement ̄binding(DREB)4proteinexpressedinE.coli[J].FoodandChemicalToxicologyꎬ2012ꎬ50(11):4077-4084.[23]徐兆师.小麦抗逆相关转录因子基因的克隆与鉴定[D].北京:中国农业科学院ꎬ2005.[24]范玉清ꎬ刘恒ꎬ任伟.拟南芥DREB1A转录因子的原核表达和多克隆抗体制备[J].植物生理学通讯ꎬ2007ꎬ43(3):533-537.41山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀。
蛋白质自组装的机制和调控蛋白质自组装,是指一种自然界中普遍存在的现象。
在无外界干预的情况下,蛋白质分子通过静电相互作用、氢键键合、范德华力等相互作用力发生的全息性加性作用,即可自发地形成特定的结构。
蛋白质的自组装机制和调控在现代生物学、材料科学等领域具有极为重要的意义。
蛋白质自组装机制的基本原理是通过氢键与范德华力的相互作用驱动蛋白质间的分子间力作用。
氢键是指在蛋白质分子中,带有电负性较大的原子与带有电荷正性的原子之间,通过共享氢原子所形成的一种氢键作用。
如羟基、胺基等化合物上的氢原子都可以与另一分子上的氧、氮等原子形成氢键,进而加强分子之间的物理互作用。
范德华力是一种分子间非共价力,是因为偶极子、感生偶极子、瞬时偶极子、极性分子之间的非共价吸引而引起的。
蛋白质分子间的范德华力作用可以发生在任何距离之间,是蛋白质自组装所必需的一种重要作用力。
在自组装初期,蛋白质分子并不是随机地聚合在一起,而是根据其亲水性和疏水性,形成了很多小团块,逐渐聚合形成一个大的分子聚集体。
这些小团块称为核心区域。
核心区域在自组装过程中逐渐壮大,成为分子聚集体的主体。
通过静电相互作用、氢键键合、范德华力等相互作用力作用,核心区域将相互结合在一起并增长。
当一定大小的核的聚集体形成后,聚集体自发地向周围进行扩散,逐渐形成类似雪花的晶体结构。
蛋白质自组装的过程受到多种因素的调控。
首先,温度的变化可以直接影响分子的热运动,改变蛋白质自组装的速率和动力学。
其次,离子浓度的增加可以阻抑蛋白质自组装的速率,因为离子的存在会减弱分子间的相互作用力。
此外,还有pH值、水的浓度等因素也都会对蛋白质自组装产生影响。
蛋白质自组装机制和调控在许多领域中发挥着重要作用。
在生物学和医学中,研究蛋白质自组装对于研究生物大分子的结构和功能,以及生物大分子相关疾病的发病机理有着重要的意义。
例如,淀粉样蛋白沉积病的发病机理与蛋白质自组装过程密切相关。
此外,利用蛋白质自组装特性,可以制备出一系列高性能材料,如纳米颗粒、超级分子、生物传感器等,广泛应用于电子、光电子、信息技术、医学等领域。
蛋白质合成与翻译调控的分子生物学研究方法蛋白质是生命体中最基本的分子之一,它们在细胞中扮演着重要的角色。
蛋白质的合成和翻译调控是分子生物学研究的重要方向之一。
本文将介绍蛋白质合成和翻译调控的分子生物学研究方法。
一、蛋白质合成的分子生物学研究方法1. 蛋白质合成的体外翻译系统体外翻译系统是一种在离体条件下合成蛋白质的方法。
它可以用来研究蛋白质合成的机制、调控和功能。
体外翻译系统通常由细胞提取物、核酸、氨基酸、能量和其他必需的因子组成。
这些因子可以在离体条件下模拟细胞内的蛋白质合成过程。
2. 蛋白质合成的体内研究方法体内研究方法是通过对活体细胞中蛋白质合成的研究来了解蛋白质合成的机制和调控。
这些方法包括放射性同位素标记、荧光标记、质谱分析和基因敲除等技术。
这些技术可以用来研究蛋白质的合成速率、稳定性和功能。
二、翻译调控的分子生物学研究方法1. 转录后修饰转录后修饰是指在RNA转录后对RNA分子进行修饰的过程。
这些修饰可以影响RNA的稳定性、转运和翻译。
转录后修饰包括剪接、RNA编辑、RNA甲基化和RNA降解等。
2. 转录后调控转录后调控是指在RNA转录后对RNA分子进行调控的过程。
这些调控可以影响RNA的翻译速率和效率。
转录后调控包括RNA结构、RNA结合蛋白和RNA干扰等。
3. 翻译后修饰翻译后修饰是指在蛋白质合成后对蛋白质分子进行修饰的过程。
这些修饰可以影响蛋白质的稳定性、功能和互作。
翻译后修饰包括磷酸化、甲基化、乙酰化和泛素化等。
4. 翻译后调控翻译后调控是指在蛋白质合成后对蛋白质分子进行调控的过程。
这些调控可以影响蛋白质的稳定性、功能和互作。
翻译后调控包括蛋白质结构、蛋白质结合蛋白和蛋白质降解等。
三、总结蛋白质合成和翻译调控是分子生物学研究的重要方向之一。
体外翻译系统和体内研究方法可以用来研究蛋白质合成的机制、调控和功能。
转录后修饰、转录后调控、翻译后修饰和翻译后调控是研究翻译调控的重要方法。
【初中生物】中科院:预处理显著提高蛋白质鉴定率2021年11月30日,国际学术期刊《分子与细胞蛋白质组学》molecular&cellularproteomics在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所系统生物学重点实验室曾嵘研究组与美国范德堡大学定量科学中心石瑜研究组的最新合作研究成果,揭示了稳定同位素化学标记高精度质谱数据中高丰度、高频率噪音离子的去除可以显著提高蛋白质鉴定率。
在定量蛋白质组学研究中,稳定同位素标记结合高精度质谱仪可以在一次实验中对多个样品进行相对定量比较。
该策略比未标记量化具有更高的准确性。
另一方面,与SILAC等体内标记方法相比,体外化学标记具有更高的样本通量和通用性,这使得体外化学标记在定量蛋白质组学中得到广泛应用。
对于通过该策略获得的肽二级质谱,报告离子用于定量,而其他离子用于识别肽。
然而,报告的离子及其相关离子不包含肽序列信息,这将降低数据库搜索和识别的灵敏度和准确性。
由于定量是基于数据库识别的,因此在数据库搜索之前对质谱数据进行预处理尤为重要。
在曾嵘研究员和石瑜教授的共同指导下,盛泉虎,李荣霞和戴捷等人对稳定同位素化学标记数据首先进行了高丰度、高频率离子的分析,然后进行了16种不同组合的数据预处理,最后用5种不同搜索引擎进行了数据库搜索分析。
研究表明,在高精度质谱数据中,存在大量稳定同位素标签相关的高丰度、高精度离子。
结合各种预处理方法,判别和去除这些离子可以提高四标数据16.3%的鉴定谱图,13.9%的鉴定肽段以及6.6%的双肽段鉴定蛋白质。
对于八标复杂数据,预处理方法则可提高50.2%的鉴定谱图,39.5%的鉴定肽段以及25.2%的双肽段鉴定蛋白质。
这表明,标记通道的增加,在提高样品通量的同时,也引入了更多的伴生离子,判别和去除这些离子可以更显著提高鉴定的敏感性。
曾荣研究集团以组学大数据和系统生物学平台为基础,经过多年的努力,自主开发了一系列蛋白质组学数据分析技术。