三角形相似的条件
- 格式:doc
- 大小:24.50 KB
- 文档页数:1
判定直角三角形相似的方法
1、两角分别对应相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相近。
4、一条直角边与斜边成比例的两个直角三角形相似。
5、用一个三角形的两边回去比另一个三角形与之相对应当的两边,分别对应成比例,如果三组对应边较之都相同,则三角形相近。
相似三角形介绍:
三角分别成正比,三边成比例的两个三角形叫作相近三角形。
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被
理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了在相
似三角形是几何中两个三角形中,边、角的关系。
相近三角形的性质
1、相似三角形的对应角相等,对应边成比例。
2、相近三角形任一对应线段的比等同于相近比。
3、相似三角形的面积比等于相似比的平方。
投影全系列等三角形的认定定理,可以得出结论以下结论:
1、两角分别对应相等的两个三角形相似。
2、两边成比例且夹角成正比的两个三角形相近。
3、三边成比例的两个三角形相似。
4、一条直角边与斜边成比例的两个直角三角形相近。
根据以上判定定理,可以推出下列结论:
1、三边对应平行的两个三角形相近。
2、一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
直角三角形相似判定定理
一、定义法
如果两个直角三角形的三条边对应成比例,那么这两个直角三角形相似。
二、定理法
1.勾股定理:在直角三角形中,勾股定理表述了直角三角形的两条直角边的
平方和等于斜边的平方。
如果两个直角三角形的斜边相等,那么这两个直角三角形相似。
2.毕达哥拉斯定理:在直角三角形中,毕达哥拉斯定理表述了直角三角形的
两条直角边的平方和等于斜边的平方。
如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形相似。
三、斜边中线法
在直角三角形中,斜边上的中线等于斜边的一半。
如果两个直角三角形的斜边中线对应相等,那么这两个直角三角形相似。
四、两锐角对应相等
如果两个直角三角形的两个锐角对应相等,那么这两个直角三角形相似。
五、夹边中线法
在直角三角形中,夹边上的中线等于夹边的一半。
如果两个直角三角形的夹边中线对应相等,那么这两个直角三角形相似。
六、两边对应成比例且夹角相等
如果两个直角三角形的两边对应成比例且夹角相等,那么这两个直角三角形相似。
七、两边对应成比例且夹边平行
如果两个直角三角形的两边对应成比例且夹边平行,那么这两个直角三角形相似。
八、两锐角对应相等且夹边平行
如果两个直角三角形的两锐角对应相等且夹边平行,那么这两个直角三角形相似。
九、两角对应相等且夹边平行
如果两个直角三角形的两角对应相等且夹边平行,那么这两个直角三角形相似。
相似三角形的判定口诀
两角对应相等,两个三角形相似。
两边对应成比例且夹角相等,两个三角形相似。
三边对应成比例,两个三角形相似。
三边对应平行,两个三角形相似。
斜边与直角边对应成比例,两个直角三角形相似。
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)
4.两三角形三边对应平行,则两三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)。
(简叙为:全等三角形相似)。
相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。
三角形相似的判定方法在几何学中,三角形的相似性是一个非常重要的概念。
相似三角形具有相似的形状,但可能具有不同的大小。
在实际问题中,我们常常需要判定两个三角形是否相似,因此掌握三角形相似的判定方法是非常重要的。
下面我们将介绍几种常用的三角形相似的判定方法。
首先,我们来看一下两个三角形相似的定义。
如果两个三角形的对应角相等,并且对应边的比值相等,那么这两个三角形就是相似的。
根据这个定义,我们可以得出以下几种判定方法。
第一种判定方法是AAA相似判定法。
AAA相似判定法是指如果两个三角形的对应角分别相等,那么这两个三角形就是相似的。
这是最为简单的相似判定方法,但需要注意的是,对应角相等只是两个三角形相似的充分条件,而不是必要条件。
也就是说,如果两个三角形的对应角相等,它们不一定相似。
因此,在使用AAA 相似判定法时,需要慎重考虑其他条件。
第二种判定方法是AA相似判定法。
AA相似判定法是指如果两个三角形的一个角相等,并且这个角的对边与对边的比值相等,那么这两个三角形就是相似的。
与AAA相似判定法相比,AA相似判定法的条件更为严格,但也更为准确。
在实际问题中,我们常常会利用AA相似判定法来判定三角形的相似性。
第三种判定方法是SAS相似判定法。
SAS相似判定法是指如果两个三角形的一个角相等,并且这个角的两边分别与另一个角的两边成比例,那么这两个三角形就是相似的。
SAS相似判定法是相似判定法中最为常用的一种,也是最为实用的一种。
在实际问题中,我们常常会利用SAS相似判定法来判定三角形的相似性。
除了上述三种相似判定法外,还有一些其他的判定方法,如SSS相似判定法、底角相等定理等。
在实际问题中,我们可以根据具体情况选择合适的相似判定方法来判定三角形的相似性。
总的来说,三角形相似的判定方法是一个非常重要且实用的几何学知识。
通过掌握相似判定方法,我们可以更好地理解和解决实际问题,提高数学应用能力。
希望通过本文的介绍,读者能够对三角形相似的判定方法有一个更加清晰和深入的认识。
相似三角形的性质相似三角形是初中数学重要的概念之一,它们有着特定的性质和应用。
在本文中,我们将探讨相似三角形的定义、性质以及应用。
一、相似三角形的定义相似三角形指的是具有相同形状但大小不同的三角形。
两个三角形相似的条件是:它们对应角度相等,或者它们的对应边比例相等。
基于这个定义,我们可以得出以下相似三角形的性质和定理。
二、相似三角形的性质1. AA相似定理:如果两个三角形的对应角度相等,那么它们是相似的。
2. SSS相似定理:如果两个三角形的对应边比例相等,那么它们是相似的。
3. SAS相似定理:如果两个三角形的一个内角相等,且对应边比例相等,那么它们是相似的。
4. 相似三角形中,对应边的比例关系是恒定的,我们可以表示为a/b = c/d = e/f。
其中,a、b、c、d、e、f分别表示两个相似三角形的对应边。
5. 相似三角形的高、中线和角平分线也成比例。
三、相似三角形的应用1. 测量无法直接获得的长度:我们可以利用相似三角形的性质,通过已知长度和已知角度的三角形推导出其他长度的值。
例如,可以利用相似三角形的边比例关系来测量高楼的高度。
2. 解决间接测量问题:相似三角形的性质也可以应用于间接测量问题。
例如,当我们无法直接测量河流宽度时,可以通过测量自己位置与河对岸某一点之间的距离及角度,运用相似三角形的理论来计算出河流的宽度。
3. 几何证明:相似三角形的性质在几何证明中也起到重要的作用。
通过利用相似三角形的角等性质和边比例关系,可以简化、解决一些几何问题。
4. 模型建立:相似三角形的性质也可以应用于模型建立。
例如,制作比例模型时,可以根据相似三角形的比例关系来设计模型的尺寸。
四、相似三角形的推论基于相似三角形的性质和定理,我们还可以得出一些推论。
1. 正弦定理的推论:当两个角相等时,一般使用正弦定理来求解三角形的边长。
但是,当角等于30°、60°或90°时,我们可以运用相似三角形的性质,通过已知边长求解其他边长。
相似三角形的定义及判定方法相似三角形是初中数学中的一个重要概念,在几何学中有着广泛的应用。
了解相似三角形的定义及判定方法对于解决相关问题非常有帮助。
本文将介绍相似三角形的定义,以及根据三个条件来判定两个三角形是否相似。
首先,让我们来了解相似三角形的定义。
相似三角形是指具有相同形状但可能不相等的三角形。
两个三角形相似的条件是:对应角相等且对应边成比例。
换句话说,如果两个三角形的对应角相等,并且对应边之间的比例相等,那么这两个三角形就是相似的。
接下来,我们来讨论判定两个三角形相似的方法。
根据相似三角形的定义,我们可以得出以下三种判定方法。
方法一:AAA相似判定法如果两个三角形的三个对应角分别相等,那么它们就是相似的。
例如,如果两个三角形的三个角分别为∠A、∠B、∠C和∠A'、∠B'、∠C',如果有∠A=∠A'、∠B=∠B'、∠C=∠C',那么这两个三角形就是相似的。
方法二:AA相似判定法如果两个三角形的两个对应角相等,那么它们就是相似的。
例如,如果两个三角形的两个角分别为∠A、∠B和∠A'、∠B',如果有∠A=∠A'、∠B=∠B',那么这两个三角形就是相似的。
方法三:边比例相等判定法如果两个三角形的对应边的比例相等,那么它们就是相似的。
例如,如果两个三角形的三条边分别为AB、BC、CA和A'B'、B'C'、C'A',如果有AB/A'B' = BC/B'C' = CA/C'A',那么这两个三角形就是相似的。
需要注意的是,上述的方法一般只适用于已知两个三角形相似的情况。
在实际问题中,我们往往需要根据已知条件来判定两个三角形是否相似。
综上所述,了解相似三角形的定义及判定方法对于解决相关问题非常重要。
相似三角形的定义是指具有相同形状但可能不相等的三角形,判定方法包括AAA相似判定法、AA相似判定法和边比例相等判定法。
三角形的相似性质及证明三角形是基础的几何图形之一,它具有多种性质和特点。
其中之一便是相似性质。
本文将会介绍三角形的相似性质,以及其证明过程。
一、相似性质的定义在几何学中,当两个三角形的对应角度相等,而对应边的比值相等时,我们称这两个三角形为相似三角形。
记作∆ABC∼∆DEF。
二、相似性质的判定1. AAA判定法:如果两个三角形的三个内角相等,则这两个三角形是相似的。
例如,已知∠A=∠D,∠B=∠E,∠C=∠F,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,∠B=∠E,∠C=∠F,可以得到三角形ABC与DEF中的角度对应关系相等。
因此,根据AAA判定法,可以判定∆ABC∼∆DEF。
2. AA判定法:若两个三角形的两个角度对应相等,则这两个三角形是相似的。
例如,已知∠A=∠D,∠B=∠E,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,∠B=∠E,可以得到三角形ABC与DEF中的角度对应关系相等。
因此,根据AA判定法,可以判定∆ABC∼∆DEF。
3. SAS判定法:如果两个三角形的一个角和两边分别相等,则这两个三角形是相似的。
例如,已知∠A=∠D,AB/DE=BC/EF,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,AB/DE=BC/EF,可以得到三角形ABC与DEF中的角度和边长对应关系相等。
因此,根据SAS判定法,可以判定∆ABC∼∆DEF。
4. SSS判定法:若两个三角形的三边对应相等,则这两个三角形是相似的。
例如,已知AB/DE=BC/EF=AC/DF,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知AB/DE=BC/EF=AC/DF,可以得到三角形ABC与DEF中的边长对应关系相等。
因此,根据SSS判定法,可以判定∆ABC∼∆DEF。
三、相似性质的应用相似性质在几何学中有广泛的应用,以下列举几个例子。
1. 相似三角形的比例关系:根据相似三角形的定义,可以得到相似三角形的对应边长之间的比例关系。
三角形的相似判定相似三角形是高中数学中非常重要的概念之一。
在几何图形中,如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就是相似三角形。
本文将从相似三角形的定义、判定方法和一些相关性质进行探讨。
1. 相似三角形的定义相似三角形是指两个三角形的对应角相等,对应边成比例。
具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=AC/DF=BC/EF,那么三角形ABC和三角形DEF就是相似三角形。
2. 判定相似三角形的方法(1)AA判定法当两个三角形的两个对应角相等时,如果它们的第三个对应角也相等,那么这两个三角形是相似的。
具体而言,若∠A=∠D,∠B=∠E,则可推出∠C=∠F,从而得出两个三角形相似。
(2)SAS判定法当两个三角形的一个对应边成比例,两个对应角相等时,这两个三角形是相似的。
具体而言,若AB/DE=AC/DF,且∠A=∠D,则可推出∠B=∠E,从而得出两个三角形相似。
(3)SSS判定法当两个三角形的对应边成比例时,这两个三角形是相似的。
具体而言,若AB/DE=AC/DF=BC/EF,则得出两个三角形相似。
3. 相似三角形的性质(1)相似三角形内角相等如果两个三角形相似,那么它们的对应角都相等。
这一性质可以通过AA判定法和SAS判定法得到证明。
(2)相似三角形边长比例如果两个三角形相似,那么它们的对应边之比相等。
这一性质可以通过SAS判定法和SSS判定法得到证明。
(3)相似三角形面积比如果两个相似三角形的边长比为k,则它们的面积之比为k²。
也就是说,如果三角形ABC和三角形DEF相似且AB/DE=AC/DF=BC/EF=k,那么三角形ABC的面积与三角形DEF的面积之比为k²。
4. 常见应用相似三角形的概念在几何问题中有广泛的应用。
例如,可以利用相似三角形的性质解决高塔定影问题、测量无法直接获得的长度等。
5. 实例分析现举一个例子来说明相似三角形的判定及应用。
三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。
22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。
27.2.1相似三角形的判定(第一课时)
原教学目标:
知识与技能:
1、了解相似三角形及相似比的概念;
2、掌握平行线分线段成比例定理和推论;
3、掌握相似三角形两种判定方法:平行线法,三边法.
过程与方法:
类比全等三角形的判定方法探究相似三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法.
情感态度价值观:
发展学生的探究水平,渗透类比思想,体会特殊与一般的关系.
学习后教学目标:
知识与技能:
思考和理解三角形相似的条件。
针对学生容易出现的一些错误,在课堂上加以说明和指正。
过程与方法:
1、初步掌握两个三角形相似的判定条件,能够使用三角形相似的条件解决简单问题。
2、经历两个三角形相似条件的探索过程,进一步发展学生的探究、交流水平,以及动手、动脑、手脑和谐一致的习惯。
情感与价值观:
在实行探索的活动过程中发展学生的探索发现归纳意识和合作交流的习惯,发展学生的合情推理的水平和初步的逻辑推理意识,体会数学思维的价值。