博弈论与信息经济学 第二章 完全信息动态博弈
- 格式:ppt
- 大小:1.90 MB
- 文档页数:49
完全信息动态博弈和演化博弈的关系在博弈论的研究领域中,完全信息动态博弈和演化博弈是两个重要的分支。
它们分别从不同的角度研究博弈现象,但二者之间也存在一定的联系和关系。
本文将探讨完全信息动态博弈和演化博弈的关系,并对它们的特点和应用进行分析。
1. 完全信息动态博弈的定义和特点完全信息动态博弈是指博弈参与者在博弈过程中具备完全信息的情况下,根据先后顺序依次做出决策,随着时间的推移,博弈过程也在不断变化。
在完全信息动态博弈中,博弈参与者对于其他参与者的行动和策略都有准确的了解,能够全面考虑对手的决策,以此来优化自己的策略选择。
完全信息动态博弈的特点包括:首先,信息对称,每个博弈者都能了解其他博弈者的策略和收益函数;其次,决策按照时间顺序依次进行,每个博弈者的行动会对其他人的决策产生影响;最后,完全信息动态博弈具有策略的时序性,参与者需要根据他们观察到的其他人的决策来选择自己的策略。
2. 演化博弈的定义和特点演化博弈是指博弈参与者根据其在群体中的优势来选择策略,并通过遗传和选择机制在演化过程中逐步改变策略的过程。
演化博弈考虑的不是个体之间的完全信息,而是从整体出发,通过个体之间的相互作用和进化选择来探讨不同策略之间的稳定性和最终结果。
演化博弈的特点包括:首先,演化博弈关注的是群体中不同策略的相对频率和进化趋势,而不是个体行动的绝对收益;其次,演化博弈中存在着演化稳定策略,即一旦某种策略在群体中形成,就会对其他策略形成一种稳定的威胁;最后,演化博弈的结果依赖于演化的时间尺度和环境的改变。
3. 完全信息动态博弈与演化博弈的关系完全信息动态博弈和演化博弈虽然从不同的角度出发,但也存在一定的联系和关系。
首先,完全信息动态博弈可以看作演化博弈的一种特殊情况,即当演化博弈的时间尺度趋于无穷时,完全信息动态博弈的结果可以看作是演化博弈的极限情况。
因此,完全信息动态博弈可以为演化博弈提供一种基础理论框架。
其次,演化博弈可以用来解释完全信息动态博弈中出现的某些稳定策略。
博弈论基础读书笔记三完全信息动态博弈和逆向归纳法第⼆章完全信息动态博弈先来说明两个概念:1、是指在博弈中,参与⼈同时选择或虽⾮同时选择但后⾏动者并不知道先⾏动者采取了什么具体⾏动。
2、是指在博弈中,参与⼈的⾏动有先后顺序,且后⾏动者能够观察到先⾏动者所选择的⾏动。
这⼀章,我们来讨论关于完全信息(即参与者的收益函数是共同知识的博弈)动态博弈的问题。
在这⾥我们还将博弈分为两种:完美信息博弈:即要选择⾏动的参与者完全知道这⼀步之前所有的博弈过程。
完全但不完美信息博弈:即要选择⾏动的参与者不知道这⼀步之前的博弈过程。
进⾏这章之前先简要的解释⼀些东西:所有的动态博弈的中⼼问题都是可信任性。
下⾯给⼀个经典的⼿雷博弈的例⼦:第⼀,参与者1可以选择⽀付1000美元给参与者2或者是⼀分不给。
第⼆,参与者2观察参与者1的选择,然后决定是否引爆⼀颗⼿雷将两个⼈同炸死。
如果参与者2威胁参与者1如果他不付1000美元就引爆⼿雷,如果参与者1相信这个威胁,则最优选择是⽀付1000美元。
但参与者1却不会对这⼀威胁信以为真,因为它不可置信(参与者2不会蠢到因为1000美元⽽同归于尽,⾄于参与者1考虑参与者2是不是疯⼦的情况在第三章讨论)。
这个例⼦就是典型的完全且完美信息博弈。
在2.1节我们将在后⾯使⽤逆向归纳解,来求解这个问题。
在2.2节我们会丰富前⼀节的博弈模型使之成为完全但不完美博弈,我们会定义这种博弈的⼦博弈精炼解,它是逆向归纳法的延申。
在2.3节研究重复博弈,即多次重复⼀个给定博弈。
这⾥分析问题的中⼼使(可信的)威胁和对以后做出的承诺对当前⾏为的影响。
在2.4节中我们介绍分析⼀般的完全信息动态博弈所需要的⼯具。
不再区别信息是否是完美的。
本节和本章的重点都在语⾔,⼀个完全信息动态博弈可能会有多个纳什均衡,但其中⼀些均衡或许包含了不可置信的威胁和承诺,⼦博弈精炼纳什均衡则是通过了可信检验的均衡。
看到这⾥你可能还是⼀头雾⽔,但是⽆所谓,让我们⼀节⼀节的来讲,看到最后你在回头看前⾯的总结可能会更有利于你对本章的理解。
完全信息动态博弈模型完全信息动态博弈模型是博弈论中一种重要的博弈模型,它描述了一组参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。
下面将详细介绍完全信息动态博弈模型的相关内容。
一、博弈的参与者:完全信息动态博弈模型中,通常包括两个或多个参与者,每个参与者都可以做出自己的决策和行动。
参与者可以是个人、组织、公司等,他们之间存在着相互竞争和合作的关系。
二、博弈的信息:完全信息动态博弈模型中的参与者拥有完全信息,即每个参与者都能够获得关于其他参与者的决策和行动的完整信息。
通过完全信息,参与者能够准确地评估自己的决策和行动对其他参与者的影响,并作出最优化的决策。
三、博弈的行动和策略:在完全信息动态博弈中,参与者可以选择不同的行动和策略来达到自己的目标。
每个参与者根据自己对其他参与者行动和策略的评估,以及自己的目标和利益,选择最优化的行动和策略。
四、博弈的时间顺序:完全信息动态博弈是一个时间序列上的博弈模型,参与者的决策和行动是有序进行的。
参与者按照一定的时间顺序依次进行决策和行动,每个参与者都会考虑前面参与者的行动和决策对自己的影响,进而作出自己的决策。
五、博弈的结果和收益:完全信息动态博弈模型的结果是参与者的收益和利益。
通过多轮反复的博弈过程,参与者根据自己的决策和行动可以获得不同的结果和收益。
每个参与者的最终目标是通过优化自己的决策和行动,获得最大的收益和利益。
完全信息动态博弈模型是博弈论中一种重要的模型,它能够帮助我们分析和理解多方参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。
通过对博弈的参与者、信息、行动和策略、时间顺序以及结果和收益的分析,可以更好地理解和应用完全信息动态博弈模型。
2 完全信息的动态博弈2.1完全和完美信息的动态博弈动态博弈(dynamic game):参与人在不同的时间选择行动。
完全信息动态博弈指的是各博弈方先后行动,后行动者知道先行动者的具体行动是什么且各博弈方对博弈中各种策略组合下所有参与人相应的得益都完全了解的博弈静态博弈习惯用战略式(Strategic form representation)表述,动态博弈习惯用扩展式(Extensive form representation)表述。
战略式表述的三要素:参与人集合、每个参与人的战略集合、由战略组合决定的每个参与人的支付。
扩展式表述的要素包括:参与人集合、参与人的行动顺序、参与人的行动空间、参与人的信息集、参与人的支付函数、外生事件(自然的选择)的概率分布。
n人有限战略博弈的扩展式表述用博弈树来表示1(1,2) (0,3)①结:包括决策结和终点结。
决策结是参与人采取行动的时点,终点结是博弈行动路径的终点。
第一个行动选择对应的决策结为“初始结”,用空心圆表示,其它决策结用实心圆表示。
X表示结的集合,x X表示某个特定的结。
z表示终点结,Z表示终点结集合。
表示结之间的顺序关系,x x´表示x在x´之前。
x之前所有结的集合称为x的前列集,x之后所有结的集合称为x的后续集。
以下两种情况不允许:前者违背了传递性和反对称性;后者违背了前列节必须是全排序的。
在以上两个假设之下,每个终点结都完全决定了博弈树的某个路径。
②枝:博弈树上,枝是从一个决策结到其直接后续结的连线,每一个枝代表参与人的一个行动选择。
在每一个枝旁标注该具体行动的代号。
一般地,每个决策结下有多个枝,给出每次行动时参与人的行动空间,即此时有哪些行动可供选择。
③信息集(information sets):博弈树中某一决策者在某一行动阶段具有相同信息的所有决策结集合称为一个信息集。
博弈树上的所有决策结分割成不同的信息集。
每一个信息集是决策结集合的一个子集(信息集是由决策结构成的集合),该子集包括所有满足下列条件的决策结:(1)每一个决策结都是同一个参与人的决策结。