博弈论 第 三 章 完全信息动态博弈讲解
- 格式:ppt
- 大小:248.00 KB
- 文档页数:61
完全信息动态博弈模型完全信息动态博弈模型是博弈论中一种重要的博弈模型,它描述了一组参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。
下面将详细介绍完全信息动态博弈模型的相关内容。
一、博弈的参与者:完全信息动态博弈模型中,通常包括两个或多个参与者,每个参与者都可以做出自己的决策和行动。
参与者可以是个人、组织、公司等,他们之间存在着相互竞争和合作的关系。
二、博弈的信息:完全信息动态博弈模型中的参与者拥有完全信息,即每个参与者都能够获得关于其他参与者的决策和行动的完整信息。
通过完全信息,参与者能够准确地评估自己的决策和行动对其他参与者的影响,并作出最优化的决策。
三、博弈的行动和策略:在完全信息动态博弈中,参与者可以选择不同的行动和策略来达到自己的目标。
每个参与者根据自己对其他参与者行动和策略的评估,以及自己的目标和利益,选择最优化的行动和策略。
四、博弈的时间顺序:完全信息动态博弈是一个时间序列上的博弈模型,参与者的决策和行动是有序进行的。
参与者按照一定的时间顺序依次进行决策和行动,每个参与者都会考虑前面参与者的行动和决策对自己的影响,进而作出自己的决策。
五、博弈的结果和收益:完全信息动态博弈模型的结果是参与者的收益和利益。
通过多轮反复的博弈过程,参与者根据自己的决策和行动可以获得不同的结果和收益。
每个参与者的最终目标是通过优化自己的决策和行动,获得最大的收益和利益。
完全信息动态博弈模型是博弈论中一种重要的模型,它能够帮助我们分析和理解多方参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。
通过对博弈的参与者、信息、行动和策略、时间顺序以及结果和收益的分析,可以更好地理解和应用完全信息动态博弈模型。
2 完全信息的动态博弈2.1完全和完美信息的动态博弈动态博弈(dynamic game):参与人在不同的时间选择行动。
完全信息动态博弈指的是各博弈方先后行动,后行动者知道先行动者的具体行动是什么且各博弈方对博弈中各种策略组合下所有参与人相应的得益都完全了解的博弈静态博弈习惯用战略式(Strategic form representation)表述,动态博弈习惯用扩展式(Extensive form representation)表述。
战略式表述的三要素:参与人集合、每个参与人的战略集合、由战略组合决定的每个参与人的支付。
扩展式表述的要素包括:参与人集合、参与人的行动顺序、参与人的行动空间、参与人的信息集、参与人的支付函数、外生事件(自然的选择)的概率分布。
n人有限战略博弈的扩展式表述用博弈树来表示1(1,2) (0,3)①结:包括决策结和终点结。
决策结是参与人采取行动的时点,终点结是博弈行动路径的终点。
第一个行动选择对应的决策结为“初始结”,用空心圆表示,其它决策结用实心圆表示。
X表示结的集合,x X表示某个特定的结。
z表示终点结,Z表示终点结集合。
表示结之间的顺序关系,x x´表示x在x´之前。
x之前所有结的集合称为x的前列集,x之后所有结的集合称为x的后续集。
以下两种情况不允许:前者违背了传递性和反对称性;后者违背了前列节必须是全排序的。
在以上两个假设之下,每个终点结都完全决定了博弈树的某个路径。
②枝:博弈树上,枝是从一个决策结到其直接后续结的连线,每一个枝代表参与人的一个行动选择。
在每一个枝旁标注该具体行动的代号。
一般地,每个决策结下有多个枝,给出每次行动时参与人的行动空间,即此时有哪些行动可供选择。
③信息集(information sets):博弈树中某一决策者在某一行动阶段具有相同信息的所有决策结集合称为一个信息集。
博弈树上的所有决策结分割成不同的信息集。
每一个信息集是决策结集合的一个子集(信息集是由决策结构成的集合),该子集包括所有满足下列条件的决策结:(1)每一个决策结都是同一个参与人的决策结。
完全信息动态博弈名词解释完全信息动态博弈是经济学和博弈论的一个重要概念,它是一种自上而下的模型,用来描述多个经济参与者之间的博弈行为。
完全信息动态博弈模型可以用来分析不同参与者之间在时间和空间上进行博弈,以求取共同利益最大化。
它允许模型解决者预测策略,分析每个参与者在某个时间点采取的不同策略所带来的结果,以此来帮助其他参与者制定最佳战略。
完全信息动态博弈的核心概念是状态和行动,也就是描述参与者在每一轮有多少种可能的策略。
它在一定的时间框架内,由描述参与者现在的状态,观察他们如何根据当前状态下每个参与者的行动,以及每个行动产生的结果,来描述某一具体策略下的最终结果。
参与者首先通过观察彼此之间的博弈行为,体会状态和行动,从而确定自己的策略,并计划未来可能出现的状态和行动,从而获得最大的利益。
例如,在一款棋类游戏中,两个对手可以通过对对方进行攻击,或者保护自己的棋子,以及改变棋局,来表明他们的能力。
在这种情况下,两个玩家拥有相同的完全信息,他们可以根据当前的棋局和自己可能采取的每一步棋,确定最优的策略,从而提高自己赢得游戏的几率。
许多实际问题也是基于完全信息动态博弈模型构建的,如政府向公司提出经济问题的解决案,或是在双方同意的情况下进行谈判等。
在这些情况下,参与者不仅需要观察当前的状态和行动,还要考虑未来的可能性,用完全信息动态博弈模型来解决问题,才能更有效地取得共同利益最大化。
完全信息动态博弈是经济学和博弈论研究中一个基本模型,它可以有效的模拟由多个经济参与者之间进行的博弈,利用状态和行动的概念,可以很好的帮助参与者制定最优策略,以达到共同利益最大化的目的。
另外,它也可以用来解决政府和公司之间的实际问题。
完全信息动态博弈是一个对经济学和博弈论有着深远作用的概念,它也被广泛应用于实践。
第三章完全信息动态博弈上一章介绍了完全信息静态博弈,本章在前面的基础上探讨完全信息动态博弈。
现实社会经济活动的决策大多数是有先后顺序的行为而不是同时选择的行为,而且后行者能够看到先行者的决策内容,在先行者的决策结果之后再定夺自己的策略。
这样的经济行为比比皆是,如商业活动中的讨价还价,拍卖活动中的轮流竞价,资本市场上的收购兼并和反收购兼并都是如此。
依次选择与一次性同时选择有很大的差异,因此这种决策问题构成的博弈也是从时间序列上有别于静态博弈的,我们称之为“动态博弈”(Dynamic Games)。
例如下象棋通常需要两个参与人,我们定义为红方和黑方,红方先走,黑方后走,这是一个典型的完全信息动态博弈。
动态博弈由于添加了时间因素,因而更加贴近现实。
根据博弈方是否相互了解得益情况,可分为“完全信息动态博弈”和“不完全信息动态博弈”,根据是否所有博弈方都对自己选择前的博弈过程完全了解,可分为“完美信息动态博弈”和“不完美信息动态博弈”。
在本章中,我们首先对博弈的扩展式表达给出完整的定义,为动态博弈的分析奠定基础;其次,我们从扩展式表述博弈的纳什均衡分析逐步深入到子博弈精炼纳什均衡,为动态博弈的分析提供可行的方法,接下来介绍两种完全信息动态博弈经典模型;最后,分析具有无穷次的重复博弈,推导出无名氏定理。
3.1 博弈的扩展式表述在动态博弈中,博弈方的行动是有先后次序的,且后行动者在自己行动之前能够观测到先行动者的行动,每个博弈方的一次选择行为常称为一个“阶段”(Stage )。
动态博弈中也可能存在几个博弈方同时选择的情况,这时博弈方的同时选择构成一个阶段。
一个动态博弈至少有两个阶段,因此动态博弈有时也称为“多阶段博弈”(Multistage Games )。
此外,也有把动态博弈称为“序列博弈”(Sequential Games )的,这也是由动态博弈中的次序特征引出来的。
设有一个商人要从A 地向B 地运输一批货物。