三相异步电动机制动控制电路
- 格式:ppt
- 大小:1.09 MB
- 文档页数:18
三相异步电动机反接制动控制电路原理示例文章篇一:哇塞!同学们,你们知道三相异步电动机反接制动控制电路原理吗?这可太神奇啦!先来说说啥是三相异步电动机吧。
它就像一个超级大力士,能给好多机器提供强大的动力。
可有时候这个大力士也得乖乖听话,该停就得停。
这时候反接制动控制电路就派上用场啦!想象一下,电动机正欢快地转着,突然我们要让它快速停下来。
这就好比你正在飞快地骑自行车,突然要急刹车!那怎么才能让电动机快速停下来呢?这就要靠反接制动控制电路啦!在这个电路里,有好多神奇的小零件在工作呢!比如说接触器,它就像一个聪明的小开关,知道什么时候该打开,什么时候该关闭。
还有继电器,就像一个忠诚的小卫士,时刻守护着电路的安全。
老师给我们讲的时候,我一开始真是一头雾水。
我就问老师:“老师,这咋这么难理解呀?”老师笑着说:“别着急,慢慢琢磨。
”然后他就给我们一步一步地解释。
他说:“当我们要让电动机反接制动时,电路会瞬间改变电流的方向。
”这就好比你跑步的时候,本来是向前跑,突然有人从后面用力拉你,让你不得不快速停下来。
同学们也都听得特别认真,有的皱着眉头思考,有的眼睛瞪得大大的,充满了好奇。
同桌还小声跟我说:“这也太有意思了!”经过老师的耐心讲解,我好像有点明白了。
原来这个反接制动控制电路就是通过巧妙地控制电流的方向和大小,来实现让电动机快速停止的目的。
我觉得这个原理就像一场精彩的魔术表演,看似复杂,其实充满了奇妙和惊喜。
只要我们认真去学,就能揭开它神秘的面纱。
所以呀,我觉得三相异步电动机反接制动控制电路原理虽然有点难,但是只要我们用心去探索,就一定能搞明白!示例文章篇二:哎呀呀,亲爱的小伙伴们,你们知道三相异步电动机反接制动控制电路原理是啥不?先让我跟你们讲讲三相异步电动机吧。
这玩意儿就像一个大力士,能帮我们干好多好多的力气活呢!那啥是反接制动呢?这就好比一辆飞速奔跑的小汽车,突然来个急刹车,而且是反向的刹车,是不是很神奇?想象一下,电动机正转得欢呢,突然给它来个大反转,是不是会产生一股很大的力量来让它快速停下来?这就是反接制动的基本思路啦!我们来说说这个控制电路是咋工作的。
三相异步电动机的制动控制电路沟通异步电动机定子绕组脱离电源后,由于系统惯性作用,转子需经一段时间才能停止转动,这往往不满意某些机械的工艺要求,也影响生产效率的提高,并造成运动部件停位不准,工作担心全,因此应对拖动电动机实行有效的制动措施。
三相异步电动机的制动方法:机械制动和电气制动。
其中电气制动方法又包括反接制动、能耗制动、发电制动等。
1、反接制动掌握电路:反接制动是利用转变电动机电源相序,使定子绕组产生的旋转磁场与转子旋转方向相反,因而产生制动力矩的一种制动方法。
应留意的是,当电动机转速接近零时,必需马上断开电源,否则电动机会反向旋转。
另外,由于反接制动电流较大,制动时需在定子回路中串入电阻以限制制动电流。
反接制动电阻的接法有两种:对称电阻接法和不对称电阻接法,如下图所示。
一般制动电阻采纳对称接法,即三相分别串接相同的制动电阻。
图1 三相异步电动机反接制动电阻接法图2 电动机单向反接制动掌握线路2、能耗制动掌握电路能耗制动掌握电路:三相异步电动机能耗制动时,切断定子绕组的沟通电源后,在定于绕组任意两相通入直流电流形成一固定磁场,与旋转着的转子中的感应电流相互作用产生制动力矩。
制动结束必需准时切除直流电源。
图3 能耗制动掌握电路掌握电路(a):手动掌握:停车时按下SB1按钮,制动结束时放开。
电路简洁,操作不便。
掌握电路(b):依据电动机带负载制动过程时间长短设定时间继电器KT的定时值,实现制动过程的自动掌握。
能耗制动掌握电路特点:制动作用强弱与通入直流电流的大小和电动机的转速有关,在同样的转速下电流越大制动作用越强,电流肯定时转速越高制动力矩越大。
一般取直流电流为电动机空载电流的3~4倍,过大会使定子过热。
可调整整流器输出端的可变电阻RP,得到合适的制动电流。
三相交流异步电动机正反转的制动控制电路在工业自动化中,控制电路的设计与应用至关重要。
其中,三相交流异步电动机正反转的制动控制电路是一种经典的电路设计。
本文将从步骤层面阐述这一电路设计的原理和应用。
第一步:电路原理三相交流异步电动机正反转的制动控制电路由瞬时继电器K1、制动继电器K2、正转继电器K3和反转继电器K4等部件组成。
瞬时继电器K1接通后,正、反转开关控制单元的控制信号便能够通过高低电平切换的方式,来实现电机正转和反转的切换。
K2则是一个制动继电器,在断电时能够将电动机的制动丝编制动器拉动,实现快速制动。
而K3和K4则分别为电动机正转和反转继电器,分别控制电动机正反转的状态。
第二步:电路设计在实际的电路设计中,根据不同的控制要求,可以通过不同的控制电路来实现电机正反转的切换功能。
一种常见的控制方法是利用接触器来控制电源的接通与断开,再通过切换接触器的开关状态来实现电机正反转的切换。
同时,为了实现电机的快速制动,还应该在电路中加入制动继电器,以达到更快的制动效果。
第三步:电路应用在电路设计完成后,我们可以将其应用于各种机械设备中,如钳工机床、铣床、组合机床等。
通过控制电路的开关状态,可以实现电动机的正反转和快速制动等功能。
同时,我们还可以根据实际需要,增加电路的其他控制功能,比如,加入过流保护、过载保护、过压保护等功能,提高设备的安全稳定性。
总之,三相交流异步电动机正反转的制动控制电路是工业自动化中一个较为基础的电路设计,掌握其原理和应用对于掌握电路设计和应用技术具有重要意义。
三相异步电动机的制动控制-反接制动反接制动是通过改变电动机定子绕组三相电源的相序,产生一个与转子惯性转动方向相反的旋转磁场,因而产生制动转矩。
反接制动时,转子与定子旋转磁场的相对转速接近电动机同步转速的两倍,所以定子绕组中流过的反接制动电流相当于全压直接启动时的两倍,因此反接制动转矩大,制动迅速。
为了减小冲击电流,通常在电动机定子绕组中串接制动电阻。
另外,当电动机转速接近零时,要及时切断反相序电源,以防电动机反方向启动,通常用速度继电器来检测电动机转速并控制电动机反相序电源的断开。
1.单向运行反接制动下图所示为单向运行反接制动控制线路,接触器 KM 控制接触器单向运行,接触器KM2为反接制动,KS为速度继电器,R为反接制动电阻。
工作过程:接通开关QS,按下启动按钮SB2,接触器KM1通电,电动机M启动运行,速度继电器KS常开触头闭合,为制动作准备。
制动时按下停止按钮SB1,KM1断电,KM2通电(KS常开触头未打开),KM2主触头闭合,定子绕组串入限流电阻R进行反接制动,当M的转速接近0时,KS常开触头断开,KM2断电,电动机制动结束。
2.可逆运行反接制动控制线路下图所示为可逆运行反接制动控制线路,KM1为正转接触器,KM2为反转接触器, KM3为短接电阻接触器,KA1、KA2、KA3为中间继电器,KS1为正转常开触头,KS2为反转常开触头,R为启动与制动电阻。
电动机正向启动和停车反接制动过程如下。
(1)正向启动时,接通开关QS,按下启动按钮SB2,KM1通电自锁,定子串入电阻R正向启动,当正向转速大于120r/min时,KS1闭合,因KM1的常开辅助触点已闭合,所以KM3通电将R短接,从而使电动机在全压下运转。
(2)停止运行时,按下停止按钮 SB1,接触器 KM1、KM3 相继失电,定子切断正序电源并串入电阻R,SB1的常开触头后闭合,KA3通电,常闭触点又再次切断KM3电路。
由于惯性,KS1仍闭合,且KA3(18-10)已闭合,使KA1通电,触点KA1(3-12)闭合,KM2通电,电动机定子串入R进行反接制动;KA1的另一触点(3-19)闭合,使KA3仍通电,确保KM3始终处于断电状态,R始终串入M的定子绕组。
实训十二三相异步电动机能耗制动控制线路实训十二三相异步电动机能耗制动控制线路培训十二台三相异步电动机能耗制动控制电路一、无变压器半波整流能耗制动线路1.实训元件代号qsfu1fu2km1km2sb1sb2ktrdfrm2.名称:低压断路器螺旋熔断器陶瓷插入式熔断器交流接触器实验按钮通电延时继电器电阻二极管热继电器三相鼠笼式异步电动机培训电路图型号dz47rl1-15rc1-5acjx2-9/380lay3-11js7-1a2czjr-36规格5a/3p配熔体3a2aac380v一常开一常闭自动复位ac380v90ω0.3a1000v5a整定电流0.63a380v0.45a120w数量1322211111备注sb1绿sb2红3.实训特点该控制电路适用于10kW以下的电机。
可采用半波整流能耗制动自动控制电路。
该电路结构简单,附加设备少,体积小。
直流电源采用二极管半波整流器。
4.检查和调试经检查安装牢固与接线无误后,操作者可接通交流电源自行操作,若出现不正常故障,则应分析原因并排除使之正常工作。
二、有变压器全波整流能耗制动控制线路1.实训元件代号qsfu1fu2km1km2sb1sb2kt通电延时时间继电器r可调电阻bx7d-1/3tcvcfr变压器桥堆热继电器b-300-8kbpc1510jr-36380v/110v15a整定电流0.63am三相鼠笼式异步电动机380v0。
53a160w1111工厂系列180Ω1.3a1js7-1a实验按钮lay3-11一个常开一个常闭自动复位ac380v12sb1绿色SB2红色名称低压断路器螺旋熔断器瓷塞熔断器交流接触器型号dz47rl1-15rc1-5acjx2-9/380规格5A\\3P熔体3A2AA380数量1322备注2。
训练电路图l1qsu11v11w11fu1fu223u12v12w12km11u13v13w13frrkm2km2tc13125km21sb2km2km1frl2l34sb16810km1km1km2kt79ktuvwkm2m3.电路特点图12-2控制电路适用于10kW以上大功率电机的能耗制动。
三相异步电动机电磁抱闸断电制动控制电路_New
三相异步电动机电磁抱闸断电制动控制电路(简写为ECBD),是一种新型的三相异步电动机运行控制电路,它把三相异步电动机的断电制动、电磁抱闸等进行全自动化控制,以增强其性能和提高安全性能。
ECBD具有运行可靠性高、安全性能好、节电性好、维护保养方便等特点,已成为控制三相异步电动机的首选控制电路。
ECBD的工作原理是,将三相异步电动机的中性线和D相接到电磁抱闸上,三相异步电动机的三根线分别接入ECBD的控制电路,当需要制动的输出时,ECBD的控制电路会将制动电路的输出转换成有效电压,使得电磁抱闸受力,从而产生断电制动作用。
ECBD电路控制三相异步电动机需要满足三个条件:第一,变频器输出的三相电压需要稳定,否则电压失衡可能会造成过载或过载,从而影响电动机的制动效果。
第二,周期性的检测电动机的中性点电压是否升高,从而预防抱闸故障;第三,定期检查元器件是否有老化现象,防止电路出现过载或短路现象。
ECBD控制三相异步电动机的优势在于可以有效提高电动机的运行可靠性、安全性能和节电性,从而更加符合安全要求。
ECBD控制电路设计容易,设备维护保养方便,维护保养费用低,对环境污染也极为有限,所以它的应用范围在不断的扩大,已被用于工厂的控制设备中,以及建筑物的安全控制和工业自动化技术中。
另外,ECBD的控制电路还可以和其它控制电源联合起来,如PLC、DCS等控制系统,进行复杂的工作控制,以完成各种复杂的操作计划,并对电动机及其他设备的操作进行有效的平衡控制,从而实现更高的精确度和可靠性。