6.1.2 三相异步电动机反接制动原理及控制电路的识读.
- 格式:ppt
- 大小:540.00 KB
- 文档页数:18
反接制动控制电路
1.反接制动的方法
异步电动机反接制动的方法有两种,一种是在负载转矩作用下使电动机反转的倒拉反转反接制动方法,这种方法不能准确停车,另一种是依靠改变三相异步电动机定子绕组中三相电源的相序产生制动力矩,迫使电动机迅速停转。
当改变电动机定子绕组中三相电源的相序时,就会使电动机产生一个与转子惯性转动方向相反的电磁转矩,使电动机转速迅速下降,电动机制动到接近零转速时,再将反接电源切除。
通常采用速度继电器检测速度的过零点,并及时切除反接电源,以免电动机反向运转。
2.反接制动控制电路分析
单向运行的反接制动控制电路。
在主电路中,接触器KM1用于接通电动机工作相序电源,KM2用于接通反接制动电源。
由于电动机的反接制动电流很大,因此通常在制动时串接电阻R,以限制反接制动电流。
按下启动按钮SB2,KM1线圈得电并自锁,电动机开始运行,当电动机的速度达到速度继电器的动作速度时,速度继电器KS的动合触点闭合,为电动机反接制动做准备。
制动时,按下停止按钮SB1,KM1线圈失电,由于速度继电器KS的动合触点在惯性转速作用下仍然闭合,使KM2线圈得电自锁,电动机实现反接制动。
当其转子的转速小于100r/min时,KS的动合触点复位断开,KM2线圈失电,制动过程结束。
三相异步电动机接连的反接制动操控电
路
接连的反接制动操控电路如下,其特征是:1.反接制动需求仰仗速度继电器SD来完毕。
速度继电器内有一个重物,与电机轴作机械联接。
2.当揿动SB1主张按钮,电机转起来抵达必定转速往后,便由于惯性的效果使重物将速度继电器的微形开关压合而宣告信号,SD触点接通;当揿动SB0接连按钮,KM1失电,电机脱离电源而霎时刻进入悠闲泊车状况;当KM1的常闭触点康复闭合,KM2得电,电机接通反向电源,电机进入制动状况;电机速度初步降低,直到低于那个将速度继电器触点压合的速度,该速度继电器的微形开关断开,电机再进入悠闲泊车状况一贯到彻底接连。
3.KM1与KM2挑选带机械联锁的沟通触摸器,并设置其常闭触点的电气联锁,以策安全。
4.电路用断路器QF1和QF2作电路的短路保护;用热继电器KH作电机的长时刻过载保护。
5.电阻R是为调度制动强度而设置。
1。
简述三相异步电机反接制动的工作原理
三相异步电机反接制动是一种常见的电机制动方式,它的工作原理是通过改变电机的电源接线方式,使电机的旋转方向与电源电压方向相反,从而实现制动的目的。
在正常运行时,三相异步电机的电源接线方式是将三相电源分别接到电机的三个绕组上,形成一个旋转磁场,从而驱动电机旋转。
而在反接制动时,需要将电源的两个相线交换接入电机的两个绕组中,使得电机的旋转方向与电源电压方向相反,从而产生一个反向的旋转磁场,使电机受到制动力矩,从而停止旋转。
具体来说,当电机接通电源后,电流会依次流过三个绕组,形成一个旋转磁场。
而在反接制动时,将电源的两个相线交换接入电机的两个绕组中,会使得电流的流向发生改变,从而产生一个反向的旋转磁场。
这个反向的旋转磁场会与电机原来的旋转磁场相互作用,产生一个制动力矩,使电机受到制动作用,从而停止旋转。
需要注意的是,反接制动只适用于三相异步电机,而对于其他类型的电机,如直流电机、同步电机等,需要采用不同的制动方式。
此外,在进行反接制动时,需要注意电源的相序,以免产生不必要的损坏。
三相异步电机反接制动是一种简单有效的电机制动方式,通过改变电源接线方式,实现电机的制动目的。
在实际应用中,需要根据具
体情况选择合适的制动方式,以确保电机的安全运行。
三相异步电动机正反转接线图_三相异步电动机正反转把握电路原理图解 - 电动机为了使电动机能够正转和反转,可接受两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,假犹如时吸合将造成电源的短路事故,为了防止这种事故,在电路中应实行牢靠的互锁,上图为接受按钮和接触器双重互锁的电动机正、反两方向运行的把握电路。
线路分析如下:一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。
二、反向启动:1、合上空气开关QF接通三相电源2、按下反向启动按钮SB2,KM2通电吸合并通过帮助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。
三、互锁环节:具有禁止功能在线路中起平安爱护作用1、接触器互锁:KM1线圈回路串入KM2的常闭帮助触点,KM2线圈回路串入KM1的常闭触点。
当正转接触器KM1线圈通电动作后,KM1的帮助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必需先使KM2断电释放,其帮助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。
2、按钮互锁:在电路中接受了把握按钮操作的正反传把握电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。
例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。
按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。
这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB3时只能有接触器KM1的线圈可以通电而KM2断电,假犹如时按下SB2和SB3则两只接触器线圈都不能通电。
这样就起到了互锁的作用。
四、电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。
简述三相异步电动机反接制动的工作原理
1. 反接制动是指三相异步电动机在工作中,反向加电后能够短暂产生制动力矩的现象。
它是一种常见的制动方式,可以有效地停止电动机的运转。
2. 反接制动的原理是通过改变电动机的电源相序,使得电动机在反向加电时,旋转方向与原方向相反。
在反向加电之后,电动机电流和电磁场方向均发生了改变,导致转子受到一个瞬时的制动力矩,从而停止转动。
3. 通过改变电源相序实现反接制动的方法有两种,一种是通过更换电源相序的接线方法,即交换电源三相之间的连线。
另一种是通过使用反向控制器,通过对电源相序进行控制,实现反接制动。
4. 反接制动具有一定的优点,例如制动力矩大,制动时间短等。
但也存在着一些缺点,例如反接制动时会产生较大的回电压,需要选择合适的电容来限制回电压;同时,反接制动不能频繁使用,否则易对电动机和电源造成损坏。
5. 在实际应用中,反接制动一般用于电动机的紧急制动、电源电压不足时的制动、以及要求制动力矩大、制动时间短的场合。
6. 反接制动在停止电动机转动的同时,也会产生一个较大的冲击力矩,容易对机械设备产生影响。
因此,在使用反接制动时,需要注意排除因制动力矩过大而产生的机械损坏隐患。
7. 除了反接制动外,还有其他的制动方式,例如机械制动、电磁制动、换向制动等。
各种制动方式在应用的场合和实现的方法上都有所不同,需要根据具体情况选择合适的制动方式。
三相异步电动机单向启动反接制动控制电路分析(图)原理:由于电源相序的改变,产生相反方向的旋转磁场,而转子由于惯性,仍按原来方向旋转,于是在转子绕组中产生了与原来方向相反的感应电流,此电流与磁场相互作用,产生一个阻碍转子旋转的制动力矩。
在此制动力矩作用下,电动机转速迅速下降,实现制动。
但当电动机转速接近于零时,必须立即切除定子电源,否则将引起电动机反向启动。
此时,利用速度继电器及时切断三相电源,防止奠定机反向启动。
另外,在刚反接制动瞬间,转子中感应电动势比启动时要大得多,,长生的制动电流、制动力矩是相当大的,为了限制制动电流和减小机械冲击,在反接制动过程中,在笼型感应电动机的定子电路中串入反接制动动电阻。
线路分析:电机启动时,按下启动按钮SB1,接触器KM1线圈得电,KM1吸合,KM1的常开接点闭合自保持,电机运转;KM1和KM2的常闭接点互锁,使KM1和KM2不能同时运行。
电机停止时,按下SB2停止按钮,KM1线圈失电,同时连锁接通KM2线圈,改变电机的相序,电机进入反接制动过程,当电机的转速接近于零时,速度继电器SR,接点打开,断开KM2线圈回路,使电机停止。
两个交流接触器实现Y—△降压启动控制线路分析(图)线路分析:电机启动时,按下启动按钮SB1,接触器KMY线圈得电,KMY吸合,KMY 的常开接点闭合自保持,常闭接点将KM△线圈断开,电机Y形启动;同时其另一对常开接点将时间继电器KT线圈接通,时间继电器经过延时,其延时接点闭合,将KM△线圈接通,同时KM△常闭接点将KMY线圈断开,KM△常开接点闭合自保持,电机在△形接线下运行。
按钮、接触器控制Y—△降压启动控制线路分析(图)线路分析:按下启动按钮SB1,接触器KM和KMY线圈同时得电,KM的常开接点闭合,自保持,启动过程结束,手动按下机械连锁停止按钮SB2,KMY线圈失电,KM△线圈得电,电机转入△形运行。
双速电机接线图一、双速电动机简介双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。
三相异步电动机的制动控制线路(三)三、反接制动控制线路1、线路设计思想反接制动是利用改变电动机电源电压相序,使电动机迅速停止转动的一种电气制动方法,由于电源相序改变,定子绕组产生的旋转磁场方向也发生改变,即与原方向相反。
而转子仍按原方向惯性旋转,于是在转子电路中产生与原方向相反的感应电流,根据载流导体在磁场中受力的原理可知,此时转子要受到一个与原转动方向相反的力矩的作用,从而使电动机转速迅速下降,实现制动。
反接制动的关键是,当电动机转速接近零时,能自动地立即将电源切断,以免电动机反向起动。
为此采用按转速原则进行制动控制,即借助速度继电器来检测电动机速度变化,当制动到接近零速时(100r/min),由速度继电器自动切断电源。
改变电动机电源相序的反接制动,其优点是制动效果好,其缺点是能量损耗大,由电网供给的电能和拖动系统的机械能全部都转化为电动机转子的热损耗。
在反接制动时,转子与定子旋转磁场的相对速度接近于2倍同步转速,所以定子绕组中的反接制动电流相当于全电压直接起动时电流的2倍。
为避免对电动机及机械传动系统的过大冲击,延长其使用寿命,一般在10kw以上电动机的定子电路中串接对称电阻或不对称电阻,以限制制动转矩和制动电流,这个电阻称为反接制动电阻。
2、典型线路介绍反接制动控制线路,分为单向反接制动控制线路和可逆反接制动控制线路。
(1)单向反接制动控制线路图1 为单向反接制动的控制线路。
图1 单向反接制动控制线路我们知道电动机正在正方向运行时,如果把电源反接,电动机转速将由正转急速下降到零。
如果反接电源不及时切除,则电动机又要从零速反向起动运行。
所以我们必须在电动机制动到零速时,将反接电源切断,电动机才能真正停下来。
控制线路是用速度继电器来“判断”电动机的停与转的。
电动机与速度继电器的转子是同轴连接在一起的,电动机转动时,速度继电器的动合触点闭合,电动机停止时动合触点打开。
工作过程如下:•按SB2→KM1通电(电动机正转运行) →KA的动合触点闭合→KM1断电•按SB1→KM2通电(开始制动)→n≈0,KA复位→KM2断电(制动结束)线路图1(A)有这样一个问题,在停车期间,如为调整工件,需要用手转动机床主轴时,速度继电器的转子也将随着转动,其动合触点闭合,接触器KM2得电动作,电动机接通电源发生制动作用,不利于调整工作。
三相异步电动机的制动控制-反接制动反接制动是通过改变电动机定子绕组三相电源的相序,产生一个与转子惯性转动方向相反的旋转磁场,因而产生制动转矩。
反接制动时,转子与定子旋转磁场的相对转速接近电动机同步转速的两倍,所以定子绕组中流过的反接制动电流相当于全压直接启动时的两倍,因此反接制动转矩大,制动迅速。
为了减小冲击电流,通常在电动机定子绕组中串接制动电阻。
另外,当电动机转速接近零时,要及时切断反相序电源,以防电动机反方向启动,通常用速度继电器来检测电动机转速并控制电动机反相序电源的断开。
1.单向运行反接制动下图所示为单向运行反接制动控制线路,接触器 KM 控制接触器单向运行,接触器KM2为反接制动,KS为速度继电器,R为反接制动电阻。
工作过程:接通开关QS,按下启动按钮SB2,接触器KM1通电,电动机M启动运行,速度继电器KS常开触头闭合,为制动作准备。
制动时按下停止按钮SB1,KM1断电,KM2通电(KS常开触头未打开),KM2主触头闭合,定子绕组串入限流电阻R进行反接制动,当M的转速接近0时,KS常开触头断开,KM2断电,电动机制动结束。
2.可逆运行反接制动控制线路下图所示为可逆运行反接制动控制线路,KM1为正转接触器,KM2为反转接触器, KM3为短接电阻接触器,KA1、KA2、KA3为中间继电器,KS1为正转常开触头,KS2为反转常开触头,R为启动与制动电阻。
电动机正向启动和停车反接制动过程如下。
(1)正向启动时,接通开关QS,按下启动按钮SB2,KM1通电自锁,定子串入电阻R正向启动,当正向转速大于120r/min时,KS1闭合,因KM1的常开辅助触点已闭合,所以KM3通电将R短接,从而使电动机在全压下运转。
(2)停止运行时,按下停止按钮 SB1,接触器 KM1、KM3 相继失电,定子切断正序电源并串入电阻R,SB1的常开触头后闭合,KA3通电,常闭触点又再次切断KM3电路。
由于惯性,KS1仍闭合,且KA3(18-10)已闭合,使KA1通电,触点KA1(3-12)闭合,KM2通电,电动机定子串入R进行反接制动;KA1的另一触点(3-19)闭合,使KA3仍通电,确保KM3始终处于断电状态,R始终串入M的定子绕组。