汽车悬架系统设计要点
- 格式:ppt
- 大小:7.94 MB
- 文档页数:86
微型汽车后钢板弹簧悬架设计引言:随着城市化进程的不断加剧,城市交通拥堵问题越来越严重。
因此,市场对于小型和经济型微型汽车的需求也越来越大。
在微型汽车的设计中,悬架系统是一个非常重要的组成部分,它直接影响到汽车的行驶稳定性、舒适性和操控性。
本文将对微型汽车的后钢板弹簧悬架进行设计和优化。
1.简介后钢板弹簧悬架是一种常见的汽车悬架系统,它由钢板弹簧、减震器和连接件组成。
该悬架系统具有结构简单、制造成本低、可靠性高等优点,因此在微型汽车中广泛应用。
2.悬架系统设计参数在设计后钢板弹簧悬架系统时,需要考虑以下几个主要参数:a.轴距:轴距是指前后轮轴中心之间的距离。
较大的轴距可以提高汽车的稳定性,但同时会增加车身长度,影响车辆的机动性。
b.弹簧刚度:弹簧刚度是指弹簧对重力或外力施加的力与弹簧位移之间的关系。
合适的弹簧刚度可以保证汽车在行驶过程中的平稳性和舒适性。
c.减震器:减震器的作用是减少车辆行驶过程中的颠簸和震动,提高悬架系统的舒适性。
在选择减震器时,需要考虑减震器的压缩和回弹力、摩擦阻尼等因素。
d.响应频率:响应频率是指悬架系统在受到外力激励时产生的周期性振动的频率。
合适的响应频率可以提高悬架系统对不同路面的适应性,减少车辆在行驶过程中的颠簸和震动。
3.悬架系统优化为了优化后钢板弹簧悬架系统的设计,可以采取以下几个策略:a.优化弹簧刚度:通过调整弹簧的材料和参数,可以实现弹簧刚度的优化。
优化后的弹簧可以提供更好的悬架支撑能力和稳定性。
b.配置合适的减震器:根据车辆的重量和行驶需求,选择合适的减震器。
减震器的性能直接影响到悬架系统的舒适性和稳定性。
c.调整悬架系统的参数:通过调整悬架系统的参数,如轴距、悬架点位置等,可以实现悬架系统的优化。
优化后的悬架系统可以提高车辆的操控性和稳定性。
4.结论后钢板弹簧悬架是微型汽车中常用的悬架系统之一,它具有结构简单、制造成本低等优点。
在设计后钢板弹簧悬架系统时,需要考虑轴距、弹簧刚度、减震器等参数,并进行优化,以提高汽车的行驶稳定性、舒适性和操控性。
汽车底盘悬架结构设计要点分析【摘要】汽车底盘悬架结构设计是车辆工程中非常重要的一个方面。
本文首先介绍了悬架结构的作用,包括提供悬挂和减震功能,保障车辆稳定性和舒适性。
然后对悬架结构进行了分类,包括独立悬挂和非独立悬挂等。
接着讨论了悬架结构设计的优化方案,指出通过减轻重量和提高刚度可以改善悬架性能。
材料选择也是关键的一环,合适的材料可以提高悬架的强度和耐久性。
最后分析了影响悬架结构的因素,包括行驶路况、车辆载重等。
综合以上内容,总结了汽车底盘悬架结构设计的要点,强调了设计的重要性和必要性。
通过合理的设计和优化,可以提升车辆性能和驾驶体验。
【关键词】汽车底盘,悬架结构,设计要点,分析,作用,分类,优化方案,材料选择,影响因素,总结1. 引言1.1 汽车底盘悬架结构设计要点分析汽车底盘悬架结构设计是汽车制造过程中非常重要的一环,它直接影响着汽车的操控性、舒适性和安全性。
设计良好的悬架结构可以有效减少车身的颠簸以及提升车辆的稳定性,让驾驶者在驾驶过程中更加舒适和安全。
悬架结构的作用是支撑汽车的车身,同时将车轮连接到车身上,使得车轮可以相对独立地运动。
根据不同的需求和使用环境,悬架结构可以分为独立悬架、半独立悬架和非独立悬架等多种分类。
不同类型的悬架结构在不同的路况和驾驶条件下会有不同的表现,因此在设计过程中需要根据实际情况选择合适的悬架结构。
优化悬架结构设计方案包括减轻悬架重量、提高刚度和强度、降低噪音和震动等方面。
选择合适的材料也是悬架结构设计的重要一环,常用的材料有钢铝合金、碳纤维等,不同的材料具有不同的优缺点,需要根据具体情况进行选择。
悬架结构的影响因素包括车辆的使用环境、车辆的负荷、悬架结构的几何形状等。
设计人员需要综合考虑这些因素,才能设计出性能更优秀的悬架结构。
在对汽车底盘悬架结构设计要点进行分析后,我们可以得出结论,对于汽车底盘悬架结构的设计要点有着重要的影响。
设计人员需要综合考虑悬架结构的功能、分类、优化方案、材料选择以及影响因素,才能设计出性能更卓越的底盘悬架结构。
汽车底盘悬架类型与设计的要点摘要:近年来,我国汽车的普及率逐步提高,而且汽车的销量节节攀升,带动我国汽车相关行业发展,同时也促进我国汽车设计显著提升。
汽车作为日常生活中使用的最频繁的代步工具,现在人民们对汽车的舒适性与稳定性提出更高的要求。
通过优化汽车底盘悬架结构设计,能对汽车行驶的舒适性与安全性有很大提高,能让汽车行业发展更好的满足人民对汽车使用的需求。
基于此,本文主要对汽车底盘悬架结构设计要点进行简要介绍,希望对汽车从业人员或者对此方面感兴趣的人员有参考价值。
关键词:汽车底盘;悬架结构;麦弗逊汽车底盘悬架的工作就是让车辆的轮胎与路面的摩擦力最大限度的增加,这样能够提供良好的车辆操纵性与稳定性。
我们平常开车行驶与路面时,路面不是百分百平整的,经常会是去凹凸不平,这种路面作用在车轮上,从而发生车轮的颠簸。
如果此时车轮直接与车身连接一起,车轮的颠簸直接就会传递到车身,造成很糟糕的驾乘体验。
那么我们可以设计一个车轮与车架的中间结构,就是悬架结构,能够起到了吸收竖直方向的车轮加速动能作用。
车轮的垂直加速力先通过悬架结构一部分的吸收与释放,最后一小部分才传到在传到车架上,这样避免车轮在颠簸的路面上出现车轮离开地面的状态。
通常我们常见的悬架系统主要包含减振器、稳定杆、弹簧、导向连接件等零件组成。
一个良好的悬架设计能够很好匹配路面的隔离性能、轮胎的抓地性能、转弯的性能。
一、汽车底盘悬架结构类型我们按照悬架的刚度与阻尼会随着不同的路面情况而改变,悬架系统可以分为被动悬架、半主动悬架和主动悬架三大类。
主动悬架涉及众多的电子感应装置,能够主动地根据路面信息情况自发地调节悬架的刚度与阻尼。
如果悬架系统按照导向机构来分类,可以分成独立悬架系统和非独立悬架系统两大类。
本文主要介绍的是传统车大多数车型采用的被动悬架中的独立悬架和非独立悬架设计。
(一)非独立悬架系统如图1所示,非独立悬架系统简单的理解就是前轮或者后轮的左右两个轮子会相互作用,左边的轮子会受到右边的轮子的影响。
悬架是现代汽车上重要总成之一,它把悬架与车轴弹性地连接起来。
其主要任务是传递作用在车轮与车架之间的一切力与力矩,并且缓和路面传给车架的冲击载荷,衰减由此引起的承载系统的振动,保证汽车的行驶平顺性,保证车轮在路面不平和载荷变化时有理想的运动特性,保证汽车的操纵稳定性,使汽车获得高速行驶能力。
为满足上述功能,悬架系统设计需满足下述要求:1) 保证汽车有良好的行驶平顺性。
2) 具有合适的衰减振动能力。
3) 保证汽车具有良好的操纵稳定性。
4) 汽车制动或加速时要保证车身稳定,减少车身纵倾,转弯时车身侧倾角要合适。
5) 结构紧凑、占用空间尺寸小。
6) 可靠地传递车身与车轮之间的各种力和力矩,在满足零部件质量要小的同时,还要保证有足够的强度和寿命。
上述六点对悬架系统设计要求,都需先对悬架系统运动进行分析,了解在各种载荷状态及不同工况下悬架系统运动状态。
问题解决过程:我公司生产HFJ6350、HFJ6351B 、HFJ6370、HFJ6380车前悬架为麦弗逊式独立悬架,后悬架为纵置板簧式非独立悬架。
这是一种典型的组合之一。
麦弗逊式悬架的特点是减振器兼作转向主销,可在工作站上建立运动模型,运用运动模块,通过两端凑的方法,求出各种载荷状态下悬架姿态。
钢板弹簧在整车上的布置情况,不仅影响整车的平顺性,而且也影响其操纵稳定性。
以下用三种方法对比分析了钢板弹簧系统关键点轨迹和关键角的变化。
一、 计算方法(附程序)如图1所示,假定主片长度L 在钢板弹簧运动中不变,即长度L 以外部分不参与变形;长度L 段的变形是纯圆弧型的,不考虑钢板弹簧悬架系统中橡胶件变形的影响。
而弧高Ha 和角θ间的关系(参见图2)为:Ha=R[cos (θ/2-α)-cos (θ/2)]式中 R= ⌒ PS /θ α=⌒ PQ / ⌒ PS ×θ所以Ha= ⌒ PS /θ×{cos[(1/2-⌒ PQ / ⌒ PS )×θ]-cos (θ/2)}由于 ⌒ PS 、⌒ PQ 为已知,所以每给定一个Ha 值,都有一个θ值与之对应,解此方程可用牛顿迭代法。
汽车底盘悬架结构设计要点摘要:在车辆结构中,底盘结构是车辆不可缺少的一部分,其核心功能是传动车身与车轮直接的力矩。
目前,悬架设计和性能评估主要基于设计师的经验和主观感受,但是往往准确性和效率并不高,很难满足市场对车辆舒适性和安全性和操纵稳定性的日益增长设计要求。
基于此,本文对汽车底盘悬架结构设计的优化进行分析,以期提升汽车行驶的平顺性与安全性,可以更好地满足人们对汽车使用的需求。
关键词:汽车底盘;悬架结构;设计要点1、汽车底盘悬架设计特点1.1电子化随着科技的不断发展和智能化的不断推进,在汽车底盘悬架设计中,电子化技术已经成为了一个重要的趋势。
电子化技术包括车速感应器、转向感应器、ABS系统、悬挂感应器等,这些传感器可以监测底盘悬架系统并向处理器反馈数据,使得汽车底盘悬架系统可以更加自适应地调整悬架刚度、减震器阻尼和地面跟随性等参数,这不仅提升了驾驶舒适性,也进一步提高了行车安全性。
1.2集成化集成化指的是汽车底盘悬架设计中各个部件之间的集成和协作。
在实现集成化设计的同时,必须考虑各部件的优势和特点,同时考虑系统的协调性和一致性,这样才能充分发挥悬架系统的性能优势。
悬架系统的集成化设计包括悬挂支撑、弹簧、减震器等部件,这些部件在协同工作时,需要有一定的共性和协作性,确保汽车悬架系统的稳定性、可靠性和实用性。
2、汽车底盘悬架设计要求汽车底盘悬架设计要求高度保障车辆的安全性、稳定性和舒适性。
根据汽车制造标准和技术规范,汽车底盘悬架设计需要满足以下要求:(1)强度和耐久性:汽车底盘悬架负责承受汽车行驶过程中的各种挑战和负荷,因此悬架设计必须具备足够的强度和耐久性,才能够保障其性能和安全。
在强度方面,悬架系统需要在各种复杂的路面运动环境下保持稳定,承受高速行驶和剧烈变向等异常条件,同时还需要保持足够的承载能力,要确保悬架系统支撑汽车重量,并且不会发生弯曲和破坏。
在耐久性方面,需要考虑部件的材料和制作工艺等方面,以确保悬架系统在使用寿命期间不会出现易损部位的磨损和损坏,同时需要考虑材料的抗腐蚀性和抗疲劳性等特性,以确保悬架系统的可维护性和持久性。
汽车底盘悬架结构设计要点分析发布时间:2022-07-28T08:11:42.268Z 来源:《福光技术》2022年16期作者:师海辉[导读] 悬架连接着车桥和车架,主要零部件包括:弹性元件、减震器及导向机构。
长城汽车股份有限公司河北保定 071000摘要:汽车悬架是车轮(或车轴)与负载支撑件(或车架)之间所有力传递连接的总称,是确保行驶舒适性和行驶安全性的重要组成部分,并具有缓冲和吸收由于道路不平坦而产生的传递力的能力。
通过对框架或车身施加冲击和振动,它可以在两辆汽车之间传递所有力和扭矩,从而使汽车平稳行驶。
在底盘悬架结构中,现在的双纵向臂独立悬架结构将上下纵向臂的长度都进行了改进,能够合理的去配合车轮和车架与纵向臂的连接。
这样就使车轮在运动的过程中,能够使轴距和前轮的定位参数一直保持在公差范围内,这样能够保证汽车在行驶的过程中的安全性和稳定性。
关键词:汽车底盘悬架;结构设计要点1汽车悬架系统研究概况1.1汽车悬架分类悬架连接着车桥和车架,主要零部件包括:弹性元件、减震器及导向机构。
按照悬架的结构形式不同,悬架可分为非独立悬架和独立悬架两种;按照功能不同可分为被动悬架、半主动悬架和主动悬架。
常见的独立悬架形式有:麦弗逊式独立悬架、多连杆式独立悬架、双叉式独立悬架等。
悬架性能影响整车的各项性能,尤其是车辆操作性能、行驶稳定性能、制动性能以及舒适性能越来越被消费者看重,为了实现悬架的不同功能,各种新形式的悬架汽车也不断涌现。
半主动悬架是指在使用过程中,悬架的阻尼系统和弹性元件中有一项可以随着使用条件的不同,可以进行调整的悬架类型;全主动悬架是阻尼系数和刚度都可以进行调节的,可以根据汽车的实际需求,将刚度和阻尼调整到最佳的工作状态。
1.2悬架的运动学和动力学特性悬架是整车的重要组成部分,一般在对悬架系统进行研究设计时,都是针对整车的操稳性和平顺性为设计目标,对悬架与整车的性能协调研究。
悬架运动学作为悬架设计时用到的一个重要知识点,贯穿了悬架的整个设计过程,包括对悬架运动特性分析、力学特性分析以及弹性特性分析等。
汽车设计讲稿-第六章悬架设计第六章悬架设计§6-1 概述:一、功用:传力、缓冲、减振:保证平顺性、操纵稳定性二、组成:弹性元件:传递垂直力,评价指标为单位质量储能等导向装置:车轮运动导向,并传递垂直力以外的力和力矩减振器:减振缓冲块:减轻车轴对车架的撞击,防止弹性元件变形过大横向稳定器:减少转弯时车身侧倾太大和横向角振动三、设计要求:1)良好的行驶平顺性:簧上质量 + 弹性元件的固有频率低;前、后悬架固有频率匹配:乘:前悬架固有频率要低于后悬架尽量避免悬架撞击车架;簧上质量变化时,车身高度变化小。
2)减振性好:衰减振动、抑制共振、减小振幅。
3)操纵稳定性好:车轮跳动时,主销定位参数变化不大;前轮不摆振;稍有不足转向(δ1>δ2)4)制动不点头,加速不后仰,转弯时侧倾角合适5)隔声好6)空间尺寸小。
7)传力可靠、质量小、强度和寿命足够。
§6-2 悬架结构形式分析:一、非独立悬架和独立悬架:二、独立悬架结构形式分析:1、评价指标:1)侧倾中心高度:A、侧倾中心:车身在通过左、右车轮中心的横向垂直平面内发生侧倾时,相对于地面的瞬时转动中心,叫侧倾中心。
B、侧倾中心高度:侧倾中心到地面的距离。
C、侧倾中心位置影响:位置高:侧倾中心到质心的距离缩短,侧向力臂和侧倾力矩↓,车身侧倾角↓;过高:车身倾斜时轮距变化大,加速轮胎车轮外倾角α磨损。
2)车轮定位参数:车轮外倾角α,主销内倾角β,主销后倾角γ,车轮前束等会发生变化。
主销后倾角γ变化大→转向轮摆振车轮外倾角α化大→直线行驶稳定性;轮距变化,轮胎磨损3)悬架侧倾角刚度A、车厢侧倾角:车厢绕侧倾轴线转动的角度B、影响:车厢侧倾角与侧倾力矩和悬架总的侧倾角刚度有关,影响操纵稳定性和平顺性4)横向刚度:影响操纵稳定性转向轴上悬架横向刚度小,转向轮易摆振,5)空间尺寸:占用横向尺寸→影响发动机布置和拆装;占用高度尺寸→影响行李箱大小和油箱布置。