遗传染色体常见异常报告中英文翻译
- 格式:docx
- 大小:18.05 KB
- 文档页数:4
染色体畸变类型和对应英文缩写
以下是染色体畸变类型及其对应的英文缩写:
1. 三体综合症(Down Syndrome,DS):是最常见的染色体畸变现象之一,发生机率随着母亲年龄增长而增加。
这种畸变的主要表现是智力低下、生长迟缓和特征性面容。
2. 爱德华综合症(Edwards Syndrome,ES):是一种比较罕见的染色体畸变,发生率约为每10000个活产婴儿中1-2个。
这种畸变表现为精神发育迟缓、生长缓慢、先天性心脏病等特征。
3. 唐氏综合症(Patau Syndrome,PS):是一种罕见的染色体畸变,发生率约为每10000个活产婴儿中1个。
该症状的表现包括重度智力障碍、脑发育异常、面部畸形等。
4. 克莱因费尔特综合症(Cri-du-chat Syndrome,CDCS):是一种罕见的染色体畸变,发生率约为每50000个活产婴儿中1个。
该症状的表现包括高胎盘、智力障碍、微小头颅、短阔手指等。
5. 伦-费尼-卢卡综合症(Turner Syndrome,TS):是一种仅影响女性的染色体畸变,发生率约为每2000个女性中1个。
该症状的表现包括生长缓慢、生殖系统发育异常、智力略低等。
6. 超敏性X染色体综合症(Fragile X Syndrome,FXS):是继唐氏综
合症后第二常见的遗传性智力障碍疾病,在男性和女性都可能出现。
该症状的表现包括智力低下、自闭症倾向、特殊的面部特征等。
以上是染色体畸变类型及其对应的英文缩写,每种病症都有其特定的表现和发生概率,需要注意。
染色体检查报告单
染色体检查报告单
姓名:XXX 性别:男年龄:35岁
检查日期:2021年1月1日
检查项目:染色体核型分析
检查结果:
核型异常:无
染色体异常:无
检查说明:
经过详细的染色体核型分析,发现患者的染色体结构及数量都处于正常范围内,没有发现任何异常情况。
该结果说明患者的染色体遗传信息无异常,无明显遗传病风险。
染色体检查是一种重要的遗传学检查方法,对于明确染色体异常、遗传性疾病等方面具有重要的意义。
本次检查结果显示患者的染色体核型正常,属于正常范围内,没有发现任何染色体异常。
染色体数目和结构异常是一种常见的染色体异常,如唐氏综合症、爱德华综合症等常见的染色体疾病,都与染色体数目异常有关。
在核型分析中,染色体的数目和结构被精确地检测和分析,以确保准确的诊断结果。
通过对患者血液中的白细胞进行核型分析,我们能够清楚地观察到染色体的结构和数量,从而判断是否存在染色体异常。
在本次检查中,我们对至少20个有形染色体进行了细致的观察和分析,结果显示所有的染色体都处于正常范围内,没有发现任何异常。
虽然本次检查结果显示患者的染色体核型正常,但并不能排除所有遗传性疾病的风险。
染色体异常是多种遗传性疾病的重要因素之一,但并非所有遗传性疾病都与染色体异常有关。
在面对可能存在的遗传疾病风险时,建议患者进行更加全面的遗传咨询和检查,以获得更准确的评估结果。
以上为本次染色体核型分析的检查结果和说明,如果有任何疑问,请及时咨询医生。
染色体结构异常是指染色体在形态、结构或数量上出现异常的情况。
这些异常可能会导致遗传信息的改变,进而引发一系列遗传性疾病或发育异常。
下面是一些常见的染色体结构异常及其解释:
缺失(Deletion):染色体上的一部分基因序列缺失或丢失。
这可能导致缺失区域的基因无法正常表达,从而影响相关功能。
倒位(Inversion):染色体上的一部分区域发生颠倒,即翻转。
这种结构异常通常不引起明显的临床表现,但在某些情况下可能会导致染色体不稳定或基因表达异常。
转座(Translocation):染色体间的片段交换或移动。
这种异常可以是在同一染色体上的内部转座,也可以是在不同染色体间的互换转座。
转座异常可能会导致基因重排和功能异常。
倍体(Polyploidy):染色体数量超过正常的倍数。
最常见的例子是三倍体(3n)或四倍体(4n)。
多数情况下,多倍体会导致胚胎的死亡或不发育。
染色体数目异常(Aneuploidy):染色体数量的异常,即缺失或增加染色体的个数。
最典型的例子是唐氏综合征,即21号染色体三体性(trisomy 21),由于存在额外的21号染色体而导致发育和智力障碍。
染色体报告怎么看
染色体报告是通过对染色体的核型分析得出的结果,其中包含了染色体的数量、结构和异常情况等信息。
下面是染色体报告的一般解读步骤:
1. 核型正常与否:首先查看报告中标明的核型结果,正常的核型结果一般为46,XX(女性)或46,XY(男性),表示染色体数目正常。
如果核型结果为非正常的染色体数目,可能存在染色体异常。
2. 染色体结构:报告中可能还会标注染色体的结构情况,如倒位(inversion)、转位(translocation)、增加(duplication)
和缺失(deletion)等。
这些结构变异可能会导致遗传疾病或
不孕不育等问题。
3. 染色体异常:报告中还会详细列出染色体的异常情况,如染色体缺失、重复、断裂、环形染色体等。
这些异常可能会导致先天性缺陷、智力障碍和其他遗传性疾病。
4. 染色体编号:报告中可能还会提供染色体的具体编号,如1
号染色体、2号染色体等,对于具体研究某个染色体区域的变
异有重要意义。
最重要的是,染色体报告应由专业的遗传学家或医生进行解读,并结合个人临床情况进行综合判断和咨询。
如果对染色体报告结果有任何疑问,应及时与专业医生进行沟通和解答。
遗传算法中英文对照外文翻译文献遗传算法中英文对照外文翻译文献(文档含英文原文和中文翻译)Improved Genetic Algorithm and Its Performance AnalysisAbstract: Although genetic algorithm has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution. However, it also has some demerits, such as slow convergence speed. In this paper, based on several general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed, and its main idea is as follows : at the beginning of evolution, our solution with shorter length chromosome and higher probability of crossover and mutation; and at the vicinity of global optimum, with longer length chromosome and lower probability of crossover and mutation. Finally, testing with some critical functions shows that our solution can improve the convergence speed of genetic algorithm significantly , its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Genetic algorithm is an adaptive searching technique based on a selection and reproduction mechanism found in the natural evolution process, and it was pioneered by Holland in the 1970s. It has become very famous with its global searching,________________________________ 遗传算法中英文对照外文翻译文献 ________________________________ parallel computing, better robustness, and not needing differential information during evolution. However, it also has some demerits, such as poor local searching, premature converging, as well as slow convergence speed. In recent years, these problems have been studied.In this paper, an improved genetic algorithm with variant chromosome length andvariant probability is proposed. Testing with some critical functions shows that it can improve the convergence speed significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.In section 1, our new approach is proposed. Through optimization examples, insection 2, the efficiency of our algorithm is compared with the genetic algorithm which only reserves the best individual. And section 3 gives out the conclusions. Finally, some proofs of relative theorems are collected and presented in appendix.1 Description of the algorithm1.1 Some theoremsBefore proposing our approach, we give out some general theorems (see appendix)as follows: Let us assume there is just one variable (multivariable can be divided into many sections, one section for one variable) x £ [ a, b ] , x £ R, and chromosome length with binary encoding is 1.Theorem 1 Minimal resolution of chromosome isb 一 a2l — 1Theorem 3 Mathematical expectation Ec(x) of chromosome searching stepwith one-point crossover iswhere Pc is the probability of crossover.Theorem 4 Mathematical expectation Em ( x ) of chromosome searching step with bit mutation isE m ( x ) = ( b- a) P m 遗传算法中英文对照外文翻译文献Theorem 2 wi = 2l -1 2 i -1 Weight value of the ith bit of chromosome is(i = 1,2,・・・l )E *)= P c1.2 Mechanism of algorithmDuring evolutionary process, we presume that value domains of variable are fixed, and the probability of crossover is a constant, so from Theorem 1 and 3, we know that the longer chromosome length is, the smaller searching step of chromosome, and the higher resolution; and vice versa. Meanwhile, crossover probability is in direct proportion to searching step. From Theorem 4, changing the length of chromosome does not affect searching step of mutation, while mutation probability is also in direct proportion to searching step.At the beginning of evolution, shorter length chromosome( can be too shorter, otherwise it is harmful to population diversity ) and higher probability of crossover and mutation increases searching step, which can carry out greater domain searching, and avoid falling into local optimum. While at the vicinity of global optimum, longer length chromosome and lower probability of crossover and mutation will decrease searching step, and longer length chromosome also improves resolution of mutation, which avoid wandering near the global optimum, and speeds up algorithm converging.Finally, it should be pointed out that chromosome length changing keeps individual fitness unchanged, hence it does not affect select ion ( with roulette wheel selection) .2.3 Description of the algorithmOwing to basic genetic algorithm not converging on the global optimum, while the genetic algorithm which reserves the best individual at current generation can, our approach adopts this policy. During evolutionary process, we track cumulative average of individual average fitness up to current generation. It is written as1 X G x(t)= G f vg (t)t=1where G is the current evolutionary generation, 'avg is individual average fitness.When the cumulative average fitness increases to k times ( k> 1, k £ R) of initial individual average fitness, we change chromosome length to m times ( m is a positive integer ) of itself , and reduce probability of crossover and mutation, which_______________________________ 遗传算法中英文对照外文翻译文献________________________________can improve individual resolution and reduce searching step, and speed up algorithm converging. The procedure is as follows:Step 1 Initialize population, and calculate individual average fitness f avg0, and set change parameter flag. Flag equal to 1.Step 2 Based on reserving the best individual of current generation, carry out selection, regeneration, crossover and mutation, and calculate cumulative average of individual average fitness up to current generation 'avg ;f avgStep 3 If f vgg0 三k and Flag equals 1, increase chromosome length to m times of itself, and reduce probability of crossover and mutation, and set Flag equal to 0; otherwise continue evolving.Step 4 If end condition is satisfied, stop; otherwise go to Step 2.2 Test and analysisWe adopt the following two critical functions to test our approach, and compare it with the genetic algorithm which only reserves the best individual:sin 2 弋 x2 + y2 - 0.5 [1 + 0.01( 2 + y 2)]x, y G [-5,5]f (x, y) = 4 - (x2 + 2y2 - 0.3cos(3n x) - 0.4cos(4n y))x, y G [-1,1]22. 1 Analysis of convergenceDuring function testing, we carry out the following policies: roulette wheel select ion, one point crossover, bit mutation, and the size of population is 60, l is chromosome length, Pc and Pm are the probability of crossover and mutation respectively. And we randomly select four genetic algorithms reserving best individual with various fixed chromosome length and probability of crossover and mutation to compare with our approach. Tab. 1 gives the average converging generation in 100 tests.In our approach, we adopt initial parameter l0= 10, Pc0= 0.3, Pm0= 0.1 and k= 1.2, when changing parameter condition is satisfied, we adjust parameters to l= 30, Pc= 0.1, Pm= 0.01.From Tab. 1, we know that our approach improves convergence speed of genetic algorithm significantly and it accords with above analysis.2.2 Analysis of online and offline performanceQuantitative evaluation methods of genetic algorithm are proposed by Dejong, including online and offline performance. The former tests dynamic performance; and the latter evaluates convergence performance. To better analyze online and offline performance of testing function, w e multiply fitness of each individual by 10, and we give a curve of 4 000 and 1 000 generations for fl and f2, respectively.(a) onlineFig. 1 Online and offline performance of fl(a) online (b) onlineFig. 2 Online and offline performance of f2From Fig. 1 and Fig. 2, we know that online performance of our approach is just little worse than that of the fourth case, but it is much better than that of the second, third and fifth case, whose online performances are nearly the same. At the same time, offline performance of our approach is better than that of other four cases.3 ConclusionIn this paper, based on some general theorems, an improved genetic algorithmusing variant chromosome length and probability of crossover and mutation is proposed. Testing with some critical functions shows that it can improve convergence speed of genetic algorithm significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.AppendixWith the supposed conditions of section 1, we know that the validation of Theorem 1 and Theorem 2 are obvious.Theorem 3 Mathematical expectation Ec(x) of chromosome searching step with one point crossover isb - a PEc(x) = 21 cwhere Pc is the probability of crossover.Proof As shown in Fig. A1, we assume that crossover happens on the kth locus, i. e. parent,s locus from k to l do not change, and genes on the locus from 1 to k are exchanged.During crossover, change probability of genes on the locus from 1 to k is 2 (“1” to “0” or “0” to “1”). So, after crossover, mathematical expectation of chromosome searching step on locus from 1 to k is1 chromosome is equal, namely l Pc. Therefore, after crossover, mathematical expectation of chromosome searching step isE (x ) = T 1 -• P • E (x ) c l c ckk =1Substituting Eq. ( A1) into Eq. ( A2) , we obtain 尸 11 b - a p b - a p • (b - a ) 1 E (x ) = T • P • — •• (2k -1) = 7c • • [(2z -1) ― l ] = ——— (1 一 )c l c 2 21 — 121 21 — 1 21 21 —1 k =1 lb - a _where l is large,-——-口 0, so E (x ) 口 -——P2l — 1 c 21 c 遗传算法中英文对照外文翻译文献 厂 / 、 T 1 T 1 b — a - 1E (x )="—w ="一• ---------- • 2 j -1 二 •ck2 j 2 21 -1 2j =1 j =1 Furthermore, probability of taking • (2k -1) place crossover on each locus ofFig. A1 One point crossoverTheorem 4 Mathematical expectation E m(")of chromosome searching step with bit mutation E m (x)—(b a)* P m, where Pm is the probability of mutation.Proof Mutation probability of genes on each locus of chromosome is equal, say Pm, therefore, mathematical expectation of mutation searching step is一i i - b —a b b- aE (x) = P w = P•—a«2i-1 = P•—a q2,-1)= (b- a) •m m i m 21 -1 m 2 i -1 mi=1 i=1一种新的改进遗传算法及其性能分析摘要:虽然遗传算法以其全局搜索、并行计算、更好的健壮性以及在进化过程中不需要求导而著称,但是它仍然有一定的缺陷,比如收敛速度慢。
染色体微阵列检测报告
姓名:
性别:
出生日期:
检验日期:
送检单位:
临床诊断:
样本编号:
检验方法:
本检验采用Affymetrix CytoScan HD芯片进行染色体微阵列检测。
检验结果:
本次检测结果显示患者存在染色体异常,具体如下:
1. 13q31.3-q3
2.1区域缺失,大小为14.9 Mb,涉及基因296个;
2. Xp22.33-p22.31区域多余,大小为6.2 Mb,涉及基因2063个。
以上异常均已被报道为与智力障碍、发育迟缓等疾病相关的基
因区域。
结论:
根据本次染色体微阵列检测结果,患者存在13q31.3-q32.1区域缺失和Xp22.33-p22.31区域多余,建议结合临床表现综合分析,
制定相应的诊疗方案。
附语:
1. 本报告仅供临床医生参考,不得作为临床诊断的唯一依据;
2. 本报告数据仅供一次使用,未经本公司同意,不得进行复制、转载、传播等行为。
常用遗传学中英文词汇近端着丝粒染色体(Acrocentric chromosome)--着丝粒靠近染色体端部的染色体。
加和原则(Additivity principle)--如果两个事件相互排斥,那么获得其中一个或另一个的概率为它们的各自概率之和。
等位基因(Allele)--在一既定基因座上一个基因的替换形式。
等位基因特异性寡核苷酸(Allele-specific oligonucleotide,ASO)--设计合成的寡核苷酸,可在适当条件下与特异序列杂交而不与其相关的序列杂交。
用针对每个等位基因序列设计的ASO甚至可容易地检出单个核苷酸的变异。
在几种设计相似、用来区分密切相关等位基因的方法中,ASO还可用作PCR引物。
等位基因异质性(Allelic heterogeneity)--在同一遗传基因座上,由不同的突变等位基因引起的相同或相似的表型。
α1-抗胰蛋白酶(α1-Antitrypsin)--是抑制弹性蛋白酶活性的一种丝氨酸蛋白酶抑制剂,该抑制剂的缺乏(如α1-抗胰蛋白酶不足)将导致严重的慢性肺和肝脏疾病。
Alu重复序列(Alu repetitive sequence)--位于基因间或内含子DNA中的中等重复序列,含有限制性内切酶AluⅠ的识别位点,这些序列长约300bp,并在人类基因组中重复出现约500,000次。
羊膜穿刺术(Amniocentesis)--一种产前诊断的方法,通常在妊娠4至6月抽取羊膜囊内婴儿四周的羊水进行。
扩增(Amplification)--一段DNA序列多个拷贝的产生。
非整倍体(Aneuploid)--指单倍体非整倍数的任何染色体数目。
通常非整倍体是指单条染色体的额外拷贝(三体性),或缺少单条染色体(单体性)。
由减数分裂或有丝分裂过程中染色体不分离所致。
早现遗传(Anticipation)--指一种遗传性疾病在较早年龄发病或在连续后代中严重程度增加。
DNA反义链(Antisense strand of DNA)--指DNA双链中的非编码链,它与mRNA互补,是mRNA合成的模板。
遗传学Genitics :研究生物界遗传变异的生物现象的科学遗传病inherited disease :指遗传物质发生突变所引起的疾病先天性疾病congenital disease :指婴儿出生时即显示出临床性状的疾病家族性疾病familial disease :指有家族聚集现象的一类疾病染色体病chromosome disorders :生殖细胞和受精卵早期发育过程中出现了差错,表现为先天发育异常单基因病monogenic disorders :单个基因突变所致,按照单纯的孟德尔方式遗传,主要发生在新生儿和幼儿阶段多基因病poly-genic disorders :由遗传因素和环境因素所致,包括一些先天性发育异常和一些常见病。
有家族聚集现象,但无单基因病那样明显的家系传递格局线粒体病mitochondrial genetic disorders :线粒体染色体上基因突变所致,通常影响神经和肌肉的能量产生,在细胞衰老中起作用,母系方式遗传体细胞遗传病somatic cell genetic disorders :只在特定的体细胞中发生,例如肿瘤,其恶性表型的发展通常是控制细胞生长的基因发生突变所致细胞遗传学cytogenetics :用形态学的方法研究人类染色体的结构,异常(或畸变)的类型,发生频率以及其与疾病的关系基因组genome :有机体全部DNA序列,是基因和非基因的DNA序列的总和核型karyotype :将一个体细胞的全套染色体根据相对恒定形态特征,依次分组排列形成的图像染色体显带技术chromosome ban di ng : 用特定的染料和处理技术,来使染色体出现深浅或明暗带纹以鉴别染色体的技术(四种方法:显示QGRC带)染色体畸变chromosome aberration :指染色体数目和结构上的改变数目畸变numerical aberration :以二倍体为标准,若出现染色体数目单条,多条或成倍增减称为染色体数目畸变结构畸变structural aberration :指染色体发生断裂和再结合而形成各种重组的结果整倍体euploid :细胞的染色体数目以n为基数成倍增加,称为整倍体核内复制endoreduplication :—次细胞分裂时,染色体不是复制一次,而是复制两次,因此每个染色体形成四条染色体,又称双倍染色体核内有丝分裂endomitosis :在细胞分裂时,染色体正常复制一次,至分裂中期时,核膜仍未破裂,消失,无纺锤丝形成无后期胞质分离超二倍体hyperdiploid :指一个细胞中染色体的数目增加了一个或数个亚二倍体hypodiploid :指一个细胞中染色体的数目减少了一个或数个假二倍体pseudodiploid :只某对染色体减少一个,同时另一对染色体增加一个,染色体的数目保持不变嵌合体mosaic :—个个体内同时有两种或两种以上不同核型的细胞系重复duplicati on :指同源染色体中的一条断裂后,其断片连接到另一条同源染色体的相应部位,结果导致一条同源染色体的部分基因重复,相应的另一条同源染色体部分缺失倒位inversion :染色体发生两处断裂后,中间的断片倒转后重接易位translocation :染色体的节段位置发生改变,即一条染色体断裂后片段接到同一条染色体的另一处或另一条染色体上罗伯逊易位Robertsonian translocation :是一种涉及两条近段着丝粒的染色体的易位类型,其断裂发生在着丝粒部位或着丝粒附近位置,整个染色体臂发生了相互易位,形成两个中着丝粒染色体,其中由染色体短臂形成的小染色体往往丢失环形染色体ring chromosome :由于断裂发生在染色体两臂远端,随后这两臂的断裂端彼此黏着形成环形结构等臂染色体isochromosome :着丝粒发生横裂,形成两条只具有长臂或只具有短臂的染色体亲代印迹parental imprinting :同一基因来自父方或母方而有不同的遗传性状表现,这是由于基因在生殖细胞分化过程中受到不同程度的修饰的结果外显率penetranee :指一群具有某种致病基因的人中,出现相应病理表现型的人数百分比表现度expressivity :指基因表达的程度,大致相当于临床严重程度,分为重型,中型,轻型和顿挫型顿挫型forme frust :当一种畸形疾病或综合征的表现极为轻微而无临床意义时,称为顿挫型基因多效性pleiotropy : 一个或一对突变基因产生的多种继发效应限性遗传sex-limited inheritanee :常染色体致病基因的表达仅限于一种性别受累者偏性遗传sex- in flue need in herita nee :虽非伴性遗传的疾病,但在两性中的表达其程度和频率均有不同亲缘系数kin ship coefficie nt :只有共同祖先的两个人在某一位点上具有同一基因的频率近亲婚配consanguineous :指两个配偶在三代以内曾有共同的祖先遗传异质性genetic heterogeneity :有些临床症状相似的疾病,可有不同的遗传基础遗传早现genetic anticipation :有些遗传病在世代传递过程中有发病年龄逐渐超前和病情症状逐渐加剧的现象拟表型phe no copy :环境因素引起的疾病模拟了由遗传决定的表现型易感性susceptibility :由遗传素质决定一个个体得多基因遗传病的风险易患性liability :—个个体由遗传素质和环境条件共同作用所决定得多基因遗传病的风险阈值threshold :由易患性所导致的多基因遗传病的最低发病限度遗传度heritability :在多基因疾病中,易患性高低受遗传因素和环境因素双重影响,其中由遗传因素在决定多基因遗传病表现型中所起的作用大小称为遗传度杂合子优势heterozygote advantage :在某些隐性遗传病中,在特定的条件下杂合子可能比正常纯合子个体更有利于生存和繁衍后代遗传漂变genetic drift :小群体或隔离的人群中,基因频率的随机波动称为遗传漂变移码突变frame-shift mutation :插入或缺失的碱基不是三的倍数,造成突变部位以后的密码子均要发生改变,导致移码突变标记染色体marker chromosome :染色体的畸变与某种疾病有特定的联系,则这种畸变的染色体就成为标记染色体临症诊断symptomatic diagnosis :指在遗传病的临床症状出现后所作的诊断出生前诊断prenatal diagnosis :是以羊膜穿刺和绒毛膜取样术为主要手段,对羊水,羊水细胞及绒毛膜进行遗传学分析,以判断胎儿的染色体或基因等是否正常原发性预防primary prevention :异常基因型出现以前所作的预防,一般通过遗传咨询的方法继发性预防secondary prevention :带有某种致病基因的个体在出现临床表现之前所作的预防,如出生前筛查,新生儿筛查,携带者检出等。
A 腺嘌呤(adenine)abortive transduction 流产转导:转导的DNA片段末端掺入到受体的染色体中,在后代中丢失。
acentric chromosome 端着丝粒染色体:染色体的着丝粒在最末端。
Achondroplasia 软骨发育不全:人类的一种常染色体显性遗传病,表型为四肢粗短,鞍鼻,腰椎前凸。
acrocetric chromosome 近端着丝粒染色体:着丝粒位于染色体末端附近。
active site 活性位点:蛋白质结构中具有生物活性的结构域。
adapation 适应:在进化中一些生物的可遗传性状发生改变,使其在一定的环境能更好地生存和繁殖。
adenine 腺嘌呤:在DNA中和胸腺嘧啶配对的碱基。
albino 白化体:一种常染色体隐性遗传突变。
动物或人的皮肤及毛发呈白色,主要因为在黑色素合成过程中,控制合成酪氨酸酶的基因发生突变所致。
allele 等位基因:一个座位上的基因所具有的几种不同形式之一。
allelic frequencies (one frequencies)在群体中存在于所有个体中某一个座位上等位基因的频率。
allelic exclusion 等位排斥:杂合状态的免疫球蛋白基因座位中,只有一个基因因重排而得以表达,其等位基因不再重排而无活性。
allopolyploicly 异源多倍体:多倍体的生物中有一套或多套染色体来源于不同物种。
Ames test 埃姆斯测验法:Bruce Ames 于1970年人用鼠伤寒沙门氏菌(大鼠)肝微粒体法来检测某些物质是否有诱变作用。
amino acids 氨基酸:是构成蛋白质的基本单位,自然界中存在20种不同的氨基酸。
aminoacyl-tRNA 氨基酰- tRNA:tRNA的氨基臂上结合有相应的氨基酸,并将氨基酸运转到核糖体上合成蛋白质。
aminoacyl-tRNA synthetase 氨基酰- tRNA合成酶:催化一个特定的tRNA结合到相应的tRNA分子上。
外周血:(Peripheral blood):外周血细胞培养染色体检查结果为男性核型,没有发现染色体数目或结构有明显的异常。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and no obvious anomalies were found on chromosome number or structure.外周血细胞培养染色体检查结果为女性核型,没有发现染色体数目或结构有明显的异常。
The chromosome detection showed female karyotype by culturing the peripheral blood lymphocytes and no obvious anomalies were found on chromosome number or structure.外周血细胞培养染色体检查结果显示为男性核型,所分析的分裂相中均见Y染色体大于或等于18号染色体。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and the phenomenon (Y chromosome ≥ chromosome 18) was found on all the analytical metaphase cells.外周血细胞培养染色体检查结果显示为男性核型,所分析的分裂相中均见Y染色体小于或等于22号染色体。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and the phenomenon(Y chromosome≤ chromosome22)was found on all the analytical metaphase cells.外周血细胞培养染色体检查结果显示为男性核型,所分析的分裂相中均见Y染色体长臂异染色质区长度的增加。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and the abnormal increase in length of Y chromosome heterochromatin was found on all the analytical metaphase cells.外周血细胞培养染色体检查结果显示为男性核型,所分析的分裂相中均见Y染色体长臂异染色质区长度的减少。
建议做Y染色体微缺失分子检测。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and the abnormal decrease in length of Y chromosome heterochromatin was found on all the analytical metaphase cells. It is recommended to do Y chromosome microdeletion detection.外周血细胞培养染色体检查结果显示,所分析的分裂相中均见一条16号染色体长臂异染色质区长度的增加及一条22号染色体随体柄长度的增加,属于染色体的多态性。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and increase in length of the heterochromatin on the long arm of a chromosome 16 and satellite stalk of a chromosome 22was found on all the analytical metaphase cells. It belonged to chromosome polymorphism.外周血细胞培养染色体检查结果显示,所分析的分裂相中均见一条13号染色体短臂的增加,属于染色体的多态性。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytesand increase in length of the short arm of a chromosome 13was found on all the analytical metaphase cells. It belonged to chromosome polymorphism.外周血细胞培养染色体检查结果显示,所分析的分裂相中均见一条14号染色体随体的增加,属于染色体的多态性。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and increase in length of the satellite of a chromosome 14was found on all the analytical metaphase cells. It belonged to chromosome polymorphism.外周血细胞培养染色体检查结果显示,所分析的分裂相中均见一条21号染色体着丝粒异染色质区长度的增加,属于染色体的多态性。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and increase in length of the heterochromatin on thecentromere of a chromosome 21was found on all the analytical metaphase cells. It belonged to chromosome polymorphism.外周血细胞培养染色体检查结果显示,所分析的分裂相中均见一条22号染色体短臂的减少。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and decrease in length of the short arm of a chromosome 22was found on all the analytical metaphase cells..外周血细胞培养染色体检查结果显示,所分析的分裂相均呈45,X核型,提示Turner综合征。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and 45,X karyotype was found on all the analytical metaphase cells,indicating Turner syndrome.外周血细胞培养染色体检查结果显示,所分析的分裂相均呈47条XXY核型,提示Klinefelter综合征。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and 47,XXY karyotype was found on all the analytical metaphase cells,indicating Klinefeltersyndrome.外周血细胞培养染色体检查结果为女性核型,所分析的分裂相均存在一条1号和一条2号染色体相互易位。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and a reciprocal translocation between a chromosome 1 and a chromosome 2 was found on all the analytical metaphase cells.外周血细胞培养染色体检查结果为男性核型,所分析的分裂相均存在一条3号染色体臂内倒位。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and aparacentric inversion of chromosome 3 was found on all the analytical metaphase cells.外周血细胞培养染色体检查结果为男性核型,所分析的分裂相均存在一条4号染色体臂间倒位。
1号至22号染色体请分别用英文表达The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and apericentric inversion of chromosome 4 was found on all the analytical metaphase cells.外周血细胞培养染色体检查结果显示为男性核型,所分析的分裂相中均见一条11号衍生染色体,由11号染色体和22号染色体易位形成。
The chromosome detection showed male karyotype by culturing the peripheral blood lymphocytes and a derivative chromosome 11 derived from a translocation between chromosome 11 and chromosome 22 was found on all the analytical metaphase cells.外周血细胞培养染色体检查结果显示为女性核型,所分析的分裂相中均见一条13号染色体和一条14号染色体发生罗伯逊易位。