非对称转子-轴承- 基础系统的非线性振动
- 格式:pdf
- 大小:169.47 KB
- 文档页数:4
应用Samcef/Rotor计算转子-轴承系统非线性动力学响应与稳定性的开题报告
一、选题背景
转子-轴承系统是机械工程领域经常遇到的复杂动力学问题,在高速运转的情况下,不仅转子自身的振动会产生非线性动力学响应,同时还会受到轴承支撑力的影响。
因此,对转子-轴承系统非线性动力学响应及稳定性的分析具有重要的理论和应用价值。
二、研究目的
本研究旨在应用Samcef/Rotor软件对转子-轴承系统进行非线性动力学响应与稳定性分析,探讨振动特性、稳定性及故障诊断。
三、研究内容
(1)建立转子-轴承系统的有限元模型;
(2)采用Samcef/Rotor软件对转子-轴承系统进行非线性动力学响应分析,探究其动力学行为;
(3)对转子不同运行状态下的振动响应、稳定性进行研究;
(4)探讨故障扰动对转子-轴承系统的影响;
(5)调整模型参数,研究不同参数对转子-轴承系统的影响。
四、研究意义
本研究可以为机械工程领域中的转子-轴承系统设计及稳定性优化提供参考。
同时,研究结果可以为故障诊断提供依据,提高转子-轴承系统的可靠性和运行效率。
五、研究方法
采用Samcef/Rotor软件进行有限元分析,建立转子-轴承系统非线性动力学响应分析模型。
通过对转子-轴承系统的运行状态、振动响应、稳定性进行分析,研究故障诊断及优化方案。
六、预期结果
通过对转子-轴承系统的非线性动力学响应和稳定性分析,得出振动特性、稳定边界和故障诊断结果,提出优化方案。
预计将为转子-轴承系统稳定性分析提供新的研究思路和技术手段。
转⼦系统的⾮线性动⼒学分析(⼋)轴承—转⼦系统的⾮线性研究⽅法主要有理论分析法和实验验证法。
理论分析法主要包括理论研究和数值计算两个⽅⾯,理论分析法和实验验证法已经被⼴泛应⽤到了轴承—转⼦系统的⾮线性分析中,下⾯将分别从理论分析、数值计算和实验研究三个⽅⾯阐述轴承—转⼦系统⾮线性分析的研究现状。
轴承—转⼦系统的理论分析理论分析⼀直是轴承—转⼦系统⾮线性研究的基础,由于多⾃由度⾮线性微分⽅程的复杂性特点,在⾮线性动⼒学理论中还没有适⽤于求解⾼维⾮线性转⼦系统动⼒学⽅程的通⽤解析⽅法。
为揭⽰轴承—转⼦系统的⾮线性特性,许多专家针对⾮线性微分⽅程提出了⼀些近似的解析⽅法,如多尺度法、摄动法和平均法等。
随着对⾮线性理论的逐渐深⼊研究,⼀些新的⽅法如⼴义谐波平衡法、⼴义平均法等被⽤来求解多⾃由度强⾮线性系统。
上世纪年代后国外学者开始研究轴承—转⼦系统的⾮线性动⼒学特性,和在轴承—转⼦系统的稳定性研究⽅⾯做了⼤量⼯作。
等⼈则采⽤多尺度法分析了转⼦系统在基于长轴承和短轴承假设下的弱⾮线性运动,研究了在平衡点失稳后系统的超临界和亚临界分岔。
研究了在⾮线性弹簧⽀承下的刚性转⼦的动⼒学响应,发现在相邻的次谐波响应区域之间的动⼒学响应具有混沌特性。
分别基于长轴承和短轴承油膜⼒模型研究了两⾃由度的具有刚度对称特性的转⼦系统在失稳点附近的分岔⾏为。
和计算了转⼦—轴承系统在混沌运动时的关联维问题。
和采⽤分岔理论分析了考虑湍流哈尔滨⼯业⼤学⼯学博⼠学位论⽂效应影响的滑动轴承—刚性转⼦的稳态响应。
和采⽤谐波平衡法求解了基于⾮线性油膜⼒模型下的刚性转⼦动⼒学响应,并给出了转⼦系统的稳定域和发⽣混沌时的不平衡条件。
国内的专家学者⾃上世纪年代后在转⼦动⼒学的⾮线性研究⽅⾯开展了⼤量研究⼯作。
孟泉和陈予恕采⽤奇异性理论和中⼼流形研究了基于短轴承⽀承下的刚性转⼦—轴承系统的分岔特性研究,并对参数范围较宽的分岔⾏为进⾏了深⼊研究,指出刚性转⼦系统具有倍周期分岔和分岔。
含故障滚动轴承-转子系统的非线性动力学分析含故障滚动轴承-转子系统的非线性动力学分析摘要:滚动轴承在转子系统中起着重要的支撑和传动作用。
然而,由于操作条件不良或材料疲劳等原因,滚动轴承可能出现故障,导致转子系统的性能下降甚至发生严重事故。
本文通过对含故障滚动轴承-转子系统的非线性动力学分析,探讨了故障对系统稳定性和振动响应的影响,并提出了相应的改进措施。
1. 引言滚动轴承是一种常见的机械传动元件,广泛应用于各种机械设备中。
在转子系统中,滚动轴承承担着支撑和传动的作用,对系统的性能和可靠性有着重要的影响。
然而,由于工作条件的变化和材料疲劳等原因,滚动轴承可能会出现故障,如疲劳裂纹、卡滞、磨损等,从而导致转子系统的性能下降。
2. 故障滚动轴承的动力学模型故障滚动轴承的动力学模型需要考虑轴承几何形状、材料特性和故障类型等因素。
在本文中,我们以单个滚动轴承为研究对象,将其建模为多自由度系统,考虑了转子和轴承的非线性特性。
3. 故障对转子系统稳定性的影响故障滚动轴承会引起转子系统的不稳定振动,影响系统的稳定性和可靠性。
通过分析系统的特征根和相平面图,可以得到故障滚动轴承的振动特性和稳定性边界。
4. 故障对转子系统振动响应的影响故障滚动轴承的存在将引起转子系统的非线性振动响应。
通过数值仿真和实验分析,可以研究故障滚动轴承对系统振动频谱、幅值和相位的影响。
5. 改进措施为了提高含故障滚动轴承-转子系统的稳定性和可靠性,可以采取以下改进措施:①改善润滑条件,减少摩擦和磨损;②使用可调节补偿机构,自动调整轴承间隙;③监测和检测系统的工作状态,及时发现和处理轴承故障。
6. 结论通过对含故障滚动轴承-转子系统的非线性动力学分析,可以得到故障对系统稳定性和振动响应的影响规律。
在实际应用中,我们应该重视滚动轴承的工作状态和健康监测,及时采取合理的预防和维护措施,以确保系统的安全稳定运行。
7.综上所述,故障滚动轴承对转子系统的稳定性和振动响应产生重要影响。
振 动 与 冲 击第27卷第9期JOURNAL OF V I B RATI O N AND SHOCKVol .27No .92008 机床主轴2滚动轴承系统非线性动力学分析基金项目:国家重点基础研究发展计划“973”项目(2005CB724101)和国家自然科学基金项目(10702040)资助收稿日期:2007-12-14 修改稿收到日期:2008-02-01第一作者张伟刚男,硕士生,1981年生张伟刚, 高尚晗, 龙新华, 孟 光(上海交通大学机械系统与振动国家重点实验室,上海 200240) 摘 要:通过对机床主轴2滚动轴承系统的研究,建立了一个基于Hertz 接触力模型的6自由度系统动力学微分方程,初步探讨在非平衡力作用下,具有负游隙的机床主轴-滚动轴承系统的非线性动态特性和稳定性。
结果表明,由于游隙和变刚度的影响,随控制参数频数比的变化,系统将出现失稳和复杂的非线性现象;通过对比正、负游隙下的系统响应,可得到负游隙有助于提高机床主轴-滚动轴承系统稳定性的结论,该结论与其他学者[10]实验所证明的轴承预紧有助于提高主轴-轴承系统的固有频率,进而提高系统稳定性的结论相吻合。
关键词:滚动轴承;非线性动力学;游隙;稳定性中图分类号:O322;TH133 文献标识码:A 现代制造业对高速、高精度的要求使得我们有必要对机床主轴-轴承系统的非线性动态特性进行深入的分析和研究。
而轴承滚子和轴承内、外圈之间的非线性接触力是机床主轴-轴承系统振动响应的主要非线性因素。
为此,众多研究者在该非线性接触力对主轴-轴承系统动态特性的影响方面展开了广泛的研究。
Ya ma mot o [1]通过研究滚动轴承游隙对Jeffcott 转子振动特性的影响,发现其振动幅度会随着轴承游隙的增加而降低;在此工作基础上,Ti w ari 等[2-5]研究了轴承游隙及变刚度对非平衡Jeffcott 转子非线性动态特性的影响;Sopanen 和M ikkola [6,7]对转子-轴承系统建立了一个6自由度的力学模型,通过对该系统动力学模型的研究,分析游隙对系统固有频率和振动响应的影响;在以上的研究中,转速皆假定为常数,L i ouli os和Ant oniadis [8]研究变转速对转子-轴承系统动态特性的影响,结果表明:即使转子转速发生很小的波动,也可能导致系统动态特性发生很大变化。
转子—轴承系统非线性振动及分岔特性研究转子-轴承系统非线性振动及分岔特性研究摘要:转子-轴承系统是工业中非常常见且重要的机械系统之一。
在该系统中,转子通过轴承得到支撑并旋转,以实现机械设备的正常运转。
然而,由于传动链的非线性、摩擦、失衡等因素的存在,转子-轴承系统常常会出现非线性振动。
本文通过理论分析和数值模拟的方法研究了转子-轴承系统的非线性振动机理及其分岔特性。
一、引言转子-轴承系统广泛应用于工业生产中的各个领域,如船舶、飞机、机床等。
然而,由于系统自身的非线性特性,该系统常常会发生非线性振动,给机械设备的正常运行带来不利影响。
因此,研究转子-轴承系统的非线性振动特性对系统的安全运行和性能提升具有重要意义。
二、转子-轴承系统的非线性振动机理转子-轴承系统的非线性振动主要由以下因素引起:轴承的摩擦力、传动链的非线性特性、转子的失衡等。
其中,轴承的摩擦力是主要因素之一。
当转子在摩擦力的作用下旋转时,摩擦力会导致转子-轴承系统产生非线性振动。
同时,传动链的非线性特性也会对系统的振动特性产生显著影响。
另外,转子的失衡也是导致系统振动非线性的重要因素之一。
三、转子-轴承系统的数值模拟为了研究转子-轴承系统的非线性振动特性,本文利用数值模拟的方法对系统进行仿真分析。
首先,建立了转子-轴承系统的数学模型,并将其转化为一组非线性常微分方程。
然后,利用数值求解方法求解该方程组,得到系统的时间-位移响应曲线和频谱图。
通过对比不同参数条件下的模拟结果,研究了转子-轴承系统的非线性振动特性及其分岔现象。
四、转子-轴承系统的非线性振动分岔特性研究表明,转子-轴承系统在一定条件下会产生分岔现象。
分岔是指系统的振动模态在某些特定参数下发生突变的现象。
在转子-轴承系统中,通过改变参数,如失衡量、摩擦力大小等,我们发现系统的振动模态会发生突变,从而产生新的振动模态。
这一现象说明了转子-轴承系统具有丰富的非线性振动特性和动力学行为。