植物染色体SSG分带方法与带型1)
- 格式:pdf
- 大小:609.49 KB
- 文档页数:3
实验十植物染色体Giemsa分带技术一、实验目的1. 掌握植物染色体Giemsa的C带、G带分带技术和方法。
2. 学习染色体带型分析方法。
二、实验原理植物染色体显带是借助于特殊的处理程序后,进行Giemsa染色,使染色体某些结构成分发生特异反应而出现深浅不同的带纹,从而使核型分析中更准确地识别染色体的每个成员以及其结构变异。
通过改变Giemsa分带处理程序可产生不同带型,因此有C带、G带、N带、Q带、T带等不同技术。
C带(组成异染色质带):C带技术是应用最广泛的技术,它主要显示着丝粒、端粒、核仁组成区域或染色体臂上某些部位的组成异染色质而产生相应的着丝粒带、端粒带、核仁组成区带、中间带等,这些带可以在一条染色体上同时出现,也可以只有其中的一条或几条带。
G带(Giemsa带):显示染色粒,G带分布于染色体的全部长度上。
以深浅相间的横纹形式出现。
G带能清楚地反映染色体的纵向分化,能提供较多的鉴别标志。
因此,G带是分带技术中最有价值的一种。
R带(反带):与G带相反的染色带.由于处理程序不同,染色体在同一部位染色效果相反。
N带:专一地显示出核仁组织区。
T带:专一地显示出端粒区域。
以上几种带型在植物上应用最多的为C带和G带,本次实验主要介绍这两种分带技术。
三、实验材料(一)材料大麦(Hordeum spp.2n=14)的种子、蚕豆(Vicia faba 2n=12)的种子、洋葱(Allium cepa 2n=16)的鳞茎。
以上材料可任选一种。
(二)器材培养箱、恒温水浴锅、分析天平、小台秤(200g) 、量简(50ml、100ml、1000ml、10m1) 、烧杯(200m1) 、容量瓶(1000m1) 、棕色试剂瓶(200m1)、滴瓶、染色缸、载玻片、盖玻片、显微镜、显微照相及冲洗放大设备、剪刀、镊子、刀片、滤纸、玻璃板、牙签、切片盒。
(三)试剂Giemsa母液、磷酸缓冲液、氯化钠、柠檬酸钠、甲醇、乙醇、冰醋酸、氢氧化钡、秋水仙素或对二氯苯、α-溴萘、纤维素酶、果胶酶、胰蛋白酶、醋酸洋红、45% 醋酸等。
染色体核型分析三大技术介绍·概念是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。
经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。
染色体核型分析技术,传统上是观察染色体形态。
但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。
·三大技术介绍一、GRQ带技术人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。
显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。
每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。
根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。
染色体特定的带型发生变化,则表示该染色体的结构发生了改变。
一般染色体显带技术有G显带(最常用),Q显带和R显带等。
百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。
二、荧光原位杂交技术荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。
FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA 纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。
植物染色体常规分析技术植物染色体常规分析技术是一种用于研究植物基因组结构与功能的重要手段。
在植物遗传学和分子生物学研究中,通过对植物染色体的观察和分析,可以揭示植物的遗传特性、染色体的结构与功能,并为植物育种和基因工程提供实验依据。
本文将重点介绍植物染色体常规分析技术的原理、方法和应用。
染色体制片是最基本的植物染色体常规分析技术。
它通过对植物组织进行处理和解离,将解离的细胞制作成染色体悬滴或薄片,再通过染色体标记技术进行染色和观察。
染色体制片的制备方法有多种,如固定-解离-染色法、醋酸不敏感-解离-染色法、花草植物花蕾组织研磨法等。
G-显带和C-显带染色技术是常用的染色体染色技术,可用于对植物染色体的结构和功能进行分析。
G-显带染色技术主要通过染色体在酸性条件下的显色性质差异来观察和比较染色体的组织型结构,得到染色体的G-带。
C-显带染色技术则通过对染色体进行DNA硫酸基蛋白酶酶解和碱处理,使DNA与染色体分离,再通过DNA染色剂进行染色,得到染色体的C-带。
染色体定位可通过显微术观察染色体位置和形态的变化,以及采用染色体标记和探针技术的方法,精确定位和描绘染色体的分布情况。
常用的方法有细胞核型分析、Fluorescence In Situ Hybridization (FISH) 技术等。
染色体行为观察是研究染色体变化和功能的重要手段。
通过观察染色体在有丝分裂和减数分裂过程中的行为,可以揭示染色体的形态变化、染色体的遗传性状等。
常用的方法有染色体标记和染色体芯片技术。
基因组分析是通过对植物基因组的染色体进行分析,揭示植物基因组的组成、结构和功能,并进一步阐明基因功能和基因组演化规律。
常用的方法有荧光原位杂交(FISH)、光学显微镜观察、超高分辨率的二次离子反射质谱成像技术等。
植物染色体常规分析技术在植物遗传学研究和育种实践中得到广泛应用。
通过对植物染色体的观察和分析,可以解决植物遗传问题、揭示植物遗传基础、鉴定染色体缺陷和异常等。
实验三染色体显带技术和带型分析一、实验目的学习和掌握植物染色体Giemsa显带技术和带型分析方法,进一步鉴别植物染色体组和染色体结构。
二、实验原理对植物有丝分裂中期染色体进行酶解,酸、碱、盐等处理,再经染色后,染色体可清楚地显示出很多条深浅、宽窄不同的染色带。
各染色体上染色带的数目、部位、宽窄、深浅、相对稳定,为鉴别染色体的形态提供依据,也为细胞遗传学和染色体工程提供新的研究手段。
植物染色体显带技术包括荧光分带和Giemsa(吉姆萨)分带两大类。
在植物染色体显带上最常用的是Giemsa分带技术,其中C带和N带较为常用。
C带的形成认为是高度重复序列的DNA(异染色质)经酸碱变性和复性处理后,易于复性,而低重复序列和单一序列DNA(常染色质)不复性,经Giemsa染色后呈现深浅不同的染色反应。
这种差异反映染色体结构的差异。
三、实验材料洋葱、蚕豆、大麦、黄麻的根尖。
四、实验仪器及用具多媒体系统(附显微演示),显微镜(附摄影装置),半异体致冷器,冰箱,恒温水浴锅,电子天平,液态氮装置,容量瓶,试剂瓶烧杯,染色缸,载玻片,盖玻片,剪刀,镊子,玻璃板,滤纸,标签,铅笔五、药品和试剂冰醋酸,无水酒精,甲醇,盐酸,柠檬酸钠,氢氧化钡,氯化钠,磷酸二氢钠,磷酸二氢钾,磷酸氢二钠,甘油,Giemsa粉剂,果胶酶,纤维素酶试剂1:Giemsa液:0.5克Giemsa,33ml甘油,33ml甲醇,用少量甘油将Giemsa粉末研磨至无颗粒,剩余甘油分次洗涤至棕色瓶内,置56℃恒温2h,加入甲醇,过滤后保存于棕色瓶中。
试剂2 :5%氢氧化钡:5gBa(OH)2加入100ml沸蒸馏水中溶解后过滤,冷却至18-28℃。
试剂3:2×SSC溶液:0.3M氯化钠+0.3M柠檬酸钠。
试剂4:1M NaH2PO4溶液。
试剂5:1%纤维素酶和果胶酶混合液。
试剂6:1/15磷酸二氢钾和1/15磷酸氢二钠缓冲液。
六、实验步骤(一)染色体分带1. 材料准备待洋葱鳞茎发根长2cm左右,切取根尖进行预处理。