第二章 染色体的形态特征及其
- 格式:ppt
- 大小:1.54 MB
- 文档页数:27
染色体形态特征
染色体是细胞中的重要结构,携带着遗传信息。
染色体的形态特征可以通过染色体带分析、染色体核型分析等方法进行观察和研究。
染色体通常由两个相同的染色体互为同源染色体,其中一条来自母亲,另一条来自父亲。
不同物种的染色体数量和形态也各不相同。
例如,人类有46条染色体,其中包括22对自动体染色体和一对性染色体;而狗有78条染色体,猫有38条染色体。
染色体的形态特征通常可以通过显微镜观察到。
人类染色体的形态通常分为四种基本类型:长臂和短臂长度相近的亚等臂型(metacentric)、长臂稍长的亚长臂型(submetacentric)、长臂明显较长的亚长臂型(acrocentric)和只有短臂的微小染色体(telocentric)。
不同染色体之间的形态和带型也有所不同。
例如,在人类染色体带分析中,第一条染色体上的G带区比C带区暗,而在第二条染色体上,C带区比G带区暗。
染色体形态特征的研究对于深入了解染色体结构、功能以及遗传变异等方面具有重要意义。
- 1 -。
第一章绪论一、细胞遗传学的研究对象和任务细胞遗传学是遗传学与细胞学相互交叉与结合的一个遗传学的分支学科。
它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律的一门基础科学。
细胞遗传学的研究对象、任务和内容:以高等动植物为主要研究对象.研究任务:揭示染色体与生物遗传、变异和进化的关系.内容包括:染色体的数目、形态、结构、功能与运动等特征以及这些特征的各类变异对遗传传递、重组、表达与调控的作用和影响.第二章染色体的形态特征和结构§1。
染色体的一般形态特征一、染色体数目不同种类动植物染色体数目是相对恒定的。
二、染色体大小不同染色体之间大小有很大差异是染色体最明显的形态特征。
●影响染色体大小变异的因素1.与物种亲缘关系有关一般是亲缘关系越远,大小变异越明显。
科间﹥属间﹥种间﹥种内2.与生长发育有关3。
与外界环境条件有关如化学试剂、温度影响三、着丝粒及其超微结构●定义:着丝粒是一个细长的DNA片段(染色体主缢痕部位的染色质),不紧密卷曲,连接两个染色单体,是染色体分离与运动装置。
缺少着丝粒的染色体不能分离并导致染色体丢失。
●功能:着丝粒又称动原体,是染色体的运动器官,也是姐妹染色单体在分开前相互连接的部位.两侧为异染色质区,由短的DNA串联重复序列构成.着丝粒断裂、缺失,会使染色体运动受阻,造成染色体丢失。
●类型根据着丝粒在染色体上的位置和分布,分为:1。
有固定位置的着丝粒在染色体上着丝粒具有永久性的固定区域.2。
新着丝粒细胞分裂时除了正常着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域.3。
无固定位置的着丝粒指纺锤体附着点在染色体上没有固定的位置.(1)多着丝粒在一个染色体上可附着多个纺锤丝,且着丝粒被非着丝粒片段隔开。
(2)全身性着丝粒染色体的每一点都表现有着丝粒的活性,即整个染色体上均有着丝粒分布现象,又称为分散型着丝粒。
四、次缢痕、核仁组织区和随体●次缢痕和核仁组织区在一个染色体组中,除了主缢痕外,任何其他的缢痕都属于次缢痕。
第二章染色体的形态和结构第一节原核细胞和真核细胞一.原核生物和真核生物的概念真核生物的遗传物质集中在有核膜包围的细胞核中,并与特定的蛋白质相结合,经过一定的等级结构形成染色体。
原核生物的遗传物质只以裸露的核酸分子方式存在,虽与少量的蛋白质结合,但是没有真核生物染色体那样的等级结构。
习惯上,原核生物的核酸分子也称为染色体。
二、原核细胞与真核细胞的区别在生物界中,从细胞结构来看,可分为两大类:1.为真核体。
真核体包括:高等动植物、原生动物、真菌,以及一些藻类。
2.为原核体。
原核体包括:细菌、病毒以及蓝藻等。
两细胞系的区别如下:①一个典型的真核细胞体积(10um)比一个原核细胞体积(1-10um)大约十几倍甚至上万倍,因此在化学组分的总量上不同,真核细胞总量远远高于原核细胞总量。
②在真核细胞中,有一个由核膜所包围的细胞核。
在核中含有由DNA、蛋白质、RNA组成的多条染色体③原核体的染色体具有单个的DNA或RNA分子并在不同的有机体中表现不同。
④原核体细胞DNA的总量比真核体细胞的DNA总量少得多。
但是就单个DNA分子长度与该细胞大小相比却长得多。
⑤在遗传物质的交换与重组方面,真核生物通过雌雄配子融合形成合子并通过细胞分裂来完成遗传物质的交换与重组,而原核生物只是通过质粒介导来实现单向的遗传物质的交换。
⑥原核细胞mRNA的合成在许多重要方面不同于真核细胞。
⑦原核细胞mRNA常常在它的翻译刚开始之后,就开始从5’---端开始降解,即使它的合成还没有完成。
⑧细胞分裂方式不同,在原核细胞周期中,DNA复制后,紧接着便是细胞分裂,而真核细胞的细胞周期可分为几个不同的时期。
⑨由于原核细胞无溶菌体,因此不能通过吞噬和胞饮作用来进行异物的消化作用,原核细胞的电子传递部位在细胞膜,而真核细胞的电子传递部位在线粒体膜。
上述差异只是原核细胞与真核细胞在细胞水平上的差异,在分子上水平,原核细胞与真核细胞还具有明显的不同,如基因的序列组织、遗传物质的复制以及基因结构、表达方式、产物修饰、调控等方面均各有特点。
第二章遗传的染色体基础遗传物质脱氧核糖核酸(DNA)是以与蛋白质相结合成染色质的形式存在于间期细胞核中,它具有贮存遗传信息、准确地自我复制、转录和调控各种复杂的生命活动等功能。
通过精卵生殖细胞的形成和受精,遗传物质又以染色体的形式由亲代传给子代。
因此,生殖细胞是联系亲代与子代的桥梁,染色体是遗传物质的载体,是复杂的遗传与变异现象的细胞基础。
第一节染色质和染色体1882年Flemming将细胞核内易被碱性染料着色的物质称为染色质(chromatin)。
电镜下,间期核内的染色质呈细微纤丝状,当细胞进入分裂时期,细微纤丝状的染色质经过盘绕折叠成高度凝集的染色体(chromosome)。
因此,染色质和染色体是同一物质在细胞周期的不同时期不同形态结构表现。
一、染色质与染色体的化学组成和结构单位(一)染色质的化学组成通过对多种细胞的染色质进行分析,证明染色质的主要组成成分是DNA、组蛋白、非组蛋白和少量的RNA。
DNA和组蛋白的含量比较稳定,非组蛋白和RNA的含量常随细胞生理状态的不同而改变。
1.DNA 生物体的遗传信息就蕴含于DNA分子的核苷酸序列之中。
因此,DNA就是遗传信息的载体。
DNA的结构性质稳定,不会因细胞的分化而丢失,在同种生物的各类细胞中其含量恒定,生殖细胞中DNA的含量是体细胞的一半。
人类一个体细胞内的DNA重约7.0×10-8g,总长度约2m。
一个基因组的DNA分子大约3×109个碱基对。
真核细胞的DNA总是和大量的蛋白质结合在一起以染色质或染色体的形式存在,每条染色单体只含一个DNA分子。
这类DNA分子中含有单一序列(unique sequence)和重复序列(repetitive sequence),重复序列又按其重复程度分为中等重复序列和高度重复序列。
2.组蛋白(histone)组蛋白是染色质中富含精氨酸和赖氨酸等碱性氨基酸的蛋白质,带正电荷。
根据其所含精氨酸和赖氨酸的比例不同而分为5种类型:即H1、H2A、H2B、H3、H4。
第四章染色体(返回目录)染色体(chromosome)原来是指在真核生物细胞分裂期中能被碱性染料染色的物质。
它只存在于分裂期中的细胞内,在细胞周期的间期中,松散成为无定形的染色质(chromatin)。
现在染色体这一概念已被普遍用于指存在于原核生物(prokaryote)和真核生物(eukaryote)细胞内的所有核酸分子(DNA和RNA)。
染色体和染色质属于同一物质,二者并不存在组分上的差异,只是由于细胞所处的时期和生理功能的不同而表现在形态上的差异。
关于染色体的内部结构和染色体与染色质之间的变化过程,以及染色体中的DNA分子与蛋白质分子之间的关系和相互作用等问题,直到20世纪70年代初期核小体的发现才得到较为完整的解答。
第一节动物染色体的数目和形态特征在生物界中,每个物种的染色体都有其特定的数目和形态特征,了解物种染色体的数目和形态特征对于研究物种的起源、演化和分类,鉴别染色体的来源,以及开展基因定位和绘制遗传图谱都具有重要的意义。
一、染色体的数目同一物种内不同个体间的染色体数目是相对恒定的,高等动、植物体细胞的染色体大多是成对的,在性细胞中总是成单的,故在染色体数目上,体细胞是性细胞的1倍,通常分别用2n和n表示。
例如,猪2n=38,n=19;普通牛2n=60,n=30;山羊2n=60,n=30;人类2n=46,n=23;等等。
不同物种的染色体数目差别很大,例如,线虫类的一种马蛔虫(Ascaris sp.)变种只有1对染色体(n=1);而另一种蝴蝶(Lysandra)可达191对染色体(n=191);在某些植物中,如真蕨纲瓶尔小草属(Ophioglossum)的染色体数目甚至可多达510对(n=510);哺乳动物的染色体数目一般在10~30对之间(n=10~30)(表2—1)。
染色体数目的多少与该物种的进化程度一般并无关系,某些低等生物的染色体可比高等生物多许多,或者相反。
但是染色体的数目和形态特征对于鉴别系统发育过程中物种间的亲缘关系,常具有重要意义。
遗传的细胞学基础复习思考题及答案第二章遗传的细胞学基础《复习思考题》一、名词解释同源染色体:形态和结构相同的一对染色体。
非同源染色体(异源染色体):这一对染色体与另一对形态结构不同的染色体,互称为异源染色体。
姊妹染色单体与非姊妹染色单体有丝分裂和减数分裂(mitosis and meiosis):mitosis称有丝分裂:主要指体细胞的繁殖方式,DNA分子及相关的蛋白经过复制后平均的分配到两个子细胞中;meiosis:又称成熟分裂:是在性母细胞成熟时,配子形成过程中所发生的一种特殊的有丝分裂,因为它使体细胞染色体数目减半,所以称减数分裂。
(07A)交叉与联会:减数分裂的前期Ⅰ的偶线期同源染色体紧靠在一起,形成联会复合体,粗线期联会复合体分开,非姊妹染色单体之间出现交叉。
自花授粉(self-pollination):同一朵花内或同株上花朵间的授粉。
异花授粉(cross pollination):不同株的花朵间授粉。
受精(fertilization):雄配子(精子)与雌配子(卵细胞)融合为一个合子。
胚乳直感(xenia)或花粉直感:如果在3n胚乳上由于精核的影响而直接表现父本的某些性状。
一些单子叶植物的种子常出现这种胚乳直感现象。
例如:以玉米黄粒的植株花粉给白粒的植株授粉,当代所结种子即表现父本的黄粒性状。
果实直感(metaxenia):如果种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状。
例如:棉花纤维是由种皮细胞延伸的。
在一些杂交试验中,当代棉籽的发育常因父本花粉的影响,而使纤维长度、纤维着生密度表现出一定的果实直感现象。
无融合生殖(apomixis):雌雄配子不发生核融合的一种无性生殖方式。
可分为两大类:营养的无融合生殖(vegetative apomixis):指能代替有性生殖的营养生殖类型。
例如:大蒜的总状花序上常形成近似种子的气生小鳞茎,可代替种子而生殖。
无融合结子(agamospermy):指能产生种子的无融合生殖。
第二章遗传的细胞学基础染色质(chromatin):间期细胞核内能被碱性染料染色的物质。
由DNA,组蛋白,非组蛋白及少量rna组成,是间期细胞遗传物质存在的形式。
染色质有利于遗传信息的复制和表达。
染色体(chromosome):在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是DNA螺旋化的的最高形式。
染色体有利于遗传物质的平均分配。
染色质的类型:常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性。
异染色质:细胞间期核内纤维折叠盘曲程度紧密,分散度小,呈凝集状态,染色较深且不具有转录活性。
异染色质包括:结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态。
大多数位于着丝粒区、端粒区、次缢痕及y染色体长臂远端三分之二区段,一般不具有转录活性。
兼性异染色质:只在某些特定细胞类型或一定发育阶段,细胞原来的常染色质凝缩并丧失基因转录活性变为异染色质。
性染色质:是x/y染色体某一区段的DNA形成的特殊染色结构。
一定是异染色质。
x染色质:也叫x小体或Barr小体。
Lyon假说:实质:失活的x染色体。
特点:随机,永久,完全失活。
x染色质的数目等于x染色体的数目-1。
x染色体失活的意义--剂量补偿作用。
女性x连锁基因杂合子表达异常。
女性嵌合体。
后世补充:失活的X染色体并非整条,结构异常的X染色体优先失活。
y染色质:由y染色体长臂远端三分之二区段在男性间期细胞核中所形成的异染色质。
y染色体的数目等于y染色质的数目。
人类染色体的形态结构:着丝粒(主缢痕),长臂q,短臂p,端粒,副缢痕,随体。
人类染色体的类型:中央着丝粒,亚中央着丝粒,近端着丝粒。
核型:一个体细胞中的全部染色体按其大小,形态特征顺序排列所构成的图像。
核型分析:将待测细胞的核型进行染色体数目,形态特征的分析。
确定其是否与正常核型完全一致。
核型的记录格式(非显带):染色体总数+(,)+性染色体构成。
例如46,xx。
丹佛体制分组:A-G(形态依次减小)。
染色体遗传学绪论1848,Hofmeister从紫鸭跖草的小孢子母细胞中发现染色体;1879年,W.Flemming提出了染色质(choromatin)术语,用于描述染色后细胞核中强烈着色的细线状物质;1888年Waldeyer正式提出染色体(Chromosome)的命名;1883年鲁.威廉(Roux. W)提出有丝分裂和减数分裂过程的存在可能是由于染色体组成了遗传物质,同时他还假定了遗传单位沿着染色体丝作直线排列。
德国的生物学家魏斯曼(Weismann A)做了连续22代剪断小鼠尾巴的实验。
1869年达尔文的表弟高尔顿(Galton, F.)用数理统计的方法研究人类智力的遗传,发表了“天才遗传(Hereditary genius)”,认为变异是连续的,亲代的遗传性在子女中各占一半,并彻底混合,即“融合遗传论”。
由于他所选择的研究性状是数量性状,所以虽然他的结论是完全正确的,但只适合数量性状,而不能作为遗传的普遍规律。
1901年Devries提出突变这一名词;1902年Sutton W.S等提出了遗传的染色体学说;1902—1909年贝特森先后创用遗传学(Genetics)、等位基因(allele)、纯合体(homozygous)、杂合体(heterozygous)、上位基因(epistatic genes)等名词;1909年丹麦的科学家约翰逊(Johannsen)创用了基因(gene),基因型(genotype)和表型(phenotype);1923-1952年,由于低渗制片技术的建立(徐道觉等)和使用秋水仙碱获得了更多中期细胞分裂相(蒋有兴等)后,才证实人体细胞染色数目为46。
1959年相继发现先天愚型为21三体(Lejeune等)、Klinefelter综合征为47,XXY(Jacob和Strong)、Turner综合征为45,X等染色体改变,标帜着临床遗传学的建立。
1970年,Caspersson应用喹咔因氮芥荧光染色使每对染色体显示特殊带型(显带技术)。