格型自适应滤波器
- 格式:doc
- 大小:1.50 MB
- 文档页数:13
自适应滤波器原理第五版一、自适应滤波器概述自适应滤波器是一种能够自动调整其内部参数的滤波器,以适应输入信号的变化。
这种滤波器在许多领域都有广泛的应用,如通信、图像处理、控制系统等。
自适应滤波器的核心特点是能够根据输入信号自动调整其参数,从而实现最优的滤波效果。
二、最小均方误差准则最小均方误差准则是自适应滤波器设计的重要准则之一。
这个准则的基本思想是使滤波器的输出信号与期望信号之间的均方误差最小。
通过最小化均方误差,自适应滤波器能够逐渐逼近最优滤波器,从而提高信号处理的性能。
三、递归最小二乘法递归最小二乘法是一种常用的自适应滤波算法。
该算法通过最小化误差的平方和来不断更新滤波器的系数,从而实现最优的滤波效果。
递归最小二乘法具有快速收敛和稳定的特点,因此在实践中得到了广泛应用。
四、格型自适应滤波器格型自适应滤波器是一种特殊的自适应滤波器,其结构类似于格型结构。
这种滤波器的特点是具有较低的计算复杂度,同时具有良好的性能表现。
格型自适应滤波器广泛应用于实时信号处理和控制系统等领域。
五、自适应滤波器的应用自适应滤波器在许多领域都有广泛的应用,如通信、图像处理、控制系统等。
在通信领域,自适应滤波器用于信号的降噪和增强,从而提高通信质量。
在图像处理领域,自适应滤波器用于图像的平滑和锐化,从而提高图像的清晰度。
在控制系统中,自适应滤波器用于实现最优控制,从而提高系统的性能。
六、采样矩阵求逆算法采样矩阵求逆算法是一种求解线性方程组的算法,其在自适应滤波器的设计中也有重要的应用。
通过采样矩阵求逆算法,可以求解出自适应滤波器的最优系数,从而提高滤波器的性能。
七、并行分布式自适应滤波器并行分布式自适应滤波器是一种基于并行结构和分布式思想的自适应滤波器。
这种滤波器的特点是具有较高的计算效率和可扩展性,适用于大规模信号处理和实时系统等领域。
八、开关型自适应滤波器开关型自适应滤波器是一种特殊类型的自适应滤波器,其通过开关电路实现信号的传递和滤除。
第三章自适应数字滤波器3.1 引言3.2 自适应横向滤波器3.3 自适应格型滤波器3.4 最小二乘自适应滤波3.5 自适应滤波的应用3.1 引言(维纳滤波器的特点与不足)自适应数字滤波器和维纳滤波器一样,都是符合某种准则的最佳滤波器。
维纳滤波器的参数是固定的,适用于平稳随机信号的最佳滤波,但要设计这种滤波器,必须要求输入信号是平稳的,且具有信号和噪声统计分布规律的先验知识。
在实际中,常常无法知道这些先验知识,且统计特性还会变化,因此实现最佳滤波是困难的。
自适应滤波器的特点是:滤波器的参数可以自动地按照某种准则调整到最佳滤波;实现时不需要任何关于信号和噪声的先验统计知识,尤其当输入统计特性变化时,自适应滤波器都能调整自身的参数来满足最佳滤波的需要。
常常将这种输入统计特性未知,调整自身的参数到最佳的过程称为“学习过程”。
将输入信号统计特性变化时,调整自身的参数到最佳的过程称为“跟踪过程”,因此自适应滤波器具有学习和跟踪的性能。
由于自适应滤波器有这些特点,自1967年威德诺(B. Widrow)等人提出自适应滤波器以来,在短短十几年中,自适应滤波器发展很快,已广泛地用于系统模型识别,通信信道的自适应均衡,雷达与声纳的波束形成,减少或消除心电图中的周期干扰,噪声中信号的检测、跟踪、增强和线性预测等。
本章主要介绍自适应横向滤波器、自适应格型滤波器、最小二乘自适应滤波器以及自适应滤波器的应用举例。
3.2 自适应横向滤波器自适应滤波器的原理框图如图 3.2.1所示,图中()x n 称为输入信号,()y n 是输出信号,()d n 称为期望信号,或者称为参考信号、训练信号,()e n 是误差信号。
其中()()()e n d n y n =-自适应滤波器()H z 的系数根据误差信号,通过一定的自适应算法,不断地进行改变,使输出()y n 最接近期望信号()d n 。
这里暂时假定()d n 是可以利用的,实际中,()d n 要根据具体情况进行选取,能够选到一个合适的信号作为期望信号,是设计自适应滤波器的一项有创意的工作。
简述格型自适应滤波的基本原理和用途。
格型自适应滤波(GridAdaptiveFiltering,简称GAF)是一种基于图像网格结构的自适应滤波算法,它是当前用于图像处理的先进技术。
GAF算法可以高效地抑制图像噪声并保持其颜色和细节。
GAF算法利用图像网格结构,将图像分割成不同的小网格,并且每个小网格内的颜色分量值和灰度分量值相对比较稳定,从而可以有效地抑制图像的椒盐噪声和高斯噪声。
GAF算法利用每个滤波网格中的细节特征来调整滤波参数,从而减少滤波失真并有效抑制噪声,从而获得最优的滤波效果。
GAF算法的另一个优点是它可以根据不同网格的不同特征来有效地抑制噪声,从而实现最大限度的噪声抑制。
GAF算法具有广泛的应用前景,可以用于图像增强、图像恢复和图像去噪等图像处理任务中。
GAF算法可以有效地抑制照片中的噪声,从而使图片更加逼真,特别是受到光照的影响较大的低照度照片中,GAF算法则可以显著地改善图像质量。
此外,GAF算法还可以用于图像恢复,可以有效地改善被误差或噪声破坏的图像。
GAF算法在图像去噪方面也发挥着重要作用。
GAF算法可以有效地实现图像噪声的抑制,特别是在通信领域,GAF算法可以有效地抑制通信信号中的白噪声。
总之,GAF算法是一种基于图像网格结构的自适应滤波算法,它可以有效地降低图像的噪声,如椒盐噪声和高斯噪声,并且可以根据不同网格的不同特征来有效地抑制噪声,从而实现最大限度的噪声抑制,已经广泛应用于图像增强、图像恢复和图像去噪等图像处理任务中。
格型自适应滤波算法具有许多优点,如高效的噪声抑制、调整滤波参数以避免滤波失真以及根据不同滤波网格特征调整滤波参数以实现最佳滤波结果。
这种算法已经在图像处理领域广泛应用,如图像增强、图像恢复和图像去噪等任务中。
以上就是格型自适应滤波算法的基本原理和用途的简述。
格型自适应滤波算法的研究和应用前景还有待进一步深入研究,期待它可以更好地服务于图像处理领域。
基于FPGA的高速自适应格型滤波器的实现作者:程文帆戴在平来源:《现代电子技术》2011年第17期摘要:针对高速高灵敏度数字信号处理时对于自适应滤波器的数值特性和实时性的要求,在一种自适应格型联合滤波器的基础上提出算法改进,采用驰豫超前流水线技术和时序重构技术,在损失较小滤波性能的情况下,在FPGA中实现算法并可以达到较高的工作频率。
关键词:自适应滤波器; FPGA;梯度格型滤波器;流水线;时序重构中图分类号:TN713-34 文献标识码:A文章编号:1004-373X(2011)17-0113-03Implementation of High Speed Gradient Adaptive Lattice Filter Based on FPGACHENG Wen-fan, DAI Zai-ping(Institute of Information Science and Engineering, Huaqiao University, Xiamen 361021, China)Abstract: Considering numerical characteristics and real-time performance requirements of adaptive filters for the high sensitivity and high speed digital signal processing, a pipeline optimization approach based on the technology of delay leading transfer and retiming is proposed to improve GALJP algorithm. The new algorithm implemented in the FPGA can achieve high operating frequencies with small loss of the filtering performance.Keywords: adaptive filter; FPGA; gradient adaptive lattice filter; pipeline; retiming0 引言在处理微弱信号的时候自适应滤波器所处的环境可能是非平稳的,输入信号的自相关矩阵和互相关向量等算法参量将随时间变化,会对滤波器的收敛跟踪性能造成较大影响。
245第3章 最小均方误差自适应格形滤波器前面介绍的滤波器是横向结构的(或称为直接形式),这一章我们介绍另一类结构的自适应滤波器,称为自适应格形滤波器。
自适应格形滤波器具有一系列重要优点,使其有着广泛的应用领域,例如用于系统辨识和控制、噪声干扰对消、信道均衡、以及语音分析和合成等。
特别是递推最小二乘格型滤波器具有非常好的数值特性并能跟踪时变信号。
自适应格形滤波器正如自适应横向滤波器一样,有最小均方误差准则和最小二乘准则两种,因而自适应格形滤波器也两类不同的算法及实现结构。
这一章将讨论最小均方误差自适应格形滤波器。
求解线性预测正规方程也可采用Levinson-Durbin 算法,其运算量比直接求解正规方程要小得多。
根据Levinson-Durbin 算法可以发展出格形滤波器。
格形滤波器具有一系列重要优点,使其在自适应中获得广泛应用。
格形滤波器的优点包括:(1)一个m 阶格形滤波器可以产生相当于从1阶到m 阶的m 个横向滤波器的输出。
这使我们能在变化的环境下动态地选择最佳的阶;(对于横向滤波器来说,一旦滤波器的长度改变就会导致一组新的滤波器系数,而新的滤波器系数与旧的完全不同。
而格形滤波器的结构是阶次递推式的,它的阶数的改变并不影响其它级的反射系数。
)(2)格形滤波器具有模块式结构,便于实现高速并行处理;(3)格形滤波器系数优良的数值特性。
3.1 线性预测滤波器3.1.1 前向线性预测滤波器前向线性预测是已知)1(-n x ,…,)(m n x -等m 个值,用这m 个值线性组合预测)(n x ,即)()1()(ˆ1m n x a n x a n xmm m -----= ∑=--=mk mkk n x a1)( 3.1.1)mk a 称为前向预测系数。
实现这种处理的滤波器称为前向线性预测滤波器。
前向线性预测误差为245()()()∑=-+=-=mk mkfmk n x an x n xn x e 1)(ˆ (3.1.2)如果把fm e 看成是输出,)(n x 是其输入,这时滤波器称为前向线性预测误差滤波器。