圆的标准方程公开课
- 格式:ppt
- 大小:1.08 MB
- 文档页数:7
4.1.1《圆的标准方程(第1课时)》教学设计教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。
对于知识的后续学习,具有相当重要的意义。
学情分析:圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,本节之前又学习了建立直角坐标系求直线方程的方法,这些都为本节课的学习奠定的必要的基础。
再者,经过必修一、必修二的学习,高一学生对高中数学学习的基本方法也有了一定的体验和了解,具备了初步的观察、类比、归纳、概括、表达能力。
通过五种直线方程的学习,对坐标系下建立方程进行了反复训练,这些都为本节课的学习做了能力和方法上的准备。
教法分析为了充分调动学生学习的积极性,本节课采用“问题-探究”教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.启发学生思考问题,理解问题,解决问题。
教学目标:1.知识与技能(1)会推导圆的标准方程,掌握圆的标准方程;(2)能根据圆心坐标、半径熟练地写出圆的标准方程;2.过程与方法进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。
3.情感态度与价值观通过利用已学知识学会分析、解决问题,品尝成功的喜悦,增强学生学习数学的兴趣,并激发学生学习数学的自信心。
教学重点与难点:1.重点:圆的标准方程的推导过程和圆标准方程特征的理解与掌握。
2.难点: (1)由已知条件求圆的标准方程(2)判定点和圆的位置关系教学过程(一) 创设情景,引入新课用多媒体播放实际生活中圆的模型,引导学生从中抽象出圆的几何图形 “ 圆在我们的生活中无处不在,日出东方,车行天下,这些都是圆的具体表现形式。
《4.1.1 圆的标准方程》教案
授课时间:授课地点:授课教师:
一、教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。
对于知识的后续学习,具有相当重要的意义.
二、教学目标:
1、知识与技能:①掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;反之,
会根据圆的标方程,求圆心和半径;
②会判断点和圆的位置关系;
③会用待定系数法和几何法求圆的标准方程;
2、过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思
想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问
题、发现问题和解决问题的能力.
3、情感态度和价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习
数学的热情和兴趣.
三、内容分析:
重点:圆的标准方程的求法及其应用
难点:会根据不同的已知条件求圆的标准方程
四、教具学具的选择:多媒体、圆规、直尺、课件.
五、教学方法:采用“问题-探究”教学法.
六、教学过程:。
4.1.1圆的标准方程一、教学分析在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程、它与其他图形的位置关系及其应用.同时,圆是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础。
也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程"一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,培养学生的创造和应用意识,本节内容我采用“引导探究”型教学模式进行教学设计.二、三维目标1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心坐标和半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想。
2、用待定系数法和几何法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力。
三、教学重点圆的标准方程的推导过程和圆的标准方程的应用.四、教学难点会根据不同的已知条件,会利用待定系数法和几何法求圆的标准方程。
五、课时安排 1课时六、教学过程设计七、板书设计八、教学反思圆是学生比较熟悉的曲线,求圆的标准方程是本节课的重点和难点。
为此我设置了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.利用圆的标准方程由浅入深的解决问题,增强学生应用数学的意识。
另外,为了培养学生的理性思维,在例题二中我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。
本设计把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决的同时锻炼了思维、提高了能力、培养了兴趣,完成本节的学习任务。
圆的标准方程课件圆是平面几何中的重要图形之一,它在数学、物理、工程等领域都有着广泛的应用。
在学习圆的相关知识时,我们需要了解圆的标准方程,这是描述圆的一种重要方式。
本课件将详细介绍圆的标准方程,帮助大家更好地理解和掌握这一知识点。
1. 圆的定义。
首先,让我们来回顾一下圆的定义。
圆是平面上到一个定点距离等于定长的所有点的集合。
这个定点称为圆心,定长称为半径。
圆的直径是通过圆心并且两端点在圆上的线段,直径的长度是半径的两倍。
2. 圆的标准方程。
圆的标准方程是描述圆的一种数学表达式,它可以简洁地表示出圆的位置、形状和大小。
对于平面直角坐标系中的圆来说,其标准方程为:(x a)² + (y b)² = r²。
其中(a, b)为圆心的坐标,r为圆的半径。
这个方程的意义是平面上任意一点(x, y)到圆心(a, b)的距离等于半径r。
3. 推导过程。
我们可以通过一些基本的几何知识来推导圆的标准方程。
首先,假设圆心坐标为(a, b),半径为r。
设平面上任意一点的坐标为(x, y)。
根据两点间距离公式,点(x, y)到圆心(a, b)的距离为:√[(x a)² + (y b)²]根据圆的定义,这个距离应该等于半径r。
因此,我们可以得到方程:√[(x a)² + (y b)²] = r。
两边平方得到:(x a)² + (y b)² = r²。
这就是圆的标准方程。
4. 圆的图像。
接下来,让我们来看一下圆的图像。
通过圆的标准方程,我们可以很容易地画出圆的图像。
首先,确定圆心的坐标(a, b),然后以半径r为距离在平面直角坐标系上作图,就可以得到一个完整的圆。
5. 圆的性质。
最后,我们来总结一下圆的一些重要性质。
根据圆的标准方程,我们可以得到以下结论:圆的标准方程中,圆心坐标(a, b)决定了圆的位置,半径r决定了圆的大小。
《圆》单元教案公开课第一章:圆的引入1.1 教学目标让学生了解圆的定义和特点。
培养学生观察和描述圆的能力。
1.2 教学内容圆的定义:平面上一动点以一定点为中心,一定长为半径运动一周的轨迹称为圆。
圆的特点:圆是对称的,任意一条通过圆心的线都是圆的对称轴。
1.3 教学方法采用问题引导法,让学生通过观察和思考来理解圆的定义。
利用实物模型或图示来展示圆的特点。
1.4 教学活动让学生观察一些生活中的圆形物体,如硬币、轮子等,并描述它们的特点。
引导学生通过实际操作,画出一个圆并观察其对称性。
1.5 作业布置让学生回家后找一些圆形物体,观察并描述它们的特点,并尝试画出一个圆。
第二章:圆的周长和面积2.1 教学目标让学生掌握圆的周长和面积的计算方法。
培养学生运用圆的周长和面积解决实际问题的能力。
2.2 教学内容圆的周长:圆的周长等于半径乘以2π。
圆的面积:圆的面积等于半径的平方乘以π。
2.3 教学方法采用讲解法和练习法,让学生通过计算和实际问题来理解和掌握圆的周长和面积的计算方法。
2.4 教学活动讲解圆的周长和面积的计算公式。
让学生进行一些计算练习,如给定一个圆的半径,计算其周长和面积。
2.5 作业布置让学生回家后,找一些圆形物体,测量它们的周长和面积,并记录下来。
第三章:圆的性质3.1 教学目标让学生了解圆的性质,如圆的直径、半径、弧等。
培养学生观察和描述圆的性质的能力。
3.2 教学内容圆的直径:圆上任意两点通过圆心的线段称为直径。
圆的半径:从圆心到圆上任意一点的线段称为半径。
圆的弧:圆上任意两点之间的部分称为弧。
3.3 教学方法采用问题引导法和观察法,让学生通过观察和思考来了解圆的性质。
3.4 教学活动讲解圆的直径、半径和弧的定义。
让学生进行一些实际操作,如画出一个圆,并用直尺和圆规来测量其直径、半径和弧。
3.5 作业布置让学生回家后,找一些圆形物体,观察并描述它们的直径、半径和弧。
第四章:圆的方程4.1 教学目标让学生掌握圆的标准方程和一般方程。