RS-485接口芯片介绍及应用中的有关问题
- 格式:doc
- 大小:32.00 KB
- 文档页数:2
西门子S7-200PLC RS485接口容易损坏的原因和解决办法一、 S7-200PLC内部RS485接口电路图:图中R1、R2是阻值为10欧的普通电阻,其作用是防止RS485信号D+和D-短路时产生过电流烧坏芯片,Z1、Z2是钳制电压为6V,最大电流为10A的齐纳二极管,24V电源和5V电源共地未经隔离,当D+或D-线上有共模干扰电压灌入时,由桥式整流电路和Z1、Z2可将共模电压钳制在±6.7V,从而保护RS485芯片SN75176(RS485芯片的允许共模输入电压范围为:-7V~+12V)。
该保护电路能承受共模干扰电压功率为60W,保护电路和芯片内部没有防静电措施。
二、常发生的故障现象分析:当PLC的RS485口经非隔离的PC/PPI电缆与电脑连接、PLC与PLC之间连接或PLC与变频器、触摸屏等通信时时有通信口损坏现象发生,较常见的损坏情况如下:●R1或R2被烧断,Z1、Z1和SN75176完好。
这是由于有较大的瞬态干扰电流经R1或R2、桥式整流、Z1或Z1到地,Z1、Z2能承受最大10A电流的冲击,而该电流在R1或R2上产生的瞬态功率为:102×10=1000W,当然会将其烧断。
●SN75176损坏,R1、R2和Z1、Z2完好。
这主要可能是受到静电冲击或瞬态过电压速度快于Z1、Z2的动作速度造成的,静电无处不在,仅人体模式也会产生±15kV的静电。
●Z1或Z2、SN75176损坏,R1和R2完好。
这可能是受到高电压低电流的瞬态干扰电压将Z1或Z2和SN75176击穿,由于电流较小和发生时间较短因而R1、R2不至于发热烧断。
由以上分析得知PLC接口损坏的主要原因是由于瞬态过电压和静电造成,产生瞬态过电压和静电的原因很多也较复杂,如由于PLC内部24V电源和5V电源共地,24V电源的输出端子L+、M为其它设备混合供电可能导致地电位变化,从而造成共模电压超出允许范围。
RS485接口芯片的介绍与应用RS485是一种常用的串行通信协议,用于在不同设备之间进行数据传输。
RS485接口芯片是用于实现RS485通信的关键组成部分,它可以将串行数据转换为差分信号并进行调制和解调。
接下来,我们将对RS485接口芯片的介绍与应用进行详细的阐述。
首先,让我们来了解一下RS485接口芯片的工作原理。
RS485接口芯片通常由发送器和接收器两个部分组成。
发送器将串行数据转换为差分信号,并通过差分驱动线将信号发送到接收器。
接收器则负责将差分信号转换回串行数据。
这种差分信号的使用可以增加通信的抗干扰能力,提高通信的可靠性。
RS485接口芯片通常有多种工作模式可供选择,如全双工和半双工等。
全双工模式允许同时进行发送和接收操作,而半双工模式则需在发送和接收之间进行切换。
此外,RS485接口芯片还支持多节点通信,可以通过总线连接多个设备,实现设备之间的数据传输。
RS485接口芯片有许多重要的特性,使其成为广泛应用于工业自动化和远程控制等领域的重要组成部分。
首先,RS485接口芯片支持高速数据传输,通常可以达到几十兆比特每秒的速率。
其次,RS485接口芯片具有较长的传输距离,可以达到几公里甚至几十公里。
这使得RS485成为在大范围地域内进行数据传输的理想选择。
此外,RS485接口芯片还具有良好的抗干扰能力。
差分信号传输方式可以有效地减少信号被外界干扰的可能性,尤其是在电磁干扰环境下仍能保持较高的通信可靠性。
另外,RS485接口芯片还具有低功耗的特性,适合在电池供电的设备中使用,以延长电池寿命。
RS485接口芯片在实际应用中有着广泛的应用。
首先,它常用于工业自动化和仪器仪表等领域的数据传输。
例如,在工业控制系统中,RS485接口芯片可以连接各种传感器和执行器,实现数据的采集和控制。
其次,RS485接口芯片也常用于楼宇自动化系统中,如安防监控和智能家居等领域。
此外,RS485接口芯片还可以用于远程监视和数据采集等应用,如天气监测和环境监测等。
32Internet Technology互联网+技术动器组成,并且具有输入、输出使能端,当不使用时输入接收器和输出驱动器处于高阻状态。
MAX489芯片由两个独立的TTL--差分转换部分组成,每个转换部分均包含一个TTL 信号转换为差分信号的部件和一个差分信号转换为TTL 信号的部件。
MAX489具有以下特点:①限制转换速率,用于无误差数据传输;②120μA 低静态电流;③-7V ~+12V 的共模输入电压范围;④三态输出;⑤+5V 单电源供电;⑥每条总线上允许挂128个收发器;⑦用于驱动器过载保护的电流限制和热关闭方式。
输出驱动器具有短路电流限制保护,将输出端在功率损耗过大时置于高阻状态以免损害器件。
MAX489芯片的限制转换速率驱动器有利于减小EMI,减少由于不适当的电缆匹配所产生的反射,实现250kbps 的无误码传输。
输入接收器具有故障自动保险特点,能够确保在输入开路时,驱动器也能输出逻辑高电平。
内置的驱动器和接收器具有实效保护电路,能够在接收器输入开路时确保逻辑高电平输出。
另外,如果终端总线上的所有发送器处于禁止状态(高阻抗)时,接收器同样会输出一个逻辑高电平。
输入输出关系见表1、表2。
表1 输入输出关系驱动输入输出/RE DE DI Z Y ×1101×1010×1开路10××高阻高阻一、引言RS-232是PC 机与通信工业中应用最广泛的一种串行接口。
RS-232的传送距离要求可达50英尺(约15米),最高速率为20kbps。
为了改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mbps,传输距离延长到1200米(速率低于100kbps 时),并允许在一条平衡总线上连接最多10个接收器。
当然,RS-422也有缺陷:因为其平衡双绞线的长度与传输速率成反比,所以在100kbps 速率以内,传输距离才可能达到最大值。
在当今信息通讯高速发展的阶段,人们在充分享受网络给人类带来的喜悦。
随着网络的普及与发展,使得各种控制设备网络化成为可能。
自动化监控、安全防护、门禁考勤及工业自动化系统得到迅速普及与应用。
在工业控制设备之间中长距离通信的诸多方案中,RS-485系统总线因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动测控等领域,随着RS485总线系统的广泛应用,RS485总线系统也越来越大,RS485总线外挂的485设备越来越多,从而导致485总线的稳定性越来越差。
现在市场上已经有可以负载128,256台甚至400台485设备的转换器,由于485总线使用总线连接形式,形成如果有一个485设备出现问题,就导致整个485总线出现问题的现象。
所以从485总线的稳定性来说,当设备达到一定数量的时候,从概率上分析,假设485总线上的485设备的无差错时间为99、9%,当有128个485设备在一个总线上时,其无差错时间就就是99、9%的128次方,其无差错时间讯速降为87、98%,再有RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行稳定性及可靠性至关重要。
现在将485总线容易出现故障的情况并且可以排除这些故障的方法罗列如下:一、由于485信号使用的就是一对非平衡差分信号,意味485网络中的每一个设备都必须通过一个信号回路连接到地,以减少数据线上的噪音,所以数据线最好由双绞线组成,并且在外面加上屏蔽层作为地线,将485网络中485设备连接起来,并且在一个点可靠接地。
对于由分散式工业控制设备结合RS-485微系统组建的测控网络,应优先采用各微系统独立供电方案,最好不要采用一台大电源给微系统并联供电,同时电源线(交直流)不能与RS-485信号线共用同一股多芯电缆。
RS-485信号线宜选用截面积0.75mm2以上双绞线而不就是平直线。
485芯片运用场景(原创实用版)目录1.485 芯片概述2.485 芯片的运用场景3.485 芯片的优势和特点4.485 芯片的未来发展前景正文一、485 芯片概述485 芯片,又称为 RS-485 芯片,是一种串行通信接口芯片。
它是由美国电子工业协会(Electronic Industries Alliance,简称 EIA)制定的一种通信标准,主要用于多点通信和远距离通信。
这种芯片具有较强的抗干扰能力,可以支持多节点通信,广泛应用于各种自动化控制系统和通信网络中。
二、485 芯片的运用场景1.工业自动化控制:在工业自动化控制领域,485 芯片被广泛应用于传感器、执行器、PLC、PAC 等设备之间的通信。
它可以实现多点、远距离的数据传输,有效提高了工业自动化控制系统的可靠性和稳定性。
2.通信网络:485 芯片可以实现多个节点之间的通信,因此在通信网络领域也有着广泛的应用。
例如,它可用于构建楼宇自控系统、智能交通系统、电力系统自动化等。
3.智能仪表:485 芯片可用于智能仪表的研发与生产,如智能电表、智能水表等。
通过 485 芯片,这些仪表可以实现远程数据采集、传输和监控,方便了数据管理和分析。
4.医疗设备:在医疗设备领域,485 芯片可以实现各种医疗设备的数据传输和远程监控,提高了医疗设备的智能化水平。
三、485 芯片的优势和特点1.较强的抗干扰能力:485 芯片具有较强的抗干扰能力,能在恶劣的电磁环境中正常工作,保证了数据传输的可靠性。
2.多节点通信:485 芯片可以支持多个节点之间的通信,实现了设备之间的互联互通。
3.远距离传输:485 芯片可以实现远距离的数据传输,满足了各种应用场景的需求。
4.传输速率适中:485 芯片的传输速率适中,既能满足通信需求,又不会过高增加成本。
四、485 芯片的未来发展前景随着科技的不断发展,485 芯片在未来仍具有广阔的应用前景。
在工业 4.0、智能制造等领域,485 芯片将继续发挥其优势,为各种智能化设备和系统提供可靠的通信支持。
提高RS-485总线可靠性的几种方法及常见故障处理在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。
但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。
一、RS-485接口电路的硬件设计1、总线匹配总线匹配有两种方法,一种是加匹配电阻,如图1a所示。
位于总线两端的差分端口VA 与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。
但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。
另外一种比较省电的匹配方案是RC 匹配(图2 )利用一只电容C 隔断直流成分,可以节省大部分功率,但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。
除上述两种外还有一种采用二极管的匹配方案(图3),这种方案虽未实现真正的匹配,但它利用二极管的钳位作用,迅速削弱反射信号达到改善信号质量的目的,节能效果显著。
2、RO及DI端配置上拉电阻异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。
为防止干扰信号误触发RO(接收器输出)产生负跳变,使接收端MCU进入接收状态,建议RO外接10kΩ上拉电阻。
3、保证系统上电时的RS-485芯片处于接收输入状态对于收发控制端TC建议采用MCU引脚通过反相器进行控制,不宜采用MCU引脚直接进行控制,以防止MCU上电时对总线的干扰,如图4所示。
4、总线隔离RS-485总线为并接式二线制接口,一旦有一只芯片故障就可能将总线“拉死”,因此对其二线口VA、VB与总线之间应加以隔离。
通常在VA、VB与总线之间各串接一只4~10Ω的PTC电阻,同时与地之间各跨接5V的TVS二极管,以消除线路浪涌干扰。
如没有PTC 电阻和TVS二极管,可用普通电阻和稳压管代替。
485通信常见问题及解决方案1. MAX488/MAX490在点对点通信中工作很正常,为何在点对多点通信时无法正常通信由于MAX488/MAX490没有发送使能控制,因而其输出无法处于高阻态,当多个输出被连接在一起时(即点对多点通信时),差分输出信号线被多个发送器驱动(通常为TXD=1对应的电平状态);当某个节点开始通信,且发送TXD=0对应的差分电平时,A,B两线上将形成很大的短路电流,若长时间工作,则接口芯片将损坏;而这种情况不会在点对点通信中发生,且不会出现在点对多点通信中的处于点的一方,这也是象MAX488/MAX490以及其它一些没有发送使能控制的接口的适用范围。
以上是造成这个问题的原因,当然,类似情况也会出现在那些带使能控制而软件没有编程控制使能的接口芯片中。
2. RS-485/RS-422接口为何在停止通信时接收器仍有数据输出由于RS-485/RS-422在发送数据完成后,要求所有的发送使能控制信号关闭且保持接收使能有效,此时,总线驱动器进入高阻状态且接收器能够监测总线上是否有新的通信数据。
但是由于此时总线处于无源驱动状态(若总线有终端匹配电阻时,A和B线的差分电平为0,接收器的输出不确定,且对AB线上的差分信号的变化很敏感;若无终端匹配,则总线处于高阻态,接收器的输出不确定),容易受到外界的噪声干扰。
当噪声电压超过输入信号门限时(典型值±200mV),接收器将输出数据,导致对应的UART接收无效的数据,使紧接着的正常通讯出错;另外一种情况可能发生在打开/关闭发送使能控制的瞬间,使接收器输出信号,也会导致UART错误地接收。
解决方法:1)在通讯总线上采用同相输入端上拉(A线)、反相输入端下拉(B线)的方法对总线进行钳位,保证接收器输出为固定的“1”电平;2)采用内置防故障模式的MAX308x系列的接口产品替换该接口电路;3)通过软件方式消除,即在通信数据包内增加2-5个起始同步字节,只有在满足同步头后才开始真正的数据通讯。
RS-485接口芯片介绍及应用中的有关问题
南京办葛亚平
摘要本文结合实际应用介绍RS-485接口芯片的种类和一些常见问题的解决方法。
关键词RS-485 节点数半(全)双工抗雷击光电隔离
1 引言
RS-485接口芯片已广泛应用于工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域。
可用于RS-485接口的芯片种类也越来越多。
如何在种类繁多的接口芯片中找到最合适的芯片,是摆在每一个使用者面前的一个问题。
RS-485接口在不同的使用场合,对芯片的要求和使用方法也有所不同。
使用者在芯片的选型和电路的设计上应考虑哪些因素,由于某些芯片的固有特性,通信中有些故障甚至还需要在软件上作相应调整,如此等等。
希望本文对解决RS-485接口的某些常见问题有所帮助。
2 RS-485接口标准
传输方式:差分
传输介质:双绞线
标准节点数:32
最远通信距离:1200m 共模电压最大、最小值:+12V;-7V 差分输入范围:-7V~+12V
接收器输入灵敏度:±200mV
接收器输入阻抗:≥12kΩ
3 节点数及半双工和全双工通信
3.1 节点数
所谓节点数,即每个RS-485接口芯片的驱动器能驱动多少个标
准RS-485负载。
根据规定,标准RS-485接口的输入阻抗为
≥12kΩ,相应的标准驱动节点数为32。
有些芯片的输入阻抗设计成1/2负载(≥24kΩ)、1/4负载(≥48kΩ
甚至1/8负载(≥96kΩ),相应的节点数可增加到64、128和256
表1为一些常见芯片的节点数。
表1
3.2 半双工和全双工
RS-485接口可连接成半双工和全双工两种通信方式,如图1所示。
半双工通信的芯片有SN75176、SN75276、SN75LBC184、MAX485、MAX 1487、MAX3082、MAX1483等;全双工通信的芯片有SN75179、SN75180、MAX488~MAX491、MAX1482等。
(a)半双工通信电路
(b)全双工通信电路
图1
4 应用中的常见问题
4.1 抗雷击和抗静电冲击
RS-485接口芯片在使用、焊接或设备的运输途中都有可能受到静电的冲击而损坏。
在传输线架设于户外的使用场合,接口芯片乃至整个系统还有可能遭致雷电的袭击。
选用抗静电或抗雷击的芯片可有效避免此类损失,常见的芯片有MAX485E、MAX487E、MAX1487E 等。
特别值得一提的是SN75LBC184,它不但能抗雷电的冲击而且能承受高达8kV的静电放电冲击,是目前市场上不可多得的一款产品。
4.2 限斜率驱动
由于信号在传输过程中会产生电磁干扰和终端反射,使有效信号和无效信号在传输线上相互迭加,严重时会使通信无法正常进行。
为解决这一问题,某些芯片的驱动器设计成限斜率方式,使输出信号边沿不要过陡,以不致于在传输线上产生过多的高频分量,从而有效地扼制干扰的产生。
如MAX487、SN75LBC184等都具有此功能。
4.3 故障保护
故障保护技术是近两年产生的,一些新的RS-485芯片都采用了此项技术,如SN75276、MAX3080~MAX3089。
什么是故障保护,为什么要有故障保护,如果没有故障保护会产生什么后果?
众所周知,RS-485接口采用的是一种差分传输方式,各节点之间的通信都是通过一对(半双工)或两对(全双工)双绞线作为传输介质。
根据RS-485的标准规定,接收器的接收灵敏度为±200mV,即接收端的差分电压大于、等于+200 mV时,接收器输出为高电平;小于、等于-200mV时,接收器输出为低电平;介于±200mV之间时,接收器输出为不确定状态。
在总线空闲即传输线上所有节点都为接收状态以及在传输线开路或短路故障时,若不采取特殊措施,则接收器可能输出高电平也可能输出低电平。
一旦某个节点的接收器产生低电平就会使串行接收器(UART)找不到起始位,从而引起通信异常,解决此类问题的方法有两种:
(1)使用带故障保护的芯片,它会在总线开路、短路和空闲情况下,使接收器的输出为高电平。
确保总线空闲、短路时接收器输出高电平是由改变接收器输入门限来实现的。
例如,MAX3080~MAX 3089输入灵敏度为-50mV/-200mV,即差分接收器输入电压U A-
B≥-50mV时,接收器输出逻辑高电平;如果U A-B≤-200mV,则输出逻辑低电平。
当接收器输入端总线短路或总线上所有发送器被禁止时,接收器差分输入端为0V,从而使接收器输出高电平。
同理,SN75276的灵敏度为0mV/-300mV,因而达到故障保护的目的。
(2)若使用不带故障保护的芯片,如SN75176、MAX1487等时,可在软件上作一些处理,从而避免通信异常。
即在进入正常的数据通信之前,由主机预先将总线驱动为大于+200mV,并保持一段时间,使所有节点的接收器产生高电平输出。
这样,在发出有效数据时,所有接收器能够正确地接收到起始位,进而接收到完整的数据。
4.4 光电隔离
在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。
虽然RS-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无法正常工作了,严重时甚至会烧毁芯片和仪器设备。
解决此类问题的方法是通过DC-DC将系统电源和RS-485收发器的电源隔离;通过光耦将信号隔离,彻底消除共模电压的影响。
实现此方案的途径可分为:
(1)用光耦、带隔离的DC-DC、RS-485芯片构筑电路;
(2)使用二次集成芯片,如PS1480、MAX1480等。
以上主要介绍在不同场合如何选择合适的RS-485接口芯片,和可能碰到的有关问题的解决方法,从而避免通信异常。
至于其它诸如终端匹配、传输线的选择和屏蔽、通信速率的选择等等,在一些相关资料中都能找到答案,这里就不再介绍了。