2017-2018高中数学选修2-2分层训练6-3(2)数学归纳法(二)湘教版
- 格式:doc
- 大小:94.00 KB
- 文档页数:7
活页作业(二十一) 数学归纳法1.用数学归纳法证明“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6解析:当n 取1,2,3,4时2n >n 2+1不成立;当n =5时,25=32>52+1=26.故第一个能使2n >n 2+1的n 值为5.答案:C2.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N +,n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<3解析:∵n >1且n ∈N +,∴n 取的第一个值n 0=2. ∴第一步应验证:1+12+13<2.答案:B3.设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1解析:S k +1=1k +2+1k +3+…+12k +12k +1+12k +2=S k +12k +1+12k +2-1k +1=S k +12k +1-12k +2. 答案:C4.若f (n )=1+12+13+…+12n +1(n ∈N +),则n =1时f (n )是( )A .1B .13C .1+12+13D .以上答案均不正确解析:∵f (n )共有(2n +1)项,∴当n =1时,有2+1=3项,即f (1)=1+12+13.答案:C5.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有(n +1)项,当n =2时,f (2)=12+13+14C .f (n )中共有(n 2-n )项,当n =2时,f (2)=12+13D .f (n )中共有(n 2-n +1)项,当n =2时,f (2)=12+13+14解析:观察分母的首项为n ,最后一项为n 2,公差为1, ∴项数为n 2-n +1. 答案:D6.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N +)时第一步验证n=1时,左边应取的项是______________.解析:当n =1时,左边要从1加到n +3,即1+2+3+4. 答案:1+2+3+47.已知每项都大于零的数列{a n }中,首项a 1=1,前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ≥2),则a 81____________.解析:∵S n S n -1-S n -1S n =2S n S n -1, S 1=a 1=1,∴S 2=9,S 3=25,…,S n =(2n -1)2. 利用数学归纳法可证明S n =(2n -1)2. ∴a 81=S 81-S 80=640. 答案:6408.已知f (n )=1+12+13+…+1n ,n ∈N +,用数学归纳法证明f (2n )>n 2时,f (2n +1)-f (2n )=______________.解析:f (n )有n 项,最后一项是1n ,f (2n )有2n 项,最后一项是12n ,f (2n +1)有2n+1项,最后一项是12n 1,∴f (2n +1)比f (2n )多出的项为 12n+1+12n +2+…+12n +1. 答案:12n+1+12n +2+…+12n +1 9.设a >0,函数f (x )=ax a +x ,令a 1=1,a n +1=f (a n ),n ∈N +.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式. (2)用数学归纳法证明你的结论. (1)解:∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ,a 3=f (a 2)=a 2+a ,a 4=f (a 3)=a3+a .猜想a n =a(n -1)+a (n ∈N +).(2)证明:①当n =1时,a 1=a(1-1)+a=1.②假设当n =k 时猜想正确,即a k =a(k -1)+a,则a k +1=f (a k )=a ·a k a +a k =a ·a (k -1)+a a +a (k -1)+a =a (k -1)+a +1=a[(k +1)-1]+a.这说明,当n =k +1时猜想也正确.综上可由①②知,对于任何n ∈N +,都有a n =a(n -1)+a.10.试比较2n +2与n 2的大小(n ∈N +),并用数学归纳法证明你的结论. 解:当n =1时,21+2=4>12; 当n =2时,22+2=6>22; 当n =3时,23+2=10>32; 当n =4时,24+2=18>42.由此可以猜想:2n +2>n 2(n ∈N +)成立. 用数学归纳法证明如下:①当n =1时,左边=21+2=4,右边=1,所以左边>右边.故原不等式成立.当n=2时,左边=22+2=6,右边=22=4.故左边>右边.当n=3时,左边=23+2=10,右边=32=9,故左边>右边.②假设当n=k(k≥3且k∈N+)时,不等式成立,即2k+2>k2,那么当n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2k2-2.要证当n=k+1时结论成立,只需证2k2-2≥(k+1)2,即证k2-2k-3≥0,即证(k+1)(k-3)≥0.又因为k+1>0,k-3≥0,所以(k+1)(k-3)≥0.所以当n=k+1时,结论成立.由①②可知,n∈N+时,2n+2>n2.11.用数学归纳法证明34n+1+52n+1(n∈N)能被8整除时,当n=k+1时,对于34(k+1)+1+52(k+1)+1可变形为()A.56·34k+1+25(34k+1+52k+1)B.34×34k+1+52×52kC.34k+1+52k+1D.25(34k+1+52k+1)解析:当n=k时,34k+1+52k+1可被8整除;当n=k+1时,34(k+1)+1+52(k+1)+1=34k+1×34+52k+1×52=56×34k+1+25(34k+1+52k+1).答案:A12.在平面几何中,有边长为a的正三角形内任意一点到三边距离之和为定值32a,类比上述命题,棱长为a的正四面体内任一点到4个面的距离之和为()A.43a B.63aC.54a D.64a解析:利用等体积法,四面体内一点和4个顶点连线将四面体分成4个四面体,这4个四面体体积之和等于大的四面体体积.答案:B13.用数学归纳法证明-1+3-5+…+(-1)n·(2n-1)=(-1)n n时,第二步中当n=k +1时,要证明的式子应为__________________________.解析:当n =k +1时,左边=-1+3-5+…+(-1)k +1[2(k +1)-1]=-1+3-5+…+(-1)k +1(2k +1).答案:-1+3-5+…+(-1)k +1(2k +1)=(-1)k +1(k +1)14.设f (n )=n 3+(n +1)3+(n +2)3(n ∈N +),则用数学归纳法证明f (n )能被9整除的过程中,f (k +1)=f (k )+______________.解析:f (k +1)=(k +1)3+(k +2)3+(k +3)3=(k +1)3+(k +2)3+k 3+9k 2+27k +27=f (k )+9k 2+27k +27.答案:9k 2+27k +2715.由下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,…,你能得到一个怎样的一般不等式?并加以证明.解:猜想第n 个不等式,即一般不等式为 1+12+13+…+12n -1>n2(n ∈N +). 用数学归纳法证明如下: ①当n =1时,1>12,猜想成立.②假设当n =k 时,猜想成立,即 1+12+13+…+12k -1>k 2, 则当n =k +1时,1+12+13+…+12k -1+12k +12k +1+…+12k +1-1>k 2+12k +12k +1+…+12k +1-1>k 2+2k 2k +1=k +12,即当n =k +1时,猜想也正确. 所以对任意的n ∈N +,不等式成立.16.一种计算装置,有一个数据入口A 和一个运算出口B ,按照某种运算程序:①当从A 口输入自然数1时,从B 口得到13,记为f (1)=13;②当从A 口输入自然数n (n ≥2)时,在B口得到的结果f (n )是前一个结果f (n -1)的2(n -1)-12(n -1)+3倍.(1)当从A 口分别输入自然数2,3,4时,从B 口分别得到什么数?试猜想f (n )的关系式,并证明你的结论.(2)记S n 为数列{f (n )}的前n 项和.当从B 口得到16 192 575的倒数时,求此时对应的S n 的值.解:(1)由已知得f (n )=2n -32n +1f (n -1)(n ≥2,n ∈N +).当n =2时,f (2)=4-34+1f (1)=15×13=115.同理可得f (3)=135,f (4)=163.猜想f (n )=1(2n -1)(2n +1).(*)用数学归纳法证明如下:①当n =1,2,3,4时,由上面的计算结果知(*)成立. ②假设n =k (k ∈N +)时,(*)成立, 即f (k )=1(2k -1)(2k +1),那么当n =k +1时,f (k +1)=2k -12k +3f (k )=2k -12k +3·1(2k -1)(2k +1), 即f (k +1)=1[2(k +1)-1][2(k +1)+1],∴当n =k +1时,(*)也成立.综合①②可知,对所有的n ∈N +,f (n )=1(2n -1)(2n +1)恒成立.(2)由(1)可得1(2n -1)(2n +1)=116 192 575=1(2×2 012-1)×(2×2 012+1),∴n =2 012.∵f (n )=12⎝⎛⎭⎫12n -1-12n +1,∴S 2 012=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫14 023-14 025=12⎝⎛⎭⎫1-14 025=2 0124 025.。
6.3 数学归纳法(一)1.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确 答案 C解析 由已知得n =n 0(n 0∈N *)时命题成立,则有n =n 0+1时命题成立;在 n =n 0+1时命题成立的前提下,又可推得n =(n 0+1)+1时命题也成立,依此类推,可知选C.2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( )A .1+aB .1+a +a 2C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4答案 C解析 将n =1代入a 2n +1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下: (1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N *,等式都成立.上述证明的错误是________. 答案 未用归纳假设解析 本题在由n =k 成立,证n =k +1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符. 4.当n ∈N *时,S n =1-12+13-14+…+12n -1-12n ,T n =1n +1+1n +2+1n +3+…+12n ,(1)求S 1,S 2,T 1,T 2;(2)猜想S n 与T n 的关系,并用数学归纳法证明. 解 (1)∵当n ∈N *时,S n =1-12+13-14+…+12n -1-12n ,T n =1n +1+1n +2+1n +3+…+12n . ∴S 1=1-12=12,S 2=1-12+13-14=712, T 1=11+1=12,T 2=12+1+12+2=712.(2)猜想S n =T n (n ∈N *),即1-12+13-14+…+12n -1-12n =1n +1+1n +2+1n +3+…+12n (n ∈N *). 下面用数学归纳法证明: ①当n =1时,已证S 1=T 1,②假设n =k 时,S k =T k (k ≥1,k ∈N *),即1-12+13-14+…+12k -1-12k =1k +1+1k +2+1k +3+…+12k ,则S k +1=S k +12k +1-12(k +1)=T k +12k +1-12(k +1)=1k +1+1k +2+1k +3+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+⎝⎛⎭⎪⎫1k +1-12(k +1) =1(k +1)+1+1(k +1)+2+…+12k +1+12(k +1)=T k +1.由①,②可知,对任意n ∈N *,S n =T n 都成立.在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n=k到n=k+1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.。
6.3 数学归纳法基础达标限时20分钟1.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步验证n =( ).A .1B .2C .3D .0解析 因为是证明凸n 边形,首先可先构成n 边形,故选C. 答案 C2.满足1·2+2·3+3·4+…+n (n +1)=3n 2-3n +2的自然数等于( ).A .1B .1或2C .1,2,3D .1,2,3,4解析 用排除法,将4,3依次代入,所以选C. 答案 C3.用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”的第二步是( ).A .假使n =2k +1时正确,再推n =2k +3正确B .假使n =2k -1时正确,再推n =2k +1正确C .假使n =k 时正确,再推n =k +1正确D .假使n ≤k (k ≥1),再推n =k +2时正确(以上k ∈N +)解析 因为n 为正奇数,据数学归纳法证题步骤,第二步应先假设第k 个正奇数也成立,本题即假设n =2k -1正确,再推第k +1个正奇数即n =2k +1正确. 答案 B 4.用数学归纳法证明a n +b n 2≥⎝⎛⎭⎪⎫a +b 2n(a ,b 是非负实数,n ∈N +)时,假设n =k 命题成立之后,证明n =k +1命题也成立的关键是________________. 解析 要想办法出现a k +1+bk +1,两边同乘以a +b2,右边也出现了要证的⎝⎛⎭⎪⎫a +b 2k +1.答案 两边同乘以a +b25.用数学归纳法证明 1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:(1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N +,且k ≥1)时等式成立,即1+2+22+…+2k -1=2k-1,则当n=k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N *,等式都成立.上述证明的错误是____________. 答案 未用归纳假设6.平面内有n (n ∈N +,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明:交点的个数f (n )=n n -2.证明 (1)当n =2时,两条直线的交点只有一个, 又f (2)=12×2×(2-1)=1,∴当n =2时,命题成立.(2)假设n =k ,∈N +,且(k >2)时,命题成立,即平面内满足题设的任何k 条直线交点个数f (k )=12k (k -1),那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线交点个数为f (k )=12k (k-1),l 与其他k 条直线交点个数为k ,从而k +1条直线共有f (k )+k 个交点, 即f (k +1)=f (k )+k =12k (k -1)+k=12k (k -1+2)=12k (k +1)=12(k +1)[(k +1)-1], 这表明,当n =k +1时,命题成立.由(1)、(2)可知,对n ∈N +(n ≥2)命题都成立.综合提高限时25分钟7.在数列{a n }中,a n =1-12+13-14+…+12n -1-12n则a k +1=( ).A .a k +12k +1B .a k +12k +2-12k +4C .a k +12k +2D .a k +12k +1-12k +2解析 a 1=1-12,a 2=1-12+13-14,…,a n =1-12+13-14+…+12n -1-12n ,a k =1-12+13-14+…+12k -1-12k ,所以,a k +1=a k +12k +1-12k +2. 答案 D8.用数学归纳法证明“n 3+(n +1)3+(n +2)3,(n ∈N +)能被9整除”,要利用归纳法假设证n =k +1时的情况,只需展开 ( ).A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析 假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3.+(k +2)3+(k +3)3为了能用上面的归纳假设,只须将(k +3)3展开,让其出现k 3即可.故应选A. 答案 A9.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜测第n 个不等式为________(n ∈N +). 解析 3=22-1,7=23-1,15=24-1, 可猜测:1+12+13+…+12n -1>n 2.答案 1+12+13+…+12n -1>n210.楼梯共有n 级,每步只能跨上1级或2级,走完该n 级楼梯共有f (n )种不同的走法,则f (n ),f (n -1),f (n -2)的关系为________. 答案 f (n )=f (n -1)+f (n -2) 11.用数学归纳法证明对n ∈N +都有11×2+12×3+13×4+…+1nn +=nn +1.证明 ①当n =1时,左边=11×2=12,右边=11+1=12,左边=右边. ∴n =1时,等式成立. ②假设11×2+12×3+…+1kk +=kk +1, 则n =k +1时,11×2+12×3+…+1k k ++1k +k +=kk +1+1k +k +=k k ++1k +k +=k 2+2k +1k +k +=k +2k +k +=k +1k +2=k +1k ++1. ∴n =k +1时,等式成立. 由①②知11×2+12×3+…+1n n +=nn +1.12.(创新拓展)已知,n ∈N +,A n =2n 2,B n =3n,试比较A n 与B n 的大小,并加以证明.解当n=1时:A1=2,B1=3,有A1<B1;当n=2时:A2=8,B2=9,有A2<B2;当n=3时:A3=18,B3=27,有A3<B3.由上可归纳出当n∈N+时,都有A n<B n.下面用数学归纳法证明(下面只证n≥2时成立):(1)当n=2时,由上可知不等式成立.(2)假设n=k(k∈N+,且k≥1)时不等式成立,即2k2<3k,则3k+1=3×3k=3k+3k+3k>2k2+2k2+2k2.由于2k2≥4k(k≥2),2k2>2,所以3k+1>2k2+2k2+2k2>2k2+4k+2=2(k+1)2,这表明,当n=k+1时,不等式也成立.综合(1)、(2)可知,n∈N+,n≥2时,都有A n<B n成立.综上可知n∈N+时,A n<B n成立.。
6.3 数学归纳法(二)一、基础达标1.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *),验证n =1时,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4答案 D解析 等式左边的数是从1加到n +3.当n =1时,n +3=4,故此时左边的数为从1加到4.2.用数学归纳法证明“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6 答案 C解析 当n 取1、2、3、4时2n >n 2+1不成立,当n =5时,25=32>52+1=26,第一个能使2n >n 2+1的n 值为5,故选C.3.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10 答案 B解析 左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.4.用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n ∈N *)的过程中,由n =k 递推到n =k +1时,下列说法正确的是( )A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中的两项,但又减少了一项1k +1 D .增加了A 中的一项,但又减少了一项1k +1答案 C解析 当n =k 时,不等式左边为1k +1+1k +2+…+12k ,当n =k +1时,不等式左边为1k +2+1k +3+…+12k +12k +1+12k +2,故选C. 5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开________. 答案 (k +3)3解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将 (k +3)3展开,让其出现k 3即可.6.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).依次计算出S 1,S 2,S 3,S 4后,可猜想S n 的表达式为________. 答案 S n =2nn +1解析 S 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.7.已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n,用数学归纳法证明:a n =n -n -1.证明 (1)当n =1时.a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,∴a21=1(a n>0),∴a1=1,又1-0=1,∴n=1时,结论成立.(2)假设n=k(k∈N*)时,结论成立,即a k=k-k-1. 当n=k+1时,a k+1=S k+1-S k=12⎝⎛⎭⎪⎫a k+1+1a k+1-12⎝⎛⎭⎪⎫a k+1a k=12⎝⎛⎭⎪⎫a k+1+1a k+1-12⎝⎛⎭⎪⎫k-k-1+1k-k-1=12⎝⎛⎭⎪⎫a k+1+1a k+1-k∴a2k+1+2ka k+1-1=0,解得a k+1=k+1-k(a n>0),∴n=k+1时,结论成立.由(1)(2)可知,对n∈N*都有a n=n-n-1.二、能力提升8.k(k≥3,k∈N*)棱柱有f(k)个对角面,则(k+1)棱柱的对角面个数f(k+1)为() A.f(k)+k-1 B.f(k)+k+1C.f(k)+k D.f(k)+k-2答案 A解析三棱柱有0个对角面,四棱柱有2个对角面[0+2=0+(3-1)];五棱柱有5个对角面[2+3=2+(4-1)];六棱柱有9个对角面[5+4=5+(5-1)];….猜想:若k棱柱有f(k)个对角面,则(k+1)棱柱有f(k)+k-1个对角面.9.对于不等式n2+n≤n+1(n∈N*),某学生的证明过程如下:①当n=1时,12+1≤1+1,不等式成立.②假设n=k(n∈N*)时,不等式成立,即k2+k≤k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<k2+3k+2+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,上述证法() A.过程全部正确B.n=1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案 D解析 从n =k 到n =k +1的推理中没有使用归纳假设,不符合数学归纳法的证题要求.10.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2.假设n =k 时,不等式成立.则当n =k +1时,应推证的目标不等式是________. 答案 122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3解析 观察不等式中的分母变化知,122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3. 11.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N *). 证明 (1)当n =2时,左边=13+14+15+16>56,不等式成立. (2)假设当n =k (k ≥2,k ∈N *)时命题成立,即1k +1+1k +2+…+13k >56. 则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+ ⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+ ⎝ ⎛⎭⎪⎫3×13k +3-1k +1=56, 所以当n =k +1时不等式也成立.由(1)和(2)可知,原不等式对一切n ≥2,n ∈N *均成立.12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n+2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明. 解 当n ≥2时,a n =S n -S n -1=S n +1S n+2.∴S n =-1S n -1+2(n ≥2).则有:S 1=a 1=-23, S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立. (2)假设n =k (k ∈N *)猜想成立, 即S k =-k +1k +2成立,那么n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2.即n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想结论均成立. 三、探究与创新13.已知递增等差数列{a n }满足:a 1=1,且a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式a n ;(2)若不等式⎝ ⎛⎭⎪⎫1-12a 1·⎝ ⎛⎭⎪⎫1-12a 2·…·⎝ ⎛⎭⎪⎫1-12a n ≤m 2a n +1对任意n ∈N *,试猜想出实数m的最小值,并证明.解(1)设数列{a n}公差为d(d>0),由题意可知a1·a4=a22,即1(1+3d)=(1+d)2,解得d=1或d=0(舍去).所以,a n=1+(n-1)·1=n.(2)不等式等价于12·34·56·…·2n-12n≤m2n+1,当n=1时,m≥32;当n=2时,m≥358;而32>358,所以猜想,m的最小值为32.下面证不等式12·34·56·…·2n-12n≤322n+1对任意n∈N*恒成立.下面用数学归纳法证明:证明(1)当n=1时,12≤323=12,成立.(2)假设当n=k时,不等式,12·34·56·…·2k-12k≤322k+1成立,当n=k+1时,12·34·56·…·2k-12k·2k+12k+2≤322k+1·2k+12k+2,只要证322k+1·2k+12k+2≤322k+3,只要证2k+12k+2≤12k+3,只要证2k+12k+3≤2k+2,只要证4k2+8k+3≤4k2+8k+4,只要证3≤4,显然成立.所以,对任意n ∈N *,不等式12·34·56·…·2n -12n ≤322n +1恒成立.。
6.3 数学归纳法(一)一、基础达标1.某个命题与正整数有关,如果当n=k(k∈N*)时,该命题成立,那么可推得n=k+1时,该命题也成立.现在已知当n=5时,该命题成立,那么可推导出() A.当n=6时命题不成立B.当n=6时命题成立C.当n=4时命题不成立D.当n=4时命题成立答案 B2.一个与正整数n有关的命题,当n=2时命题成立,且由n=k时命题成立可以推得n=k+2时命题也成立,则() A.该命题对于n>2的自然数n都成立B.该命题对于所有的正偶数都成立C.该命题何时成立与k取值无关D.以上答案都不对答案 B解析由n=k时命题成立可以推出n=k+2时命题也成立.且n=2,故对所有的正偶数都成立.3.在应用数学归纳法证明凸n边形的对角线为12n(n-3)条时,第一步验证n等于()A.1 B.2 C.3 D.0答案 C解析因为是证凸n边形,所以应先验证三角形,故选C.4.若f(n)=1+12+13+…+12n+1(n∈N*),则n=1时f(n)是()A.1 B.1 3C .1+12+13 D .以上答案均不正确答案 C5.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程中,第二步假设当n =k (k ∈N *)时等式成立,则当n =k +1时应得到________. 答案 1+2+22+…+2k -1+2k =2k +1-1解析 由n =k 到n =k +1等式的左边增加了一项. 6.已知f (n )=1n +1+1n +2+…+13n -1(n ∈N *),则f (k +1)=________. 答案 f (k )+13k +13k +1+13k +2-1k +17.用数学归纳法证明⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1n +2=2n +2(n ∈N *).证明 (1)当n =1时,左边=1-13=23,右边=21+2=23,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即 ⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1k +2=2k +2, 当n =k +1时,⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-15…⎝ ⎛⎭⎪⎫1-1k +2·⎝ ⎛⎭⎪⎫1-1k +3=2k +2⎝⎛⎭⎪⎫1-1k +3=2(k +2)(k +2)(k +3)=2k +3=2(k +1)+2,所以当n =k +1时等式也成立.由(1)(2)可知,对于任意n ∈N *等式都成立. 二、能力提升8.用数学归纳法证明等式(n +1)(n +2)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从k 到k +1左端需要增乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1答案 B解析 n =k +1时,左端为(k +2)(k +3)…[(k +1)+(k -1)]·[(k +1)+k ]·(2k +2)=(k +1)(k +2)…(k +k )·(2k +1)·2,∴应增乘2(2k +1).9.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14 答案 D解析 观察分母的首项为n ,最后一项为n 2,公差为1, ∴项数为n 2-n +1.10.以下用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为________. 答案 缺少步骤(1),没有递推的基础证明 假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,那么2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时等式也成立.因此对于任何n ∈N *等式都成立. 11.用数学归纳法证明:12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2. 证明 (1)当n =1时,左边=1, 右边=(-1)1-1×1×22=1,结论成立.(2)假设当n =k 时,结论成立. 即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2,那么当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2 =(-1)k -1·k (k +1)2+(-1)k (k +1)2 =(-1)k ·(k +1)-k +2k +22=(-1)k ·(k +1)(k +2)2=(-1)k +1-1·(k +1)[(k +1)+1]2.即n =k +1时结论也成立.由(1)(2)可知,对一切正整数n 都有此结论成立.12.已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n ∈N *),S n 为数列{a n }的前n 项和. (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式. (1)解 a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10, a 4=S 3=a 1+a 2+a 3=5+5+10=20, 猜想a n =⎩⎨⎧5 n =15×2n -2, (n ≥2,n ∈N *). (2)证明 ①当n =2时,a 2=5×22-2=5,公式成立. ②假设n =k (k ≥2,k ∈N *)时成立, 即a k =5×2k -2,当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+a 3+…+a k =5+5+10+…+5×2k -2.=5+5(1-2k -1)1-2=5×2k -1=5×2(k +1)-2.故n =k +1时公式也成立.由①②可知,对n ≥2,n ∈N *,有a n =5×2n -2. 所以数列{a n }的通项公式为 a n =⎩⎨⎧5 (n =1)5×2n -2 (n ≥2,n ∈N *). 三、探究与创新13.已知数列{a n }的前n 项和S n =1-na n (n ∈N *). (1)计算a 1,a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明你的结论. 解 (1)计算得a 1=12;a 2=16;a 3=112;a 4=120. (2)猜想a n =1n (n +1).下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设n =k (k ∈N *)时,猜想成立,即a k =1k (k +1).那么,当n =k +1时,S k +1=1-(k +1)a k +1, 即S k +a k +1=1-(k +1)a k +1.又S k=1-ka k=kk+1,所以kk+1+a k+1=1-(k+1)a k+1,从而a k+1=1(k+1)(k+2)=1(k+1)[(k+1)+1].即n=k+1时,猜想也成立.故由①和②可知,猜想成立.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321AC1FDAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DF45°DBa+b-aa 45°A BE1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°DBa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DEa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.DC变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DAB CFEDCDC。
第6章 6.31.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”的第二步是( )A .假设n =2k +1时正确,再推n =2k +3正确B .假设n =2k -1时正确,再推n =2k +1正确C .假设n =k 时正确,再推n =k +1正确D .假设n ≤k (k ≥1),再推n =k +2时正确(以上k ∈N +)解析:因为n 为正奇数,据数学归纳法证题步骤,第二步应先假设第k 个正奇数也成立,本题即假设n =2k -1正确,再推第(k +1)个正奇数,即n =2k +1正确.答案:B2.某同学回答“用数学归纳法证明n (n +1)<n +1(n ∈N *)”的过程如下:证明:①当n =1时,显然命题是正确的;②由题设n =k 时,有k (k +1)<k +1,那么当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+4k +4=(k +1)+1,∴当n =k +1时命题是正确的.由①②可知,对于(n ∈N *),命题都是正确的.以上证法是错误的,错误在于( )A .从k 到k +1的推理过程没有使用归纳假设B .归纳假设的写法不正确C .从k 到k +1的推理不严密D .到n =1时,验证过程不具体解析:在由n =k 到n =k +1的证明过程中没有用归纳假设.答案:A3.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 到n =k +1时,不等式左边的变化情况为( )A .增加12(k +1)B .增加12k +1+12(k +1)C .增加12k +1+12(k +1),减少1k +1D .增加12(k +1),减少1k +1解析:当n =k 时,不等式的左边=1k +1+1k +2+…+1k +k,当n =k +1时,不等式的左边=1k +2+1k +3+…+1(k +1)+(k +1),又1k +2+1k +3+…+1(k +1)+(k +1)-⎝⎛⎭⎫1k +1+1k +2+…+1k +k =12k +1+12(k +1)-1k +1,所以由n =k 到n =k +1时,不等式的左边增加12k +1+12(k +1),减少1k +1. 答案:C4.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N +)的过程如下: ①当n =1时,左边=1,右边=21-1=1,等式成立.②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1, 则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1, ∴当n =k +1时等式成立.由此可知,对任何n ∈N +,等式都成立.上述证明的错误是____________________________.解析:当n =k +1时正确的解法是1+2+22+…+2k -1+2k =2k -1+2k =2k +1-1, 即一定用上第二步中的假设.答案:没有用归纳假设进行递推5.用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N +). 证明:①当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.∴当n =2时等式成立.②假设n =k (k ≥2,k ∈N +)时等式成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2=k +12k .那么n =k +1时,利用归纳假设有⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2=k +12k ·k (k +2)(k +1)2=k +22(k +1)=(k +1)+12(k +1), ∴当n =k +1时等式也成立.综合①②知,对任意n ≥2,n ∈N +等式恒成立.。
第4章导数及其应用4.1导数概念4.1.1问题探索——求自由落体的瞬时速度一、基础达标1.设物体的运动方程s=f(t),在计算从t到t+d这段时间内的平均速度时,其中时间的增量d() A.d>0 B.d<0C.d=0 D.d≠0答案 D2.一物体运动的方程是s=2t2,则从2 s到(2+d) s这段时间内位移的增量为() A.8 B.8+2dC.8d+2d2D.4d+2d2答案 C解析Δs=2(2+d)2-2×22=8d+2d2.3.一物体的运动方程为s=3+t2,则在时间段[2,2.1]内相应的平均速度为() A.4.11 B.4.01 C.4.0 D.4.1答案 D解析v=3+2.12-3-220.1=4.1.4.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的方程为s=18t2,则t=2时,此木块水平方向的瞬时速度为( )A .2B .1 C.12 D.14 答案 C解析 Δs Δt =18(2+Δt )2-18×22Δt =12+18Δt →12(Δt →0).5.质点运动规律s =2t 2+1,则从t =1到t =1+d 时间段内运动距离对时间的变化率为________. 答案 4+2d解析 v =2(1+d )2+1-2×12-11+d -1=4+2d .6.已知某个物体走过的路程s (单位:m)是时间t (单位:s)的函数:s =-t 2+1. (1)t =2到t =2.1; (2)t =2到t =2.01; (3)t =2到t =2.001.则三个时间段内的平均速度分别为________,________,________,估计该物体在t =2时的瞬时速度为________. 答案 -4.1 m/s -4.01 m/s -4.001 m/s -4 m/s7.某汽车的紧急刹车装置在遇到特别情况时,需在2 s 内完成刹车,其位移 (单位:m)关于时间(单位:s)的函数为: s (t )=-3t 3+t 2+20,求: (1)开始刹车后1 s 内的平均速度; (2)刹车1 s 到2 s 之间的平均速度; (3)刹车1 s 时的瞬时速度. 解 (1)刹车后1 s 内平均速度v 1=s (1)-s (0)1-0=(-3×13+12+20)-201=-2(m/s).(2)刹车后1 s 到2 s 内的平均速度为: v 2=s (2)-s (1)2-1=(-3×23+22+20)-(-3×13+12+20)1=-18(m/s).(3)从t =1 s 到t =(1+d )s 内平均速度为: v 3=s (1+d )-s (1)d=-3(1+d )3+(1+d )2+20-(-3×13+12+20)d=-7d -8d 2-3d 3d =-7-8d -3d 2→-7(m/s)(d →0)即t =1 s 时的瞬时速度为-7 m/s. 二、能力提升8.质点M 的运动方程为s =2t 2-2,则在时间段[2,2+Δt ]内的平均速度为( )A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt答案 A解析 Δs Δt =2(2+Δt )2-2-(2×22-2)Δt=8+2Δt .9.自由落体运动的物体下降的距离h 和时间t 的关系式为h =12gt 2,则从t =0到t =1时间段内的平均速度为________,在t =1到t =1+Δt 时间段内的平均速度为________,在t =1时刻的瞬时速度为________. 答案 12g g +12g Δt g解析12g ×12-12g ×021-0=12g .12g (1+Δt )2-12g ×12Δt =g +12g Δt . 当Δt →0时,g +12g Δt →g .10.自由落体运动的物体下降距离h 和时间t 的关系式为h =12gt 2,t =2时的瞬时速度为19.6,则g =________. 答案 9.8解析 12g (2+Δt )2-12g ×22Δt =2g +12g Δt . 当Δt →0时,2g +12g Δt →2g . ∴2g =19.6,g =9.8.11.求函数s =2t 2+t 在区间[2,2+d ]内的平均速度. 解 ∵Δs =2(2+d )2+(2+d )-(2×22+2)=9d +2d 2, ∴平均速度为Δsd =9+2d .12.甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图①、②所示.问:(1)甲、乙二人平时跑步哪一个跑得快?(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs 为s 的增量)?解 (1)由题图①在(0,t ]时间段内,甲、乙跑过的路程s 甲<s 乙,故有s 甲t <s 乙t 即在任一时间段(0,t ]内,甲的平均速度小于乙的平均速度,所以乙比甲跑得快. (2)由题图②知,在终点附近[t -d ,t )时间段内,路程增量Δs乙>Δs 甲,所以Δs 乙d >Δs 甲d 即快到终点时,乙的平均速度大于甲的平均速度,所以乙比甲跑得快. 三、探究与创新13.质量为10 kg 的物体按照s (t )=3t 2+t +4的规律做直线运动,求运动开始后4秒时物体的动能. 解 s (Δt +4)-s (4)Δt=3(Δt +4)2+(Δt +4)+4-(3×42+4+4)Δt =3Δt +25,当Δt →0时,3Δt +25→25. 即4秒时刻的瞬时速度为25.∴物质的动能为12m v 2=12×10×252=3 125(J)4.1.2 问题探索——求作抛物线的切线一、基础达标1.已知曲线y=2x2上一点A(1,2),则A处的切线斜率等于() A.2 B.4C.6+6d+2d2D.6答案 B2.已知曲线y=12x2-2上的一点P(1,-32),则过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°答案 B3.如果曲线y=2x2+x+10的一条切线与直线y=5x+3平行,则切点坐标为() A.(-1,-8) B.(1,13)C.(1,12)或(-1,8) D.(1,7)或(-1,-1)答案 B4.曲线y=x-2在点P(3,1)处的切线斜率为()A.-12B.0 C.12D.1答案 C解析(3+Δx)-2-3-2Δx=Δx+1-1Δx=1Δx+1+1.当Δx→0时,1Δx+1+1→12.5.若曲线y=x2+1在曲线上某点处的斜率为2,则曲线上该切点的坐标为________.答案(1,2)6.曲线y=x2+2在点P(1,3)处的切线方程为________.答案2x-y+1=0解析(1+Δx)2+2-(12+2)Δx=Δx+2,当Δx→0时,Δx+2→2.所以曲线y=x2+2在点P(1,3)处的切线斜率为2,其方程为y-3=2(x-1).即为2x-y+1=0.7.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.解设点P(x0,y0),f(x0+d)-f(x0)d=(x0+d)2-x20d=d+2x0,d→0时,d+2x0→2x0.抛物线在点P处的切线的斜率为2x0,由于切线平行于2x-y+4=0,∴2x0=2,x0=1,即P点坐标为(1,1),切线方程为y-1=2(x-1),即为2x-y-1=0.二、能力提升8.曲线y=-1x在点(1,-1)处的切线方程为()A.y=x-2 B.y=xC.y=x+2 D.y=-x-2 答案 A解析-1Δx+1-(-11)Δx=1-1Δx+1Δx=1Δx+1,当Δx→0时,1Δx+1→1.曲线y=-1x在点(1,-1)处的切线的斜率为1,切线方程为y+1=1×(x-1),即y=x-2.9.曲线f(x)=x2+3x在点A(2,10)处的切线的斜率为________.答案7解析f(2+Δx)-f(2)Δx=(2+Δx)2+3(2+Δx)-(22+3×2)Δx=Δx+7,当Δx→0时,Δx+7→7,所以,f(x)在A处的切线的斜率为7.10.曲线f(x)=x2+3x在点A处的切线的斜率为7,则A点坐标为________.答案(2,10)解析设A点坐标为(x0,x20+3x0),则f(x0+Δx)-f(x0)Δx=(x0+Δx)2+3(x0+Δx)-(x20+3x0)Δx=Δx+(2x0+3),当Δx→0时,Δx+(2x0+3)→2x0+3,∴2x0+3=7,∴x0=2.x 20+3x 0=10.A 点坐标为(2,10).11.已知抛物线y =x 2+1,求过点P (0,0)的曲线的切线方程.解 设抛物线过点P 的切线的切点为Q (x 0,x 20+1).则(x 0+Δx )2+1-(x 20+1)Δx =Δx +2x 0.Δx →0时,Δx +2x 0→2x 0.∴x 20+1-0x 0-0=2x 0,∴x 0=1或x 0=-1. 即切点为(1,2)或(-1,2).所以,过P (0,0)的切线方程为y =2x 或y =-2x .即2x -y =0或2x +y =0. 三、探究与创新12.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切,求切点的坐标及a 的值.解 设切点A (x 0,y 0),(x 0+d )3-(x 0+d )2+1-(x 30-x 20+1)d=3x 20d +3x 0d 2+d 3-2x 0d -d 2d=3x 20-2x 0+(3x 0-1)d +d 2→3x 20-2x 0(d →0). 故曲线上点A 处切线斜率为3x 20-2x 0,∴3x 20-2x 0=1,∴x 0=1或x 0=-13,代入C 的方程得 ⎩⎪⎨⎪⎧x 0=1,y 0=1或⎩⎪⎨⎪⎧x 0=-13,y 0=2327代入直线l ,当⎩⎪⎨⎪⎧x 0=1,y 0=1时,a =0(舍去),当⎩⎪⎨⎪⎧x 0=-13,y 0=2327时,a =3227,即切点坐标为(-13,2327),a =3227.4.1.3 导数的概念和几何意义一、基础达标1.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线() A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交答案 B2.已知函数y=f(x)的图象如图,则f′(x A)与f′(x B)的大小关系是()A.f′(x A)>f′(x B) B.f′(x A)<f′(x B)C.f′(x A)=f′(x B) D.不能确定答案 B解析分别作出A、B两点的切线,由题图可知k B>k A,即f′(x B)>f′(x A).3.已知曲线y=2x2上一点A(2,8),则在点A处的切线斜率为() A.4 B.16 C.8 D.2解析在点A处的切线的斜率即为曲线y=2x2在x=2时的导数,由导数定义可求y′=4x,∴f′(2)=8.答案 C4.已知函数f(x)在x=1处的导数为3,则f(x)的解析式可能为() A.f(x)=(x-1)2+3(x-1)B.f(x)=2(x-1)C.f(x)=2(x-1)2D.f(x)=x-1答案 A解析分别求四个选项的导函数分别为f′(x)=2(x-1)+3;f′(x)=2;f′(x)=4(x-1);f′(x)=1.5.抛物线y=x2+x+2上点(1,4)处的切线的斜率是________,该切线方程为____________.答案33x-y+1=0解析Δy=(1+d)2+(1+d)+2-(12+1+2)=3d+d2,故y′|x=1=limd→0Δy d=limd→0(3+d)=3.∴切线的方程为y-4=3(x-1),即3x-y+1=0.6.若曲线y=x2-1的一条切线平行于直线y=4x-3,则这条切线方程为____________.答案4x-y-5=0解析∵f′(x)=f(x+d)-f(x)d=(x+d)2-1-(x2-1)d=2xd+d2d=(2x+d)=2x.设切点坐标为(x0,y0),则由题意知f′(x0)=4,即2x0=4,∴x0=2,代入曲线方程得y0=3,故该切线过点(2,3)且斜率为4.所以这条切线方程为y-3=4(x-2),即4x-y-5=0.7.求曲线y=x3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.解∵f′(3)=f(3+d)-f(3)d=(3+d)3-33d=(d2+9d+27)=27,∴曲线在点(3,27)处的切线方程为y-27=27(x-3),即27x-y-54=0.此切线与x轴、y轴的交点分别为(2,0),(0,-54).∴切线与两坐标轴围成的三角形的面积为S=12×2×54=54.二、能力提升8.曲线y=-x3+3x2在点(1,2)处的切线方程为() A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x答案 A解析-(Δx+1)3+3(Δx+1)2-(-13+3×12)Δx=-Δx2+3.Δx→0时,-Δx2+3→3.∴f′(1)=3.即曲线在(1,2)处的切线斜率为3. 所以切线方程为y-2=3(x-1),即y=3x-1.9.函数y=f(x)图象在M(1,f(1))处的切线方程为y=12x+2,则f(1)+f′(1)=________.答案 3解析由已知切点在切线上.∴f(1)=12×1+2=52.切线的斜率f′(1)=12.∴f(1)+f′(1)=3.10.若曲线y=x2+ax+b在点(0,b)处的切线方程为x-y+1=0,则a,b的值分别为________,________. 答案 1 1解析 ∵点(0,b )在切线x -y +1=0上, ∴-b +1=0,b =1.又f (0+Δx )-f (0)Δx =Δx 2+a Δx +b -b Δx =a +Δx ,∴f ′(0)=a =1.11.已知曲线y =x 3+1,求过点P (1,2)的曲线的切线方程. 解 设切点为A (x 0,y 0),则y 0=x 30+1.(x 0+Δx )3+1-(x 30+1)Δx =Δx 3+3x 20Δx +3x 0Δx2Δx =Δx 2+3x 0Δx +3x 20.∴f ′(x 0)=3x 20,切线的斜率为k =3x 20.点(1,2)在切线上,∴2-(x 30+1)=3x 20(1-x 0).∴x 0=1或x 0=-12. 当x 0=1时,切线方程为3x -y -1=0, 当x 0=-12时,切线方程为3x -4y +5=0.所以,所求切线方程为3x -y -1=0或3x -4y +5=0. 12.求抛物线y =x 2的过点P (52,6)的切线方程. 解 由已知得,Δyd =2x +d ,∴当d →0时,2x +d →2x , 即y ′=2x ,设此切线过抛物线上的点(x 0,x 20), 又因为此切线过点(52,6)和点(x 0,x 20),其斜率应满足x 20-6x 0-52=2x 0, 由此x 0应满足x 20-5x 0+6=0.解得x 0=2或3.即切线过抛物线y =x 2上的点(2,4),(3,9).所以切线方程分别为y -4=4(x -2),y -9=6(x -3). 化简得4x -y -4=0,6x -y -9=0, 此即是所求的切线方程. 三、探究与创新13.求垂直于直线2x -6y +1=0并且与曲线y =x 3+3x 2-5相切的直线方程. 解 设切点为P (a ,b ),函数y =x 3+3x 2-5的导数为y ′=3x 2+6x .故切线的斜率k =y ′|x =a =3a 2+6a =-3,得a =-1,代入y =x 3+3x 2-5得,b =-3,即 P (-1,-3).故所求直线方程为y +3=-3(x +1),即3x +y +6=0.4.2.3 导数的运算法则一、基础达标1.设y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ). 2.当函数y =x 2+a 2x (a >0)在x =x 0处的导数为0时,那么x 0=( )A .aB .±aC .-aD .a 2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2 B.12 C .-12 D .-2 答案 D 解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( )A .(-2,-8)B .(-1,-1)或(1,1)C .(2,8) D.⎝ ⎛⎭⎪⎫-12,-18 答案 B解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0), 令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 7.求下列函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+ 3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9.(2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升 8.曲线y =sin x sin x +cos x-12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B.12 C .-22 D.22 答案 B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.9.已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4) B .[π4,π2) C .(π2,3π4] D .[3π4,π)答案 D 解析 y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1,设t =e x∈(0,+∞),则y ′ =-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π).10.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析令t=e x,则x=ln t,所以函数为f(t)=ln t+t,即f(x)=ln x+x,所以f′(x)=1x+1,即f′(1)=11+1=2.11.求过点(2,0)且与曲线y=x3相切的直线方程.解点(2,0)不在曲线y=x3上,可令切点坐标为(x0,x30).由题意,所求直线方程的斜率k=x30-0x0-2=y′|x=x=3x20,即x30x0-2=3x20,解得x0=0或x0=3.当x0=0时,得切点坐标是(0,0),斜率k=0,则所求直线方程是y=0;当x0=3时,得切点坐标是(3,27),斜率k=27,则所求直线方程是y-27=27(x-3),即27x-y-54=0.综上,所求的直线方程为y=0或27x-y-54=0.12.已知曲线f(x)=x3-3x,过点A(0,16)作曲线f(x)的切线,求曲线的切线方程.解设切点为(x0,y0),则由导数定义得切线的斜率k=f′(x0)=3x20-3,∴切线方程为y=(3x20-3)x+16,又切点(x0,y0)在切线上,∴y0=3(x20-1)x0+16,即x30-3x0=3(x20-1)x0+16,解得x0=-2,∴切线方程为9x-y+16=0.三、探究与创新13.设函数f(x)=ax-bx,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值. (1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12,①又f ′(x )=a +bx 2, ∴f ′(2)=74,②由①,②得⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74.解之得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.4.2 导数的运算4.2.1 几个幂函数的导数 4.2.2 一些初等函数的导数表一、基础达标1.下列结论中正确的个数为( )①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2; ④y =log 2x ,则y ′=1x ln 2. A .0 B .1 C .2 D .3 答案 D解析 ①y =ln 2为常数,所以y ′=0.①错.②③④正确. 2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( )A.⎝ ⎛⎭⎪⎫12,2B.⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2 C.⎝ ⎛⎭⎪⎫-12,-2 D.⎝ ⎛⎭⎪⎫12,-2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B.3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于( )A .4B .-4C .5D .-5 答案 A解析 f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4.4.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定 答案 B解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处有斜率为1的切线.5.曲线y =9x 在点M (3,3)处的切线方程是________.答案 x +y -6=0解析 ∵y ′=-9x 2,∴y ′|x =3=-1, ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0. 6.若曲线在点处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析∴曲线在点处的切线斜率,∴切线方程为.令x =0得;令y =0得x =3a .∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·=18,∴a =64.7.求下列函数的导数:(1) y =7x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x . 解 (1)y ′=⎝⎛⎭⎫7x 3′==377x 4.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x , ∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A.1e B .-1e C .-e D .e 答案 D解析y ′=e x,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=kx 0,y 0=e x 0,k =e x 0.∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =______. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1,∴a =1.10.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________.答案2 2解析根据题意设平行于直线y=x的直线与曲线y=e x相切于点(x0,y0),该切点即为与y=x距离最近的点,如图.则在点(x0,y0)处的切线斜率为1,即y′|x=x0=1.∵y′=(e x)′=e x,∴e x0=1,得x0=0,代入y=e x,得y0=1,即P(0,1).利用点到直线的距离公式得距离为2 2.11.已知f(x)=cos x,g(x)=x,求适合f′(x)+g′(x)≤0的x的值.解∵f(x)=cos x,g(x)=x,∴f′(x)=(cos x)′=-sin x,g′(x)=x′=1,由f′(x)+g′(x)≤0,得-sin x+1≤0,即sin x≥1,但sin x∈[-1,1],∴sin x=1,∴x=2kπ+π2,k∈Z.12.已知抛物线y=x2,直线x-y-2=0,求抛物线上的点到直线的最短距离.解根据题意可知与直线x-y-2=0平行的抛物线y=x2的切线,对应的切点到直线x-y-2=0的距离最短,设切点坐标为(x0,x20),则y′|x=x=2x0=1,所以x0=12,所以切点坐标为⎝⎛⎭⎪⎫12,14,切点到直线x-y-2=0的距离d=⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x-y-2=0的最短距离为72 8.三、探究与创新13.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,试求f2 014(x).解f1(x)=(sin x)′=cos x,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4,∴f2 014(x)=f2(x)=-sin x.4.3导数在研究函数中的应用4.3.1利用导数研究函数的单调性一、基础达标1.命题甲:对任意x∈(a,b),有f′(x)>0;命题乙:f(x)在(a,b)内是单调递增的,则甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析f(x)=x3在(-1,1)内是单调递增的,但f′(x)=3x2≥0(-1<x<1),故甲是乙的充分不必要条件,选A.2.函数y=12x2-ln x的单调减区间是()A.(0,1) B.(0,1)∪(-∞,-1) C.(-∞,1) D.(-∞,+∞)答案 A解析∵y=12x2-ln x的定义域为(0,+∞),∴y′=x-1x,令y′<0,即x-1x<0,解得:0<x<1或x<-1.又∵x>0,∴0<x<1,故选A.3.函数f(x)=x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0时,f(x)是() A.增函数B.减函数C.常函数D .既不是增函数也不是减函数 答案 A解析 求函数的导函数f ′(x )=3x 2+2ax +b ,导函数对应方程f ′(x )=0的 Δ=4(a 2-3b )<0,所以f ′(x )>0恒成立,故f (x )是增函数. 4.下列函数中,在(0,+∞)内为增函数的是( )A .y =sin xB .y =x e 2C .y =x 3-xD .y =ln x -x答案 B解析 显然y =sin x 在(0,+∞)上既有增又有减,故排除A ;对于函数y =x e 2,因e 2为大于零的常数,不用求导就知y =x e 2在(0,+∞)内为增函数; 对于C ,y ′=3x 2-1=3⎝ ⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33,故函数在⎝ ⎛⎭⎪⎫-∞,-33,⎝ ⎛⎭⎪⎫33,+∞上为增函数,在⎝ ⎛⎭⎪⎫-33,33上为减函数;对于D ,y ′=1x -1 (x >0).故函数在(1,+∞)上为减函数, 在(0,1)上为增函数.故选B.5.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.答案 ⎣⎢⎡⎦⎥⎤-13,1∪[2,3)6.函数y=ln(x2-x-2)的递减区间为________.答案(-∞,-1)解析f′(x)=2x-1x2-x-2,令f′(x)<0得x<-1或12<x<2,注意到函数定义域为(-∞,-1)∪(2,+∞),故递减区间为(-∞,-1).7.已知函数f(x)=x3+ax+8的单调递减区间为(-5,5),求函数y=f(x)的递增区间.解f′(x)=3x2+a.∵(-5,5)是函数y=f(x)的单调递减区间,则-5,5是方程3x2+a=0的根,∴a=-75.此时f′(x)=3x2-75,令f′(x)>0,则3x2-75>0,解得x>5或x<-5,∴函数y=f(x)的单调递增区间为(-∞,-5)和(5,+∞).二、能力提升8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()答案 A解析 由f (x )与f ′(x )关系可选A.9.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( )A .f (x )>g (x )B .f (x )<g (x )C .f (x )+g (a )>g (x )+f (a )D .f (x )+g (b )>g (x )+f (b ) 答案 C解析 ∵f ′(x )-g ′(x )>0, ∴(f (x )-g (x ))′>0,∴f (x )-g (x )在[a ,b ]上是增函数, ∴当a <x <b 时f (x )-g (x )>f (a )-g (a ), ∴f (x )+g (a )>g (x )+f (a ).10.(2013·大纲版)若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞是增函数,则a 的取值范围是________. 答案 [3,+∞)解析 因为f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,故f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.令h (x )=1x 2-2x ,则h ′(x )=-2x 3-2,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )<0,则h (x )为减函数,所以h (x )<h ⎝ ⎛⎭⎪⎫12=3,所以a ≥3.11.求下列函数的单调区间: (1)y =x -ln x ; (2)y =ln(2x +3)+x 2.解 (1)函数的定义域为(0,+∞),y ′=1-1x , 由y ′>0,得x >1;由y ′<0,得0<x <1.∴函数y =x -ln x 的单调增区间为(1,+∞),单调减区间为(0,1). (2)函数y =ln(2x +3)+x 2的定义域为⎝ ⎛⎭⎪⎫-32,+∞.∵y =ln(2x +3)+x 2, ∴y ′=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当y ′>0,即-32<x <-1或x >-12时, 函数y =ln(2x +3)+x 2单调递增; 当y ′<0,即-1<x <-12时, 函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝ ⎛⎭⎪⎫-32,-1,⎝ ⎛⎭⎪⎫-12,+∞,单调递减区间为⎝ ⎛⎭⎪⎫-1,-12.12.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2),知d =2, ∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3,b -c =0, 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6x -3.令f ′(x )>0, 得x <1-2或x >1+2; 令f ′(x )<0,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2). 三、探究与创新13.已知函数f (x )=mx 3+nx 2(m 、n ∈R ,m ≠0),函数y =f (x )的图象在点(2,f (2))处的切线与x 轴平行. (1)用关于m 的代数式表示n ; (2)求函数f (x )的单调增区间.解 (1)由已知条件得f ′(x )=3mx 2+2nx , 又f ′(2)=0,∴3m +n =0,故n =-3m . (2)∵n =-3m ,∴f (x )=mx 3-3mx 2, ∴f ′(x )=3mx 2-6mx .令f ′(x )>0,即3mx 2-6mx >0,当m >0时,解得x <0或x >2,则函数f (x )的单调增区间是(-∞,0)和(2,+∞);当m <0时,解得0<x <2,则函数f (x )的单调增区间是(0,2).综上,当m>0时,函数f(x)的单调增区间是(-∞,0)和(2,+∞);当m<0时,函数f(x)的单调增区间是(0,2).4.3.2函数的极大值和极小值一、基础达标1.函数y=f(x)的定义域为(a,b),y=f′(x)的图象如图,则函数y=f(x)在开区间(a,b)内取得极小值的点有()A.1个B.2个C.3个D.4个答案 A解析当满足f′(x)=0的点,左侧f′(x)<0,右侧f′(x)>0时,该点为极小值点,观察题图,只有一个极小值点.2.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取得极值”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.3.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于() A.2 B.3 C.6 D.9答案 D解析f′(x)=12x2-2ax-2b,∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0,∴a+b=6.又a>0,b>0,∴a+b≥2ab,∴2ab≤6,∴ab≤9,当且仅当a=b=3时等号成立,∴ab的最大值为9.4.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值答案 C解析由y′=3x2-6x-9=0,得x=-1或x=3,当x<-1或x>3时,y′>0,当-1<x<3时,y′<0.故当x=-1时,函数有极大值5;x取不到3,故无极小值.5.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.答案(-∞,-1)∪(2,+∞)解析∵f′(x)=3x2+6ax+3(a+2),令3x2+6ax+3(a+2)=0,即x2+2ax+a +2=0,∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实数根,即Δ=4a2-4a-8>0,解得a>2或a<-1.6.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是________.答案(1,4)解析y′=3x2-3a,当a≤0时,y′≥0,函数y=x3-3ax+a为单调函数,不合题意,舍去;当a>0时,y′=3x2-3a=0⇒x=±a,不难分析,当1<a<2,即1<a<4时,函数y=x3-3ax+a在(1,2)内有极小值.7.求函数f(x)=x2e-x的极值.解函数的定义域为R,f ′(x )=2x e -x +x 2·⎝ ⎛⎭⎪⎫1e x ′ =2x e -x -x 2e -x =x (2-x )e -x , 令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可以看出,当x =0时,函数有极小值,且为f (0)=0; 当x =2时,函数有极大值,且为f (2)=4e -2. 二、能力提升8.已知函数f (x ),x ∈R ,且在x =1处,f (x )存在极小值,则( )A .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0B .当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )>0C .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0D .当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )<0 答案 C解析 ∵f (x )在x =1处存在极小值, ∴x <1时,f ′(x )<0,x >1时,f ′(x )>0.9.(2013·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 x 0(x 0≠0)是f (x )的极大值点,并不是最大值点.故A 错;f (-x )相当于f (x )关于y 轴的对称图象的函数,故-x 0应是f (-x )的极大值点,B 错;-f (x )相当于f (x )关于x 轴的对称图象的函数,故x 0应是-f (x )的极小值点.跟-x 0没有关系,C 错;-f (-x )相当于f (x )关于坐标原点的对称图象的函数.故D 正确.10.如果函数y =f (x )的导函数的图象如图所示,给出下列判断: ①函数y =f (x )在区间⎝ ⎛⎭⎪⎫-3,-12内单调递增;②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值. 则上述判断正确的是________.(填序号) 答案 ③解析 函数的单调性由导数的符号确定,当x ∈(-∞,-2)时,f ′(x )<0,所以f (x )在(-∞,-2)上为减函数,同理f (x )在(2,4)上为减函数,在(-2,2)上是增函数,在(4,+∞)上为增函数,所以可排除①和②,可选择③.由于函数在x =2的左侧递增,右侧递减,所以当x =2时,函数有极大值;而在x = -12的左右两侧,函数的导数都是正数,故函数在x =-12的左右两侧均为增函数,所以x =-12不是函数的极值点.排除④和⑤.11.已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值. 解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ), 令f ′(x )=0,则x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1. 12.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 解 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的极大值是f ⎝ ⎭⎪⎫-13=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知,x 取足够大的正数时,有f (x )>0, x 取足够小的负数时,有f (x )<0, 所以曲线y =f (x )与x 轴至少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点,∴f (x )极大值<0或f (x )极小值>0, 即527+a <0或a -1>0,∴a <-527或a >1,∴当a ∈⎝ ⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点.三、探究与创新13.(2013·新课标Ⅱ)已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0. (1)解 f ′(x )=e x -1x +m.由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞), f ′(x )=e x -1x +1. 函数f ′(x )=e x -1x +1在(-1,+∞)单调递增,且f ′(0)=0,因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. (2)证明 当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ ln(x +2),故只需证明当m =2时,f (x )>0. 当m =2时,函数f′(x)=e x-1x+2在(-2,+∞)单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0得e x0=1x0+2,ln(x0+2)=-x0,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.4.3.3三次函数的性质:单调区间和极值一、基础达标1.函数y=f(x)在[a,b]上() A.极大值一定比极小值大B.极大值一定是最大值C.最大值一定是极大值D.最大值一定大于极小值答案 D解析由函数的最值与极值的概念可知,y=f(x)在[a,b]上的最大值一定大于极小值.2.函数y=x e-x,x∈[0,4]的最大值是()A.0 B.1e C.4e4 D.2e2答案 B解析y′=e-x-x·e-x=e-x(1-x),令y′=0,∴x=1,∴f(0)=0,f(4)=4e4,f(1)=e-1=1e,∴f(1)为最大值,故选B.3.函数y=ln xx的最大值为()A.e-1B.e C.e2 D.10 3答案 A解析令y′=(ln x)′x-ln x·x′x2=1-ln xx2=0.(x>0)解得x=e.当x>e时,y′<0;当0<x<e时,y′>0.y 极大值=f (e)=1e ,在定义域(0,+∞)内只有一个极值, 所以y max =1e .4.函数y =4xx 2+1在定义域内( )A .有最大值2,无最小值B .无最大值,有最小值-2C .有最大值2,最小值-2D .无最值答案 C 解析 令y ′=4(x 2+1)-4x ·2x(x 2+1)2=-4x 2+4(x 2+1)2=0,得x =±1.当x 变化时,y ′,y 随x 的变化如下表:由上表可知x =-1时,y 取极小值也是最小值-2;x =1时,y 取极大值也是最大值2.5.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________. 答案 (-∞,2ln 2-2]解析 函数f (x )=e x -2x +a 有零点,即方程e x -2x +a =0有实根,即函数 g (x )=2x -e x ,y =a 有交点,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在 (-∞,ln 2)上递增,在(ln 2,+∞)上递减,因而g (x )=2x -e x 的值域为 (-∞,2ln 2-2],所以要使函数g (x )=2x -e x ,y =a 有交点,只需 a ≤2ln 2-2即可.6.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________.答案 π6+ 3解析 y ′=1-2sin x =0,x =π6,比较0,π6,π2处的函数值,得y max =π6+ 3. 7.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在 [-2,2]上的最大值.解 f ′(x )=6x 2-12x =6x (x -2), 令f ′(x )=0,得x =0或x =2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴当x =-2时,f (x )min =-40+a =-37,得a =3. 当x =0时,f (x )的最大值为3. 二、能力提升8.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22 答案 D解析 由题意画出函数图象如图所示,由图可以看出|MN |=y =t 2-ln t (t >0).y ′=2t -1t =2t 2-1t =2⎝⎛⎭⎪⎫t +22⎝ ⎛⎭⎪⎫t -22t.当0<t <22时,y ′<0,可知y 在⎝⎛⎭⎪⎫0,22上单调递减;当t>22时,y′>0,可知y在⎝⎛⎭⎪⎫22,+∞上单调递增.故当t=22时,|MN|有最小值.9.(2014·湖北重点中学检测)已知函数f(x)=x3-tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间[a,b]上单调递减,则实数t的取值范围是() A.(-∞,3] B.(-∞,5] C.[3,+∞) D.[5,+∞)答案 D解析∵f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3,由于函数f(x)在(a,b)上单调递减,则有f′(x)≤0在[a,b]上恒成立,即不等式3x2-2tx+3≤0在[a,b]上恒成立,即有t≥32⎝⎛⎭⎪⎫x+1x在[a,b]上恒成立,而函数y=32⎝⎛⎭⎪⎫x+1x在[1,3]上单调递增,由于a∈[1,2],b∈(2,3],当b=3时,函数y=32⎝⎛⎭⎪⎫x+1x取得最大值,即y max=32⎝⎛⎭⎪⎫3+13=5,所以t≥5,故选D.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.答案-1 2解析f′(x)=3x2-3x,令f′(x)=0得x=0,或x=1.∵f(0)=a,f(-1)=-52+a,f(1)=-12+a,∴f(x)max=a=2.∴f(x)min=-52+a=-12.11.已知函数f(x)=x3-ax2+bx+c(a,b,c∈R).(1)若函数f(x)在x=-1和x=3处取得极值,试求a,b的值;(2)在(1)的条件下,当x∈[-2,6]时,f(x)<2|c|恒成立,求c的取值范围.解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值, ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=23a -1×3=b 3,∴⎩⎪⎨⎪⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9,令f ′(x )=0,得x =-1或x =3. 当x 变化时,f ′(x ),f (x )随x 的变化如下表:而f (-2)=c -2,f (6)=c +54,∴当x ∈[-2,6]时,f (x )的最大值为c +54, 要使f (x )<2|c |恒成立,只要c +54<2|c |即可, 当c ≥0时,c +54<2c ,∴c >54; 当c <0时,c +54<-2c ,∴c <-18.∴c ∈(-∞,-18)∪(54,+∞),此即为参数c 的取值范围. 12.已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.解(1)∵f′(x)=-3x2+6x+9.令f′(x)<0,解得x<-1或x>3,∴函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,∴f(2)>f(-2).于是有22+a=20,∴a=-2.∴f(x)=-x3+3x2+9x-2.∵在(-1,3)上f′(x)>0,∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2,-1]上单调递减,∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,∴f(-1)=1+3-9-2=-7,即f(x)最小值为-7.三、探究与创新13.(2013·新课标Ⅰ)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.解(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),∴a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1),设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2(x≥-2),F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).有题设可得F(0)≥0,即k≥1,令F′(x)=0得,x1=-ln k,x2=-2,①若1≤k<e2,则-2<x1≤0,∴当x∈(-2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增,故F(x)在x=x1取最小值F(x1),而F(x1)=2x1+2-x21-4x1-2=-x1(x1+2)≥0.∴当≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e2),∴当x≥-2时,F′(x)≥0,∴F(x)在(-2,+∞)单调递增,而F(-2)=0,∴当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立,③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0,∴当x≥-2时,f(x)≤kg(x)不可能恒成立.综上所述,k的取值范围为[1,e2].4.4 生活中的优化问题举例一、基础达标1.方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8 答案 A解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x 2,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x , ∴S ′(x )=2x -4×256x 2.令S ′(x )=0,解得x =8,∴h =25682=4.2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.0486,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.0486),若使银行获得最大收益,则x 的取值为( )A .0.016 2B .0.032 4C .0.024 3D .0.048 6 答案 B解析 依题意,得存款量是kx 2,银行支付的利息是kx 3,获得的贷款利息是0.048 6kx 2,其中x ∈(0,0.048 6).所以银行的收益是y =0.048 6kx 2-kx 3(0<x <0.048 6),则y ′=0.097 2kx -3kx 2. 令y ′=0,得x =0.032 4或x =0(舍去). 当0<x <0.032 4时,y ′>0;当0.032 4<x <0.048 6时,y ′<0.所以当x =0.032 4时,y 取得最大值,即当存款利率为0.032 4时,银行获得最大收益.3.如果圆柱轴截面的周长l 为定值,则体积的最大值为( )A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 答案 A解析 设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l ,∴h =l -4r 2,V =πr 2h =l 2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4.则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0, ∴r =l6是其唯一的极值点.∴当r =l 6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.4.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱最大容积为( )A .120 000 cm 3B .128 000 cm 3C .150 000 cm 3D .158 000 cm 3答案 B解析 设水箱底边长为x cm ,则水箱高h =60-x2(cm). 水箱容积V =V (x )=x 2h =60x 2-x 32 (0<x <120).V ′(x )=120x -32x 2.令V ′(x )=0,得x =0(舍去)或x =80.可判断得x =80 cm 时,V 取最大值为128 000 cm 3.。
第6章 推理与证明6.1 合情推理和演绎推理6.1.1 归 纳1.关于归纳推理下列说法正确的是( )A .归纳推理是一般到一般的推理B .归纳推理是一般到特殊的推理C .归纳推理的结论一定是正确的D .归纳推理的结论不一定正确答案 D2.由2+13+1>23,1+35+3>15,3+0.57+0.5>37,运用归纳推理,可猜测出的合理结论是( ) A.c +b a +b >c a B.1+1n +1>1nC .若a ,b ,c ∈(0,+∞),则b +c a +c >b aD .若a >b >0,c >0,则b +c a +c >b a答案 D3.数列2,5,11,20,x,47,…中的x 等于________.答案 324.观察下列不等式:|2+3|≤|2|+|3|,|(-3)+5|≤|-3|+|5|,|-2-3|≤|-2|+|-3|,|4+4|≤|4|+|4|,归纳出一般结论为______________________(x ,y ∈R ).答案 |x +y |≤|x |+|y |解析 观察易发现:两个实数和的绝对值不大于这两个数的绝对值的和,即|x+y|≤|x|+|y|.1.归纳推理的前提和结论不具有必然性联系,前提正确,其结论不一定正确.结论的正确性还需要理论证明或实践检验.2.归纳推理的特点:(1)归纳推理是由部分到整体、由特殊到一般的推理,因此,由归纳推理得出的结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论不一定真实,因此它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想可以作为进一步研究的起点,帮助人们发现问题和提出问题.。
6.3 数学归纳法(二)一、基础达标1.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *),验证n =1时,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4答案 D解析 等式左边的数是从1加到n +3.当n =1时,n +3=4,故此时左边的数为从1加到4.2.用数学归纳法证明“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6 答案 C解析 当n 取1、2、3、4时2n >n 2+1不成立,当n =5时,25=32>52+1=26,第一个能使2n >n 2+1的n 值为5,故选C.3.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10 答案 B解析 左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.4.用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n ∈N *)的过程中,由n =k 递推到n =k +1时,下列说法正确的是( )A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中的两项,但又减少了一项1k +1 D .增加了A 中的一项,但又减少了一项1k +1答案 C解析 当n =k 时,不等式左边为1k +1+1k +2+…+12k ,当n =k +1时,不等式左边为1k +2+1k +3+…+12k +12k +1+12k +2,故选C. 5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开________. 答案 (k +3)3解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将 (k +3)3展开,让其出现k 3即可.6.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).依次计算出S 1,S 2,S 3,S 4后,可猜想S n 的表达式为________. 答案 S n =2nn +1解析 S 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.7.已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n,用数学归纳法证明:a n =n -n -1.证明 (1)当n =1时.a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,∴a 21=1(a n >0),∴a 1=1,又1-0=1, ∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立,即a k =k -k -1. 当n =k +1时,a k +1=S k +1-S k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ∴a 2k +1+2ka k +1-1=0, 解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.由(1)(2)可知,对n ∈N *都有a n =n -n -1. 二、能力提升8.k (k ≥3,k ∈N *)棱柱有f (k )个对角面,则(k +1)棱柱的对角面个数f (k +1)为( ) A .f (k )+k -1 B .f (k )+k +1 C .f (k )+k D .f (k )+k -2答案 A解析 三棱柱有0个对角面,四棱柱有2个对角面[0+2=0+(3-1)];五棱柱有5个对角面[2+3=2+(4-1)];六棱柱有9个对角面[5+4=5+(5-1)];….猜想:若k 棱柱有f (k )个对角面,则(k +1)棱柱有f (k )+k -1个对角面. 9.对于不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下:①当n =1时,12+1≤1+1,不等式成立.②假设n =k (n ∈N *)时,不等式成立,即k 2+k ≤k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+3k +2+(k +2)=(k +2)2=(k +1)+1,所以当n =k +1时,不等式成立,上述证法( )A .过程全部正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案 D解析 从n =k 到n =k +1的推理中没有使用归纳假设,不符合数学归纳法的证题要求.10.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2.假设n =k 时,不等式成立.则当n =k +1时,应推证的目标不等式是________. 答案 122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3解析 观察不等式中的分母变化知,122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3. 11.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N *). 证明 (1)当n =2时,左边=13+14+15+16>56,不等式成立. (2)假设当n =k (k ≥2,k ∈N *)时命题成立,即1k +1+1k +2+…+13k >56. 则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+ ⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+ ⎝ ⎛⎭⎪⎫3×13k +3-1k +1=56, 所以当n =k +1时不等式也成立.由(1)和(2)可知,原不等式对一切n ≥2,n ∈N *均成立.12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n+2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明. 解 当n ≥2时,a n =S n -S n -1=S n +1S n+2.∴S n =-1S n -1+2(n ≥2).则有:S 1=a 1=-23, S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立. (2)假设n =k (k ∈N *)猜想成立, 即S k =-k +1k +2成立,那么n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2. 即n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想结论均成立. 三、探究与创新13.已知递增等差数列{a n }满足:a 1=1,且a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式a n ;(2)若不等式⎝ ⎛⎭⎪⎫1-12a 1·⎝ ⎛⎭⎪⎫1-12a 2·…·⎝ ⎛⎭⎪⎫1-12a n ≤m 2a n +1对任意n ∈N *,试猜想出实数m的最小值,并证明.解(1)设数列{a n}公差为d(d>0),由题意可知a1·a4=a22,即1(1+3d)=(1+d)2,解得d=1或d=0(舍去).所以,a n=1+(n-1)·1=n.(2)不等式等价于12·34·56·…·2n-12n≤m2n+1,当n=1时,m≥32;当n=2时,m≥358;而32>358,所以猜想,m的最小值为32.下面证不等式12·34·56·…·2n-12n≤322n+1对任意n∈N*恒成立.下面用数学归纳法证明:证明(1)当n=1时,12≤323=12,成立.(2)假设当n=k时,不等式,12·34·56·…·2k-12k≤322k+1成立,当n=k+1时,12·34·56·…·2k-12k·2k+12k+2≤322k+1·2k+12k+2,只要证322k+1·2k+12k+2≤322k+3,只要证2k+12k+2≤12k+3,只要证2k+12k+3≤2k+2,只要证4k2+8k+3≤4k2+8k+4,只要证3≤4,显然成立.所以,对任意n ∈N *,不等式12·34·56·…·2n -12n ≤322n +1恒成立.。