高考数学总复习第三讲—数形结合
- 格式:doc
- 大小:208.00 KB
- 文档页数:11
复数中的数形结合因为复数i b a z +=与复平面上的点()b a Z ,是一一对应的,体现了数与形上的对应,所以在复数中利用数形结合解某些问题不仅巧妙,而且也体现出一种数学之美. 知识点:设动点Z 、定点1Z 、2Z 分别表示复数z 、1z 、2z 所对应的点,则 ⑴1z z -的几何含义:点Z 到点1Z 的距离; ⑵r z z =-1表示以r 为半径,点1Z 为圆心的圆; ⑶21z z z z -=-表示线段的垂直平分线,其中点1Z 、2Z 是线段的两个端点; ⑷a z z z z 221=-+-,当212Z Z a =时,表示线段1Z 2Z ; 当212Z Z a >时,表示以点1Z 、2Z 为焦点,a 2为长轴长的椭圆; 上述几种曲线都可以结合⑴当中的1z z -的几何含义来理解,比如,⑶中1z z -表示点Z 到点1Z 的距离,2z z -表示点Z 到点2Z 的距离,即点Z 到点1Z 的距离与到点2Z 的距离相等,所以,点Z 的轨迹是线段1Z 2Z 的垂直平分线.下面举例说明数形结合的用法:例1.若24i 3≤++z ,则z 的最大值为.解析:由24i 3≤++z 知,复数z 对应点的轨迹为以2为半径,点()431--,Z 为圆心的圆及其内部.所以,z 的最大值为7251=+=+r OZ .例2.如果复数z 满足2i i =-++z z ,那么1i ++z 的最小值为()A .1B .2C .2D .5 解析:由2i i =-++z z 知,复数z 对应的点的轨迹是线段AB ,其中()01,-A ,()01,B .又1i ++z 表示点()1,1--到线段AB 的距离,故当i -=z 时,11i i =++n m z .例3.复数z 满足条件4i 2-=+z z ,则z 的最小值为.解析:由4i 2-=+z z 知,复数z 对应点的轨迹为线段AB 的垂直平分线,其中()02,-A ,()40,B ,z 即原点到垂直平分线上点的距离.故553z =min .例4.复数z 满足2i 2=-z ,则2i +z 的取值X 围是() A .⎥⎦⎤⎢⎣⎡25,21 B .⎥⎦⎤⎢⎣⎡27,23 C .⎥⎦⎤⎢⎣⎡221,1 D .⎥⎦⎤⎢⎣⎡221,2 解析:由2i 2=-z 可得:12i =-z .因此复数z 对应点Z 的轨迹是以)21,0(为圆心,1为半径的圆周,而()2i 2i --=+z z 即点Z 到点()2,0-的距离,最小值为23,最大值为27.。
重点重点难点36 函数方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●重点重点难点磁场1.(★★★★★)关于x的不等式2•32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为.2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)(1)若a=1,b=–2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值.●案例探究[例1]已知函数f(x)=logm(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)x<–3或x>3.∵f(x)定义域为[α,β],∴α>3设β≥x1>x2≥α,有当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)]∵0<m<1, f(x)为减函数.∴即即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根∴∴0<m<故当0<m<时,满足题意条件的m存在.[例2]已知函数f(x)=x2–(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式.错解分析:第(1)问中易漏掉Δ≥0和tan(A+B)<0,第(2)问中如何保证f(x)在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f(x)+4=0即x2–(m+1)x+m+4=0.依题意:又A、B锐角为三角形内两内角∴<A+B<π∴tan(A+B)<0,即∴∴m≥5(2)证明:∵f(x)=(x–1)(x–m)又–1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0即1≤x≤3时,恒有f(x)≤0即(x–1)(x–m)≤0∴m≥x但xmax=3,∴m≥xmax=3(3)解:∵f(sinα)=sin2α–(m+1)sinα+m=且≥2,∴当sinα=–1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y=f(x)、y=f–1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭重点重点难点训练一、选择题1.(★★★★★)已知函数f(x)=loga[–(2a)2]对任意x∈[,+∞]都有意义,则实数a 的取值范围是( )A.(0,B.(0, )C.[,1D.( , )2.(★★★★★)函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2–x+1,那么当x>1时,f(x)的递减区间是( )A.[,+∞B.(1,C.[,+∞D.(1, ]二、填空题3.(★★★★)关于x的方程lg(ax–1)–lg(x–3)=1有解,则a的取值范围是.4.(★★★★★)如果y=1–sin2x–mcosx的最小值为–4,则m的值为.三、解答题5.(★★★★)设集合A={x|4x–2x+2+a=0,x∈R}.(1)若A中仅有一个元素,求实数a的取值集合B;(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.6.(★★★★)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.7.(★★★★★)已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)], …gn(x)=f[gn–1(x)],…(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.8.(★★★★)已知函数f(x)= (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.参考答案●重点重点难点磁场1.解析:设t=3x,则t∈[1,3],原不等式可化为a2–a–3>–2t2+t,t∈[1,3].等价于a2–a–3大于f(t)=–2t2+t在[1,3]上的最大值.答案:(–∞,–1)∪(2,+∞)2.解:(1)当a=1,b=–2时,f(x)=x2–x–3,由题意可知x=x2–x–3,得x1=–1,x2=3.故当a=1,b=–2时,f(x)的两个不动点为–1,3.(2)∵f(x)=ax2+(b+1)x+(b–1)(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+(b–1),即ax2+bx+(b–1)=0恒有两相异实根∴Δ=b2–4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2–16a<0解得0<a<1故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2)又∵A、B关于y=kx+ 对称.∴k=–1.设AB的中点为M(x′,y′)∵x1,x2是方程ax2+bx+(b–1)=0的两个根.∴x′=y′= ,又点M在直线上有,即∵a>0,∴2a+ ≥2 当且仅当2a= 即a= ∈(0,1)时取等号,故b≥–,得b的最小值–.●歼灭重点重点难点训练一、1.解析:考查函数y1= 和y2=(2a)x的图象,显然有0<2a<1.由题意得a= ,再结合指数函数图象性质可得答案.答案:A2.解析:由题意可得f(–x+1)=–f(x+1).令t=–x+1,则x=1–t,故f(t)=–f(2–t),即f(x)=–f(2–x).当x>1,2–x<1,于是有f(x)=–f(2–x)=–2(x–)2–,其递减区间为[,+∞).答案:C3.解析:显然有x>3,原方程可化为故有(10–a)•x=29,必有10–a>0得a<10又x= >3可得a>.答案:<a<104.解析:原式化为.当<–1,ymin=1+m=–4 m=–5.当–1≤≤1,ymin= =–4 m=±4不符.当>1,ymin=1–m=–4 m=5.答案:±5二、5.解:(1)令2x=t(t>0),设f(t)=t2–4t+a.由f(t)=0在(0,+∞)有且仅有一根或两相等实根,则有①f(t)=0有两等根时,Δ=0 16–4a=0 a=4验证:t2–4t+4=0 t=2∈(0,+∞),这时x=1②f(t)=0有一正根和一负根时,f(0)<0 a<0③若f(0)=0,则a=0,此时4x–4•2x=0 2x=0(舍去),或2x=4,∴x=2,即A中只有一个元素综上所述,a≤0或a=4,即B={a|a≤0或a=4}(2)要使原不等式对任意a∈(–∞,0]∪{4}恒成立.即g(a)=(x–2)a–(x2–6x)>0恒成立.只须<x≤26.解:(1)∵方程ax2+bx=2x有等根,∴Δ=(b–2)2=0,得b=2.由f(x–1)=f(3–x)知此函数图象的对称轴方程为x=–=1得a=–1,故f(x)=–x2+2x. (2)f(x)=–(x–1)2+1≤1,∴4n≤1,即n≤而抛物线y=–x2+2x的对称轴为x=1∴n≤时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则又m<n≤,∴m=–2,n=0,这时定义域为[–2,0],值域为[–8,0].由以上知满足条件的m、n存在,m=–2,n=0.7.(1)证明:当n=1时,g1(x0)=x0显然成立;设n=k时,有gk(x0)=x0(k∈N)成立,则gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0即n=k+1时,命题成立.∴对一切n∈N,若g1(x0)=x0,则gn(x0)=x0.(2)解:由(1)知,稳定不动点x0只需满足f(x0)=x0由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0=∴稳定不动点为0和.(3)解:∵f(x)<0,得6x–6x2<0 x<0或x>1.∴gn(x)<0 f[gn–1(x)]<0 gn–1(x)<0或gn–1(x)>1要使一切n∈N,n≥2,都有gn(x)<0,必须有g1(x)<0或g1(x)>1.由g1(x)<0 6x–6x2<0 x<0或x>1由g1(x)>0 6x–6x2>1故对于区间( )和(1,+∞)内的任意实数x,只要n≥2,n∈N,都有gn(x)<0.8.(1)证明:任取x1>x2>0,f(x1)–f(x2)=∵x1>x2>0,∴x1x2>0,x1–x2>0,∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.(2)解:∵≤2x在(0,+∞)上恒成立,且a>0,∴a≥在(0,+∞)上恒成立,令(当且仅当2x= 即x= 时取等号),要使a≥在(0,+∞)上恒成立,则a≥.故a的取值范围是[,+∞).(3)解:由(1)f(x)在定义域上是增函数.∴m=f(m),n=f(n),即m2–m+1=0,n2–n+1=0故方程x2–x+1=0有两个不相等的正根m,n,注意到m•n=1,故只需要Δ=( )2–4>0,由于a>0,则0<a<.重点难点37 数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.●重点难点磁场1.曲线y=1+ (–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围.2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围.●案例探究[例1]设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x2,且x∈A },若C B,求实数a的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目.知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C.进而将C B 用不等式这一数学语言加以转化.错解分析:考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a<–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决. 解:∵y=2x+3在[–2, a]上是增函数∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}作出z=x2的图象,该函数定义域右端点x=a有三种不同的位置情况如下:①当–2≤a≤0时,a2≤z≤4即C={z|z2≤z≤4}要使C B,必须且只须2a+3≥4得a≥与–2≤a<0矛盾.②当0≤a≤2时,0≤z≤4即C={z|0≤z≤4},要使C B,由图可知:必须且只需解得≤a≤2③当a>2时,0≤z≤a2,即C={z|0≤z≤a2},要使C B必须且只需解得2<a≤3④当a<–2时,A= 此时B=C= ,则C B成立.综上所述,a的取值范围是(–∞,–2)∪[,3].[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求证:.命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目.知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A、B两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A(cosα,sinα)与点B(cosβ,sinβ)是直线l:ax+by=c与单位圆x2+y2=1的两个交点如图.从而:|AB|2=(cosα–cosβ)2+(sinα–sinβ)2=2–2cos(α–β)又∵单位圆的圆心到直线l的距离由平面几何知识知|OA|2–( |AB|)2=d2即∴.●锦囊妙计应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图(2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象(4)方程(多指二元方程)及方程的曲线以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.●歼灭重点难点训练一、选择题1.(★★★★)方程sin(x–)= x的实数解的个数是( )A.2B.3C.4D.以上均不对2.(★★★★★)已知f(x)=(x–a)(x–b)–2(其中a<b ,且α、β是方程f(x)=0的两根(α<β,则实数a、b、α、β的大小关系为( )A.α<a<b<βB.α<a<β<bC.a<α<b<βD.a<α<β<b二、填空题3.(★★★★★)(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t为参数)的最大值是.4.(★★★★★)已知集合A={x|5–x≥},B={x|x2–ax≤x–a},当A B时,则a的取值范围是.三、解答题5.(★★★★)设关于x的方程sinx+ cosx+a=0在(0,π)内有相异解α、β.(1)求a的取值范围;(2)求tan(α+β)的值.6.(★★★★)设A={(x,y)|y= ,a>0},B={(x,y)|(x–1)2+(y–3)2=a2,a>0},且A∩B≠,求a的最大值与最小值.7.(★★★★)已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.求|PF1|+|PA|的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm、20 cm、5 cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少?参考答案●重点难点磁场1.解析:方程y=1+ 的曲线为半圆,y=r(x–2)+4为过(2,4)的直线.答案:(]2.解法一:由f(x)>a,在[–1,+∞)上恒成立x2–2ax+2–a>0在[–1,+∞)上恒成立.考查函数g(x)=x2–2ax+2–a的图象在[–1,+∞]时位于x轴上方.如图两种情况:不等式的成立条件是:(1)Δ=4a2–4(2–a)<0 a∈(–2,1)(2) a∈(–3,–2 ,综上所述a∈(–3,1).解法二:由f(x)>a x2+2>a(2x+1)令y1=x2+2,y2=a(2x+1),在同一坐标系中作出两个函数的图象.如图满足条件的直线l位于l1与l2之间,而直线l1、l2对应的a值(即直线的斜率)分别为1,–3,故直线l对应的a∈(–3,1).●歼灭重点难点训练一、1.解析:在同一坐标系内作出y1=sin(x–)与y2= x的图象如图.答案:B2.解析:a,b是方程g(x)=(x–a)(x–b)=0的两根,在同一坐标系中作出函数f(x)、g(x)的图象如图所示:答案:A二、3.解析:联想到距离公式,两点坐标为A(4cosθ,3sinθ),B(2t–3,1–2t)点A的几何图形是椭圆,点B表示直线.考虑用点到直线的距离公式求解.答案:4.解析:解得A={x|x≥9或x≤3},B={x|(x–a)(x–1)≤0},画数轴可得.答案:a>3三、5.解:①作出y=sin(x+ )(x∈(0,π))及y=–的图象,知当|–|<1且–≠时,曲线与直线有两个交点,故a∈(–2,–)∪(–,2).②把sinα+ cosα=–a,sinβ+ cosβ=–a相减得tan ,故tan(α+β)=3.6.解:∵集合A中的元素构成的图形是以原点O为圆心,a为半径的半圆;集合B中的元素是以点O′(1, )为圆心,a为半径的圆.如图所示∵A∩B≠,∴半圆O和圆O′有公共点.显然当半圆O和圆O′外切时,a最小a+a=|OO′|=2,∴amin=2 –2当半圆O与圆O′内切时,半圆O的半径最大,即a最大.此时a–a=|OO′|=2,∴amax=2 +2.7.解:由可知a=3,b= ,c=2,左焦点F1(–2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a–|PF2|=6–|PF2|,∴|PF1|+|PA|=6–|PF2|+|PA|=6+|PA|–|PF2|如图:由||PA|–|PF2||≤|AF2|= 知–≤|PA|–|PF2|≤.当P在AF2延长线上的P2处时,取右“=”号;当P在AF2的反向延长线的P1处时,取左“=”号.即|PA|–|PF2|的最大、最小值分别为,– .于是|PF1|+|PA|的最大值是6+ ,最小值是6–.8.解:本题实际上是求正方形窗口边长最小值.由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:设AE=x,BE=y,则有AE=AH=CF=CG=x,BE=BF=DG=DH=y∴∴.高考数学重点难点突破重点难点38 分类讨论思想.txt人永远不知道谁哪次不经意的跟你说了再见之后就真的再也不见了。
2024年3月上半月㊀学习指导㊀㊀㊀㊀例谈 数形结合 思想在高考数学中的应用∗◉湖北江汉大学数学与大数据系㊀周㊀岭㊀许㊀璐㊀㊀著名数学家华罗庚曾说过: 数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休 .所谓 数形结合 就是把抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系结合起来,通过 以形助数或 以数解形 ,即通过抽象思维与形象思维的结合,将复杂问题简单化,抽象问题具体化,达到实现优化解题路径的目的,起到事半功倍的效果.下面将结合高考数学试题实例,分析说明 数形结合 思想在解决问题中的作用和简捷.1数形结合思想在解析几何中的应用例1㊀(2023年全国新高考Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则s i n α=(㊀㊀).A.1㊀㊀㊀B .154㊀㊀C .104㊀㊀D.64分析:此题可以先将圆的方程化为标准形式,设出切线方程,利用点到直线的距离公式求出两条切线的斜率,最后利用夹角公式求得s i n α的值,但是计算相对复杂.解析:依题意,圆的方程可化为(x -2)2+y 2=5.图1如图1,得到圆心C (2,0),r =5,P (0,-2).所以|P C |=22.设过点P 的两条切线为P A 和P B ,则øA P B =α,可得s i nα2=r |P C |=522=104,c o sα2=1-(s i n α2)2=64.所以s i n α=2s i nα2c o s α2=154.故选:B .例2㊀(2023年新高考I 卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则C 的离心率为.分析:此题常见解法是设出点A ,B 的坐标,利用已知条件列出三个方程,再解出方程求得点A ,B 的坐标,进而得出双曲线C 的离心率.这样计算量会很大,如果利用数形结合的思想结合双曲线的定义求其离心率将会大大简化计算.解析:由F 2A ң=-23F 2B ң,得|F 2A ||F 2B |=23.设|F 2A |=2x ,则|F 2B |=3x ,|A B |=5x ,|F 1B |=|F 2B |=3x .由双曲线的定义,得|A F 1|=|A F 2|+2a =2x +2a .设øF 1A F 2=θ,则s i n θ=3x 5x =35,所以c o s θ=45=2x +2a5x,解得=a ,则|A F 1|=4a ,|A F 2|=2a .图2如图2,在әF 1A F 2中,由余弦定理,可得c o s θ=16a 2+4a 2-4c 216a2=45.整理,得5c 2=9a 2.故e =c a =355.点评:这类题目考查了学生 数学抽象 的核心素养.解决此类题的关键在于将数学符号语言和图形语言相互转化,利用图形的直观性,结合相关定义㊁公式即可快速解题.2数形结合思想在立体几何中的应用例3㊀(2022年新高考I 卷)已知正方体A B C D GA 1B 1C 1D 1,则(㊀㊀).A.直线B C 1与D A 1所成的角为90ʎB .直线B C 1与C A 1所成的角为90ʎC .直线B C 1与平面B B 1D 1D 所成的角为45ʎD.直线B C 1与平面A B C D 所成的角为45ʎ分析:此题可以通过建立空间直角坐标系来判断各选项是否正确,但计算较繁琐.解析:选项A ,B 的判断略.93∗基金项目:江汉大学研究生科研创新基金项目 基于新课标新课改背景下提升中学生数学学科核心素养的探究 ,项目编号为K Y C X J J 202350;教育部产学合作协调育人2022年第一批立项项目 基于P y t h o n 的大数据分析与应用课程混合教学模式探索 ,项目编号为220506627242057.学习指导2024年3月上半月㊀㊀㊀图3如图3所示,连接A1C1,设A1C1ɘB1D1=O,连接B O.由B B1ʅ平面A1B1C1D1,C1O⊂平面A1B1C1D1,得C1OʅB1B.因为C1OʅB1D1,B1D1ɘB1B=B1,所以C1Oʅ平面B B1D1D,所以øC1B O为直线B C1与平面B B1D1D的夹角.设正方体棱长为1,则C1O=22,B C1=2,于是s i nøC1B O=C1O B C1=12.所以直线B C1与平面B B1D1D所成的角为30ʎ,故选项C错误.因为C1Cʅ平面A B C D,所以øC1B C为直线B C1与平面A BC D的夹角,易得øC1B C=45ʎ,故选项D正确.综上所述,此题选:A B D.点评:本题主要考查立体几何中直线与直线的夹角㊁直线与平面的夹角,是对学生 逻辑推理 直观想象核心素养的考查.此题如果通过建系来计算,将比较复杂,耗时较长;若采取 传统 方法,结合图形并运用立体几何㊁三角函数相关知识,即可快速㊁直观作出判断.3数形结合思想在函数中的应用例4㊀(2021年全国乙卷)设aʂ0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则有(㊀㊀).A.a<b B.a>b C.a b<a2D.a b>a2分析:此题如果利用导数知识来求该函数的极大值点,再通过a与b的大小来判断选项将非常复杂.如果通过数形结合先考虑函数的零点情况,注意零点附近左右两侧函数值是否变号,结合极大值点的性质,对a进行分类画出该函数的图象再来判断选项将大大简化了问题,既直观又方便快捷[1].解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故aʂb.所以f(x)有x=a和x=b两个不同零点,且在x=a附近左右两侧不变号,在x=b附近左右两侧变号.因为x=a为函数f(x)=a(x-a)2(x-b)的极大值点,所以f(x)在x=a附近左右都小于0.①当a<0时,由x>b,f(x)ɤ0,画出f(x)的图象如图4所示.由b<a<0,得a b>a2.图4㊀㊀㊀图5②当a>0时,由x>b,f(x)>0,画出f(x)的图象如图5所示.由b>a>0,得a b>a2.综上a b>a2成立.故选:D.例5㊀(2021年新高考I卷)已知O为坐标原点,点A(1,0),P1(c o sα,s i nα),P2(c o sβ,-s i nβ),P3(c o s(α+β),s i n(α+β)),则(㊀㊀).A.|O P1ң|=|O P2ң|B.|A P1ң|=|A P2ң|C.O Aң O P3ң=O P1ң O P2ңD.O Aң O P1ң=O P2ң O P3ң分析:此题如果画出图形,利用数形结合思想解题,既直观又简捷.图6解析:如图6,可得|O P1ң|=|O P2ң|=1,故选项A正确.仅当α=-β时,|A P1ң|=|A P2ң|成立.故选项B错误.由O Aң O P3ң=|O Aң| |O P3ң|c o s(α+β),O P1ң O P2ң=|O P1ң| |O P2ң| c o s(α+β),|O Aң|=|O P3ң|=|O P1ң|=|O P2ң|=1,可知O Aң O P3ң=O P1ң O P2ң.故选项C正确.观察图象,易得‹O Aң,O P1ң›=α,‹O P2ң,O P3ң›=α+2β.故选项D错误.此题应选:A C.例6㊀(2021年新高考I卷)若过点(a,b)可以作曲线y=e x的两条切线,则(㊀㊀).A.e b<a B.e a<bC.0<a<e b D.0<b<e a分析:此题要求作出曲线y=e x的两条切线,通过几何图形进行直观想象,很容易判断各选项是否正确.解析:作出y=e x的图象.易得,若想作出切线,点(a,b)需在曲线y=e x的下方和x轴上方,如图7,即b<e a.图7㊀㊀图8但点(a,b)在x轴及其下方时,仅能作出一条切线,如图8.所以点(a,b)需在y轴上方,即b>0.综上,可得0<b<e a.故选:D.综上所述,在高考数学中利用数形结合思想解题往往可以起到简化计算㊁提高解题效率的作用.因此,平时教学中教师应通过数形结合思想丰富的展现形式不断对其进行渗透,促进学生数与形相互转换的能力,刺激学生学习数学的欲望,引导学生投入到数形结合分析的专题探究中[2],从而达到数学抽象思维具象化㊁发散化的教学目的,最终达到提升学生核心素养和全面发展的教育目的.参考文献:[1]常国良.数学教学中渗透直观想象素养的三重境界[J].教学与管理,2020(31):62G64.[2]李兆芹.探究数形结合思想如何有效运用于高中数学教学[J].数学学习与研究,2018(5):43.Z04。
高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。
专题4 数形结合、分类讨论思想一.知识探究:1.数形结合作为一种重要的数学思想方法历年来一直是高考考察的重点之一。
数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
数形结合的途径:(1)通过坐标系形题数解(2)通过转化构造数题形解 数形结合的原则:(1)等价性原则;(2)双向性原则;(3)简单性原则2.分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级;二.命题趋势分类讨论思想是一种重要的数学思想,它在人的思维发展中有着重要的作用,因此在近几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测对本专题的考察为:将有一道中档或中档偏上的试题,其求解思路直接依赖于分类讨论,特别关注以下方面:涉及指数、对数底的讨论,含参数的一元二次不等式、等比数列求和,由n S 求n a 等。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
三.再现性题组1.集合A ={x||x|≤4,x ∈R},B ={x||x -3|≤a ,x ∈R},若A ⊇B ,那么a 的范围是( )。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<1 对参数a 分a>0、a =0、a<0三种情况讨论,选B ;2. 若θ∈(0, π2),则lim n →∞cos sin cos sin n n n n θθθ+θ-的值为( )。
数形结合数形结合是通过“以形助数“(将所研究的代数问题转化为研究其对应的几何图形)或“以数助形"(借助数的精确性来阐明形的某种属性),把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来,是解决问题的一种数学思想方法。
它能使抽象问题具体化,复杂问题简单化,在数学解题中具有极为独特的策略指导与调肖作用。
具体地说,数形结合的基本思路是:根据数的结构特征,构造岀与之相应的几何图形, 并利用图形的特性和规律,解决数的问题;或将图形信息全部转化成代数信息,使解决形的问题转化为数星关系的讨论。
选择题,填空题等客观性题型,由于不要求解答过程,就某些题目而言,这给学生创造了灵活运用数形结合思想,寻找快速思路的空间。
但在解答题中,运用数形结合思想时,要注意辅之以严格的逻辑推理,“形“上的直观是不够严密的。
1.高考试题对数形结合的考査主要涉及的几个方面:(1)集合问题中Venn图(韦恩图)的运用:(2)数轴及直角坐标系的广泛应用:(3)函数图象的应用:(4)数学概念及数学表达式几何意义的应用:(5)解析几何、立体几何中的数形结合。
2.运用数形结合思想分析解决问题时,要遵循三个原则:(1)等价性原则。
要注意由于图象不能精确刻画数量关系所带来的负而效应:(2)双方性原则。
既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错:(3)简单性原则。
不要为了“数形结合”而数形结合,具体运用时,一要考虑是否可行和是否有利:二要选择好突破口,恰当设参、用参、建立关系,做好转化:三要挖掘隐含条件, 准确界泄参变量的取值范围,特别是运用函数图象时应设法选择动宜线与泄二次曲线为佳。
3.进行数形结合的信息转换,主要有三个途径:(1)建立坐标系,引入参变数,化静为动,以动求解,如解析几何;(2)构造成转化为熟悉的函数模型,利用函数图象求解:(3)构造成转化为熟悉的几何模型,利用图形特征求解。
高考数学总复习第三讲:数形结合一、专题概述 ---什么是数形结合的思想数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.二、例题分析1.善于观察图形,以揭示图形中蕴含的数量关系.观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.例1.函数的图象的一条对称轴方程是:(A)(B)(C)(D)分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:,其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.例2.问:圆上到直线的距离为的点共有几个?分析由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.将圆方程变形为:,知其圆心是C(-1,-2),半径,而圆心到定直线L的距离为,由此判定平行于直线L且距离为的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.3.切实把握“数”与“形”的对应关系,以图识性以性识图.数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相成,相互转化.例3.判定下列图中,哪个是表示函数图象.分析由=,可知函数是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().分析由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).例5.若复数z满足,且,则在复平面上对应点的图形面积是多少?分析满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)因此所求图形的面积为:4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.例6.已知C<0,试比较的大小.分析这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:例7 解不等式解法一(用代数方法求解),此不等式等价于:解得故原不等式的解集是解法二 (采用图象法) 设即对应的曲线是以为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象是一直线.(如图) 解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.例8 讨论方程的实数解的个数.分析:作出函数的图象,保留其位于x 轴上方的部分,将位于x 轴下方的部分沿x 轴翻折到x 轴上方,便可得到函数的图象.(如图)再讨论它与直线y=a 的交点个数即可. ∴当a <0时,解的个数是0;当a=0时或a >4时,解的个数是2;当0<a <4时,解的个数是4;当a=4时,解的个数是3.9.已知直线和双曲线有且仅有一个公共点,则k 的不同取值有()(A )1个(B )2个(C )3个 (D )4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()(A)1个(B)2个(C)3个(D)4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例10.设点P(x,y)在曲线上移动,求的最大值和最小值.解曲线是中心在(3,3),长轴为,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)消去y得解得:故的最大值为,最小值为例11.求函数(其中a,b,c是正常数)的最小值.分析采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则其中的等号在P为线段AB与x轴的交点外,即时成立.故y的最小值为例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.分析在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决.解,设R点对应的复数为:,P点对应的复数为则故即由点在椭圆上可知有:整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.三解题训练1.求下列方程实根的个数:(1)(2)(3)2.无论m取任何实数值,方程的实根个数都是()(A)1个(B)2个(C)3个(D)不确定3.已知函数的图象如右图则()(A)b∈(-∞,0)(B)b∈(0,1)(C)b∈(1,2) (D)b∈(2,+ ∞)4.不等式的解集是()(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式一定有解,则a的取值范围是()(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1]6.解下列不等式:(1)(2)7.复平面内点A、B分别对应复数2,2+i,向量绕点A逆时针方向旋转至向量,则点C对应的复数是_______.8.若复数z满足|z|<2,则arg(z-4)的最大值为___________9.若复数z满足10.函数的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两定点的坐标是( )(A)(–,–)(,)(B)(–,)(,–)(C)(–2,2)(2,2)(D)(2,–2)(–2,2)11.曲线与直线的交点个数是().(A)0(B)1 (C)2(D)312.曲线与直线有两个交点,则实数k的取值是()(A)(B)(C)(D)13.已知集合,满足,求实数b的取值范围.14.函数的值域是()(A)(B)(C)(D)四、练习答案1.(1)2个(2)63个(3)2个提示:分别作出两个函数的图象,看交点的个数.2.B、提示:注意到方程右式,是过定点(,0)的直线系.3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形学习好资料欢迎下载f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而可知b=-3a<0,故选(A)4.A5.A6.(可以利用图象法求解)(1)x≤-1或0<x≤3(2)x≤-17.18.210°9.10.A11.D 提示:在曲线方程中,分x≥0或x<0两种情形讨论,作出图形即可.12.C13.14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=k AB,而A点为圆x2+y2=1上的动点。
数形结合思想数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要数学思想方法.利用数形结合思想,“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从而找到解题思路,使问题得到解决.以形助数常用的有:借助于数轴、函数图像、单位圆、数式的结构特征、解析几何方法,以数解形常用的有:借助于几何轨迹所遵循的数量关系、运算结果与几何定理的结合.【以形助数】例1、(集合中的数形结合)已知集合{}{}0103,22<--=+<<=xxxBaxaxA,当∅≠⋂BA,求实数a的取值范围.参考解答:画数轴分析可得45a-<<.例2、(函数中的数形结合)设()222f x x ax=-+,当[)1,x∈-+∞时,()f x a>恒成立,求a参考解答:解法一:由()f x a>,在[)1,-+∞上恒成立2x⇔考查函数()222g x x ax a=-+-的图像在[1,-不等式的成立条件是:1)()()244202,1a a a∆=--<⇒∈-;2)()(]13,210a ag∆≥⎧⎪<-⇒∈--⎨⎪->⎩;综上所述()3,1a∈-解法二:由()()2221f x a x a x>⇔+>+,令),l m对应的a的值分别为3,1-,故直线l对应的a∈例3、(方程中的数形结合)若方程()()2lg3lg3x x m x-+-=-在x∈内有唯一解,求实数参考解答:原方程变形为23033xx x m x->⎧⎨-+-=-⎩,即()3021xx m2->⎧⎪⎨-=-⎪⎩,作出曲线()212y x=-,()0,3x∈和直线21y m=-的图象,由图可知:①当10m-=时,有唯一解1m=;②当114m ≤-<时,即30m -<≤时,方程有唯一解. 综上可知,1m =或30m -<≤时,方程有唯一解.例4、(不等式中数形结合)不等式0222>++-a a ax x 在()2,0∈x 时恒成立,求a 的取值范围.参考解答:(][),10,-∞-⋃+∞例5、(解析几何中的数形结合)已知,x y 满足2211625x y +=,求3y x -的最大值与最小值. 参考解答:对于二元函数3y x -在限定条件2211625x y +=下求最值问题,常采用构造直线截距的方法 来求之.令3y x b -=,则3y x b =+,原问题转化为:在椭圆2211625x y +=上求一点, 使过该点的直线斜率为3,且在y 轴上截距最大或最小,由图可知,当直线3y x b =+与椭圆2211625x y +=相切时,有最大截距与最小截距.由可得0∆=,得13b =±,故3y x -的最大值为13,最小值为13-.例6、设0b >,二次函数2y ax =②(A ()B例7、线段AB 的两个端点为(1,1A 点,求a 的取值范围.参考解答:不论a 取何值,直线l 恒过定点(P需要l 由直线PA 的位置(绕P l 的倾斜角先逐渐增大到2π(从而l 依然逐渐增大,因此其正切值(l 故(][)2,42,a ∈-∞-⋃+∞,即例8、已知()1,1A为椭圆22195x y+=内一点,1F为椭圆左焦点,P为椭圆上一动点,求1PF PA+的最大值和最小值.参考解答:由椭圆的定义知121266PF PF PF PF+=⇒=-,122266,6PF PA PF PA AF AF+=-+∈⎡-+⎤⎣⎦即()1min6PF PA+=,()1max6PF PA+=【配套练习】1、方程1sin44x xπ⎛⎫-=⎪⎝⎭的解的个数为(C)()A1()B2()C3()D4 2、如果实数,x y满足()2223x y-+=,则yx的最大值为(D)()A12()B()C()D参考解答:等式()2223x y-+=有几何意义,它表示坐标平面上的一个圆,圆心为()2,0,半径3r=如图,y yx x-=-表示圆上的点(),x y与坐标原点()0,0的连线的斜率. 如此以来,该问题可转化为如下几何问题:动点A在以()2,0为圆心,以r=OA的斜率的最大值,由图可见,当A∠在第一象限,且与圆相切时,OA的斜率最大,经简单计算得最大值为tan60︒=3、已知函数()()2log1f x x=+,若0a b c<<<,则()()(),,f a f b f ca b c的大小关系为()()()f c f b f ac b a<<.4、设函数()2020x bx c xf xx⎧++≤=⎨>⎩,若()()40f f-=,()2f-=则关于x的方程()f x x=的解的个数为(C)()A1()B2()C35、函数y=D)()A2()B1+()C6、已知函数aaxxy-++=22在区间(]3,∞-内递减,则实数a参考解答:如图所示,可知对称轴362ax a=-≥⇒≤-7、设α、β分别是方程2log40240xx x x+-=+-=和的根,则αβ+=4.8、如果关于x 的方程0232=-++a ax x 有两个实数根21,x x ,并且()()2,0,1,21∈-∞-∈x x ,求实数a 的取值范围.参考解答:令()232f x x ax a =++-,由题()()()1043030032022070f a f a a f ⎧-<-<⎧⎪⎪<⇒-<⇒>⎨⎨⎪⎪>>⎩⎩.9、求函数2cos 2sin -+=x x y 的值域.参考解答:2cos 2sin -+=x x y 的形式类似于斜率公式2121y y k x x -=-,表示过两点()02,2P -,()cos ,sin P x x 的直线的斜率,由于点P 在单位圆122=+y x 上,显然B P A P k y k 00≤≤,设过0P 的圆的切线方程为)2(2-=+x ky ,则有11|22|2=++k k ,解得374±-=k ,即0P Ak =,0P Bk =,所以374374+-≤≤--y ,所以函数值域为⎥⎦⎤⎢⎣⎡+---374374,. 10、已知集合(){}()(){}22,1,,,,1,,P x y x y x R y R Q x y x a y x R y R=+≤∈∈=-+≤∈∈,求满足下列条件时实数a 的取值范围.⑴∅≠⋂QP ;⑵P Q ;参考解答:画区域分析问题,⑴[]2,2a ∈-,⑵0a =【高考真题】1、若集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<⎩⎨⎧===)0(s i n 3c o s 3)(πθθθy x y x M ,,集合}|){(b x y y x N +==,,且∅≠N M ,则实数b 的取值范围为(-.参考解答: 集合}109|){(22≤<=+=y y x y x M,,,显然,M 表示以()0,0为圆心,以3为半径的圆在x 轴上方的部分,(如图),而N 则表示一条直线,其斜率1k =,纵截距为b ,由图形易知,欲使M N ⋂≠∅,即直线y x b =+与半圆有公共点,显然b 的最小逼近值为3-,最大值为233≤<-b .2、已知()()2f x x a x b =---(其中a b <),且,αβ是方程()0f x =的两根(αβ<), 则实数(),a αβ∈,且b ∈(),αβ.3、点M 是椭圆1162522=+y x 上一点,它到其中一个焦点1F 的距离为2,N 为1MF 的中点,O 表示原点,则ON =(C ) ()A 32()B 2()C 4()D 8参考解答:设椭圆另一焦点为2F ,(如下图),则122MF MF a +=,而5a =,因为12MF =,所以28MF =,又注意到,N O 各为112,MF F F 的中点,所以ON 是12MF F ∆的中位线,因此4||21||2==MF ON .4、关于x 的方程()ax k x =-22在(]()*21,21x k k k N ∈-+∈上有两个不相等的实数解,求实数a 的取值范围.()1 ()2 ()3 ()4()A ()()()(),2,3,4c a b d ----1 ()B ()()()(),2,3,4a b c d ----1 ()C ()()()(),2,3,4b d a c ----1 ()D ()()()(),2,3,4b c d a ----18、已知函数()32f x ax bx cx d =+++的图像如图所示,则(A )()()A ,0b ∈-∞ ()()0,1B b ∈()()1,2C b ∈()()2,D b ∈+∞参考解答:本题可将图形转化为具体数值,由图像过3个特殊点及与x ⑴()00f =,即0d =;⑵()10f =,即0a b c ++=; ⑶()20f =,即8420a b c ++=;⑷()()()12f x ax x x =⋅-⋅-;⑸当()(),01,2x ∈-∞⋃时,()0f x <,由()10f -<得0a b c -+-<,⑹当()()0,12,x ∈⋃+∞时,()0f x >,()30f >,可推得0a >.巧妙合理地利用以上各式,就可以得到多种简捷的解法: 方法一:⑵⑶得3b a =-,再由⑹推得0b <,选A ;方法二:⑵⑸推得0b <;方法三:由⑷比较同次项系数得3b a =-,再由⑹得3b a =-.数学思想方法:数形结合数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要数学思想方法.利用数形结合思想,“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从而找到解题思路,使问题得到解决.以形助数常用的有:借助于数轴、函数图像、单位圆、数式的结构特征、解析几何方法,以数解形常用的有:借助于几何轨迹所遵循的数量关系、运算结果与几何定理的结合.【以形助数】 例1、(集合中的数形结合)已知集合{}{}0103,22<--=+<<=x x x B a x a x A ,当∅≠⋂B A ,求实数a 的取值范围.例2、(函数中的数形结合)设()222f x x ax =-+,当[)1,x ∈-+∞时,()f x a >恒成立,求a 的取值范围.例3、(方程中的数形结合)若方程()()2lg3lg 3xx m x -+-=-在()0,3x ∈内有唯一解,求实数m 的取值范围.例4、(不等式中数形结合)不等式0222>++-a a ax x在()2,0∈x 时恒成立,求a 的取值范围.例5、(解析几何中的数形结合)已知,x y 满足2211625x y +=,求3y x -的最大值与最小值.例6、设0b >,二次函数2y ax =②(A ()B 例7、线段AB 的两个端点为()()1,1,1,3A B -,直线:21l y ax =-,已知直线l 与线段AB 有公共点,求a 的取值范围.例8、已知()1,1A 为椭圆22195x y +=内一点,1F 为椭圆左焦点,P 为椭圆上一动点, 求1PF PA +的最大值和最小值.【配套练习】 1、方程1sin 44x x π⎛⎫-= ⎪⎝⎭的解的个数为( ) ()A 1()B 2()C 3()D 42、如果实数,x y 满足()2223x y -+=,则y x的最大值为( )()A 12()B()C()D 3、已知函数()()2l o g 1f x x=+,若0a b c <<<,则()()(),,f a f b f c a b c的大小关系为 .4、设函数()2020x bx c x f x x ⎧++≤=⎨>⎩,若()()40f f -=,()22f -=-,则关于x 的方程()f x x =的解的个数为( )()A 1()B 2()C 3()D 35、函数y = )()A 2()B 1+()C()D 6、已知函数aax x y -++=22在区间(]3,∞-内递减,则实数a的取值范围为 . 7、设α、β分别是方程2log 40240x x x x +-=+-=和的根,则αβ+= .8、如果关于x 的方程0232=-++a ax x 有两个实数根21,x x ,并且()()2,0,1,21∈-∞-∈x x ,求实数a 的取值范围.9、求函数2cos 2sin -+=x x y 的值域.10、已知集合(){}()(){}22,1,,,,1,,P x y x y x R y R Q x y x a y x R y R=+≤∈∈=-+≤∈∈,求满足下列条件时实数a 的取值范围.⑴∅≠⋂Q P ;⑵P Q .【高考真题】1、若集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<⎩⎨⎧===)0(s i n 3c o s 3)(πθθθy x y x M ,,集合}|){(b x y y x N +==,,且∅≠N M ,则实数b 的取值范围为 .2、已知()()()2f x x a x b =---(其中a b <),且,αβ是方程()0f x =的两根(αβ<), 则实数(),a αβ∈,且b (),αβ.3、点M 是椭圆1162522=+y x 上一点,它到其中一个焦点1F 的距离为2,N 为1MF 的中点,O 表示原点,则ON =( )()A 32()B 2 ()C 4 ()D 8 4、关于x 的方程()ax k x =-22在(]()*21,21x k k k N ∈-+∈上有两个不相等的实数解,求实数a 的取值范围.5678、已知函数f x ax bx cx d =+++的图像如图所示,则( )()()A ,0b ∈-∞ ()()0,1B b ∈ ()()1,2C b ∈ ()()2,D b ∈+∞。
高三数学 选择题做题技巧一、数形结合画出图形或者图象能够使问题提供的信息更直观地呈现,从而大大降低思维难度,是解决数学问题的有力策略,这种方法使用得非常之多。
【例题】、(07江苏6)设函数()f x 定义在实数集上,它的图象关于直线1x =对称,且当1x ≥时,()31xf x =-,则有( )。
A 、132()()()323f f f B 、231()()()323f f f C 、213()()()332f f f D .321()()()233f f f 【解析】、当1x ≥时,()31xf x =-,()f x 的图象关于直线1x =对称,则图象如图所示。
这个图象是个示意图,事实上,就算画出()|1|f x x =-的图象代替它也可以。
由图知, 符合要求的选项是B ,【练习1】、若P (2,-1)为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是( )A 、30x y --=B 、230x y +-=C 、10x y +-=D 、250x y --= (提示:画出圆和过点P 的直线,再看四条直线的斜率,即可知选A )【练习2】、(07辽宁)已知变量x 、y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A 、9,65⎡⎤⎢⎥⎣⎦B 、[)9,6,5⎛⎤-∞+∞ ⎥⎝⎦C 、(][),36,-∞+∞D 、[]3,6(提示:把yx看作可行域内的点与原点所在直线的斜率,不难求得答案 ,选A 。
)【练习3】、曲线[]214(2,2)y x x =+-∈-与直线(2)4y k x =-+有两个公共点时,k 的取值范围是( )A 、5(0,)12B 、11(,)43C 、5(,)12+∞ D 、53(,)124(提示:事实上不难看出,曲线方程[]214(2,2)y x x =+-∈-的图象为22(1)4(22,13)x y x y +-=-≤≤≤≤,表示以(1,0)为圆心,2为半径的上半圆,如图。
高考数学 数形结合的思想数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞. 数缺形时少直观, 形少数时难入微.”.把数量关系的研究转化为图形性质的研究,或者把 图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。
数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来。
在使用的过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。
考试中心对考试大纲的说明中强调:“在高考中,充分利用选择题和填空题的题型特点,为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系转化为直观的几何图形问题来解决的意识,而在解答题中,考虑到推理论证的严密性,对数量关系问题的研究仍突出代数的方法而不提倡使用几何的方法,解答题中对数形结合思想的考查以由‘形’到‘数’的转化为主。
”【分析及解】如果采用代数运算,则无所适从,如果画出单调函数()x f y =的示意图象,由()()()()βαf f x f x f -<-21可断定横坐标为βα,的点,至少有一个在横坐标为21,x x 的点的外部,因而0<λ,应选(A ).【分析及解】这是一道函数,数列,函数图象综合在一起的选择题,需要通过数列的性质(A ) (B) (C) (D)研究函数图象的特征.实际上,只要设y a x a n n ==+1,,则有)(x f y =且x y >,并对所有*∈N n 都成立,因此选(A).【分析及解】本题大部分考生都是用三角恒等变形和正弦定理通过一定量的计算来完成,但是注意到数形结合,可以很快解决问题.为此,延长CA 到D ,使ABAD =,则 AC AB CD +=,,6CBD B π∠=∠+,6π=∠D由正弦定理⎪⎭⎫ ⎝⎛++=6sin sin πB AC AB D BC ,即 ⎪⎭⎫ ⎝⎛+=+6sin 6πB AC AB ,由此,选(C).【分析及解】画出函数()x f 的图像,该图像关于对称,且()0≥x f ,令()t x f =,若0)()(2=++c x bf x f 有7个不同实数解,则方程02=++c bt t 有2个不同实数解,且为一正根,一零根.因此, 0<b 且0=c ,故选(C).【例3】 (2005年,江苏卷,5)△ABC 中,,3,3A BC π==则△ABC 的周长为( ).(A )43sin()33B π++ (B )43sin()36B π++ (C )6sin()33B π++ (D )6sin()36B π++ 【例4】(2005年,上海卷)设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )(A) 0<b 且0>c ( B)0>b 且0<c(C)0<b 且0=c (D)0≥b 且0=c【分析及解】本题给出了y =sin nx 在[0,nπ]上的面积为n 2,需要由此类比y =sin3x 在[0,32π]上的面积及y =sin (3x -π)+1在[3π,34π]上的面积,这需要寻求相似性,,其思维的依据就是已知条件给出的面积的定义和已知函数的面积,因此要研究这个已知条件,要注意已知条件所给出的是半个周期的面积,而第(1)问则是3=n 时一个周期的面积=34,第(2)问又是y =sin3x 经过平移和翻转后一个半周期的面积,画出y =sin (3 x -π)+1在[3π,34π]上图像,就可以容易地得出答案32+π.【例5】(2005年,湖南卷,理15)设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积,已知函数y =sin nx 在[0,n π]上的面积为n2(n ∈N *), (i )y =sin3x 在[0,32π]上的面积为 ; (ii )y =sin (3 x -π)+1在[3π,34π]上的面积为 .。
高考数学总复习第三讲:数形结合一、专题概述 ---什么是数形结合的思想数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.二、例题分析1.善于观察图形,以揭示图形中蕴含的数量关系.观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.例1.函数的图象的一条对称轴方程是:(A)(B)(C)(D)分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:,其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.例2.问:圆上到直线的距离为的点共有几个?分析由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.将圆方程变形为:,知其圆心是C(-1,-2),半径,而圆心到定直线L的距离为,由此判定平行于直线L且距离为的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.3.切实把握“数”与“形”的对应关系,以图识性以性识图.数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相成,相互转化.例3.判定下列图中,哪个是表示函数图象.分析由=,可知函数是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().分析由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).例5.若复数z满足,且,则在复平面上对应点的图形面积是多少?分析满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)因此所求图形的面积为:4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.例6.已知C<0,试比较的大小.分析这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:例7 解不等式解法一(用代数方法求解),此不等式等价于:解得故原不等式的解集是解法二 (采用图象法) 设即 对应的曲线是以为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象是一直线.(如图) 解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.例8 讨论方程的实数解的个数.分析:作出函数的图象,保留其位于x 轴上方的部分,将位于x 轴下方的部分沿x 轴翻折到x 轴上方,便可得到函数的图象.(如图)再讨论它与直线y=a 的交点个数即可. ∴当a <0时,解的个数是0;当a=0时或a >4时,解的个数是2;当0<a <4时,解的个数是4;当a=4时,解的个数是3.9.已知直线和双曲线有且仅有一个公共点,则k 的不同取值有()(A )1个(B )2个(C )3个 (D )4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()(A)1个(B)2个(C)3个(D)4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例10.设点P(x,y)在曲线上移动,求的最大值和最小值.解曲线是中心在(3,3),长轴为,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)消去y得解得:故的最大值为,最小值为例11.求函数(其中a,b,c是正常数)的最小值.分析采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则其中的等号在P为线段AB与x轴的交点外,即时成立.故y的最小值为例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.分析在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决.解,设R点对应的复数为:,P点对应的复数为则故即由点在椭圆上可知有:整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.三解题训练1.求下列方程实根的个数:(1)(2)(3)2.无论m取任何实数值,方程的实根个数都是()(A)1个(B)2个(C)3个(D)不确定3.已知函数的图象如右图则()(A)b∈(-∞,0)(B)b∈(0,1)(C)b∈(1,2) (D)b∈(2,+ ∞)4.不等式的解集是()(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式一定有解,则a的取值范围是()(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1]6.解下列不等式:(1)(2)7.复平面内点A、B分别对应复数2,2+i,向量绕点A逆时针方向旋转至向量,则点C对应的复数是_______.8.若复数z满足|z|<2,则arg(z-4)的最大值为___________9.若复数z满足10.函数的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两定点的坐标是( )(A)(–,–)(,)(B)(–,)(,–)(C)(–2,2)(2,2)(D)(2,–2)(–2,2)11.曲线与直线的交点个数是().(A)0(B)1 (C)2(D)312.曲线与直线有两个交点,则实数k的取值是()(A)(B)(C)(D)13.已知集合,满足,求实数b的取值范围.14.函数的值域是()(A)(B)(C)(D)四、练习答案1.(1)2个(2)63个(3)2个提示:分别作出两个函数的图象,看交点的个数.2.B、提示:注意到方程右式,是过定点(,0)的直线系.3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形大毛毛虫★倾情搜集★精品资料f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而可知b=-3a<0,故选(A)4.A5.A6.(可以利用图象法求解)(1)x≤-1或0<x≤3(2)x≤-17.18.210°9.10.A11.D 提示:在曲线方程中,分x≥0或x<0两种情形讨论,作出图形即可.12.C13.14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=k AB,而A点为圆x2+y2=1上的动点大毛毛虫★倾情搜集★精品资料。