2019年中考数学总复习 第十一章 解答题 第47讲(课堂本)课件
- 格式:ppt
- 大小:1.02 MB
- 文档页数:21
2019备战中考数学(冀教版)巩固复习-第十一章因式分解(含解析)一、单选题1.下列多项式中,能用公式法分解因式的是()A. x2-xyB. x2+xyC. x2-y2D. x2+y22.把x2+x+m因式分解得(x﹣1)(x+2),则m的值为()A. 2B. 3C. ﹣2D. ﹣33.下列各式从左到右的变形是因式分解的是( )A. B.C. D.4.计算:1002﹣2×100×99+992=()A. 0B. 1C. -1D. 396015.分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A. (x﹣1)(x﹣2)B. x2C. (x+1)2D. (x﹣2)26.下列等式由左边到右边的变形中,属于因式分解的是()A. (a+1)(a﹣1)=a2﹣1B. a2﹣6a+9=(a﹣3)2C. x2+2x+1=x(x+2)+1D. ﹣18x4y3=﹣6x2y2•3x2y7.下列等式由左边向右边的变形中,属于因式分解的是()A. x2+5x-1=x(x+5)-1B. x2-4+3x=(x+2)(x-2)+3xC. x2-9=(x+3)(x-3)D. (x+2)(x-2)=x2-48.把2x2﹣4x分解因式,结果正确的是()A. (x+2)(x﹣2)B. 2x(x﹣2)C. 2(x2﹣2x)D. x(2x﹣4)9.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A. 140B. 70C. 35D. 2410.多项式﹣6x3y2﹣3x2y+12x2y2分解因式时,应先提的公因式是()A. 3xyB. ﹣3x2yC. 3xy2D. ﹣3x2y2二、填空题11.分解因式:2a2﹣2=________.12.若多项式x2+kx﹣8有一个因式是(x﹣2),则k=________13.因式分解:________.14.分解因式:2a2﹣6a=________ .15.把多项式x3﹣9x分解因式的结果是________.16.分解因式:3x2﹣6x2y+3xy2=________.三、计算题17. 因式分解:(1)2x3y-8xy;(2).18.分解因式:(1)ax﹣ay;(2)x2﹣y4;(3)﹣x2+4xy﹣4y2.四、解答题19.阅读下列解答过程,然后回答问题.已知多项式x3+4x2+mx+5有一个因式(x+1),求m 的值.解:设另一个因式为(x2+ax+b),则x3+4x2+mx+5=(x+1)(x2+ax+b)=x2+(a+1)x2+(a+b)x+b,∴a+1=4,a+b=m,b=5,∴a=3,b=5,∴m=8;依照上面的解法,解答问题:若x3+3x2﹣3x+k有一个因式是x+1,求k的值.20.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.五、综合题21.分别写出下列多项式的公因式:(1)ax+ay:________;(2)3x3y4+12x2y:________;(3)25a3b2+15a2b﹣5a3b3:________;(4)x3﹣2x2﹣xy:________.22.阅读下面分解因式的过程:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n).根据你的发现,选择一种方法把下面的多项式分解因式:(1)mx-my+nx-ny;(2)2a+4b-3ma-6mb.答案解析部分一、单选题1.【答案】C【考点】因式分解-运用公式法【解析】【分析】根据完全平方公式与平方公式的结构特点对各选项分析判断后利用排除法。
一次函数的实际应用【命题趋势】在中考中.一次函数的实际应用常以解答题考查.并结合二次函数最值问题考查为主【中考考查重点】一、利用一次函数解决购买、销售、分配问题二、利用一次函数解决工程、生产、行程问题三、利用一次函数解决有关方案问题考点一:购买、销售、分配类问题1.(2021秋•柯桥区月考)在近期“抗疫”期间.某药店销售A.B两种型号的口罩.已知销售80只A型和45只B型的利润为21元.销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只.其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍.则该药店购进A型、B型口罩各多少只.才能使销售总利润y最大?最大值是多少?【答案】(1)A为0.15元.B为0.2元(2)A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元【解答】解:(1)设每只A型口罩销售利润为a元.每只B型口罩销售利润为b元.根据题意得:.解得.答:每只A型口罩销售利润为0.15元.每只B型口罩销售利润为0.2元;(2)根据题意得.y=0.15x+0.2(2000﹣x).即y=﹣0.05x+400;根据题意得..解得500≤x≤1000.∴y=﹣0.05x+400(500≤x≤1000).∵﹣0.05<0.∴y随x的增大而减小.∵x为正整数.∴当x=500时.y取最大值为375元.则2000﹣x=1500即药店购进A型口罩500只、B型口罩1500只.才能使销售总利润最大为375元.2.(2021•南宁一模)自2020年12月以来.我国全面有序地推进全民免费接种新冠疫苗.现某国药集团在甲、乙仓库共存放新冠疫苗450万剂.如果调出甲仓库所存新冠疫苗的60%和乙仓库所存新冠疫苗的40%后.剩余的新冠疫苗乙仓库比甲仓库多30万剂.(1)求甲、乙两仓库各存放新冠疫苗多少万剂?(2)若该国药集团需从甲、乙仓库共调出300万剂新冠疫苗运往B市.设从甲仓库调运新冠疫苗m万剂.请求出总运费W关于m的函数解析式并写出m的取值范围;其中.从甲、乙仓库调运新冠疫苗到B市的运费报价如表:甲仓库运费定价调运疫苗不超过130万剂时调运疫苗超过130万剂时135元/万剂不优惠优惠10%m元/万剂乙仓库105元/万剂不优惠(3)在(2)的条件下.国家审批此次调运新冠疫苗总运费不高于33000元.请通过计算说明此次调运疫苗最低总运费是否在国家审批的范围内?【答案】(1)甲仓库240万剂.乙仓库210万剂;(2)(3)是【解答】解:(1)设甲仓库存放新冠疫苗x万剂.乙仓库存放新冠疫苗y万剂.由题意.得:.解得:.答:甲仓库存放新冠疫苗240万剂.乙仓库存放新冠疫苗210万剂;(2)由题意.从甲仓库运m万剂新冠疫苗到B市.则从乙仓库运新冠疫苗(300﹣m)万剂到B市.∵300﹣m≤210.∴m≥90①若90≤m≤130时.此时甲仓库运费不优惠.乙仓库运费不优惠.则总运费W=135m+105(300﹣m)=30m+31500;②若130≤m≤240时.此时甲仓库运费优惠10%m元/万剂.乙仓库运费不优惠.则总运费W=(135﹣10%m)m+105(300﹣m)=﹣0.1m2+30m+31500;综上.总运费W关于m的解析式为:W=;(3)由(2)知.①当90≤m≤130时.∵30>0.∴W随着m的增大而增大的一次函数.当m=90时.可获得最低总运费.此时W=34200元;②当130≤m≤240时.W时关于m的二次函数.对称轴m=﹣=150.∵﹣0.1<0.∴当m=240时.W有最小值.最小值为32940.∵34200>32940.∴W最低为32940元.∵32940<33000.∴此次调运疫苗最低总运费是在国家审批的范围内.3.(2019春•增城区期末)为了让学生体验生活.某学校决定组织师生参加社会实践活动.现准备租用7辆客车.现有甲、乙两种客车.它们的载客量和租金如下表.设租用甲种客车x辆.租车总费用为y元.甲种客车乙种客车载客量(人/辆)6045租金(元/辆)360300(1)求出y与x之间的函数关系式;(2)若该校共有380名师生前往参加活动.确保每人都有座位坐.共有哪几种租车方案?(3)在(2)的条件下.带队老师从学校预支租车费2500元.试问预支的租车费用是否有结余?若有结余.最多可以结余多少元?【答案】(1)y=60x+2100.(0≤x≤7.且x为整数)(2)三种租车方案(3)100元【解答】解:(1)依题意得:y=360x+300(7﹣x)=60x+2100.(0≤x≤7.且x为整数)(2)依题意得:60x+45(7﹣x)≥380.解之.得.由(1)得0≤x≤7.∴x的取值范围为:.∵x为整数.∴x的值为 5.6.7.当x=5 时.7﹣x=7﹣5=2;当x=6 时.7﹣x=7﹣6=1;当x=7 时.7﹣x=7﹣7=0;∴共有三种租车方案:①租用甲种客车5 辆.乙种客车 2 辆;②租用甲种客车6 辆.乙种客车 1 辆;③租用甲种客车7 辆.乙种客车0 辆.(3)由(1)得y=60x+2100.∵k=60≥0.∴y随x的增大而增大.当x=5 时.y的值最小.其最小值y=360×5+300×2=2400.∴最多可结余:2500﹣2400=100(元).答:在(2)的条件下.带队老师从学校预支租车费2500元.预支的租车费有结余.最多可以结余100元.考点二:工程、生产、行程问题4.(2021春•江夏区期末)在2018春季环境整治活动中.某社区计划对面积为1600m2的区域进行绿化.经投标.由甲、乙两个工程队来完成.若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.并且在独立完成面积为400m2区域的绿化时.甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天.乙工程队施工y天.刚好完成绿化任务.求y关于x的函数关系式;(3)若甲队每天绿化费用是0.6万元.乙队每天绿化费用为0.25万元.且甲乙两队施工的总天数不超过25天.则如何安排甲乙两队施工的天数.使施工总费用最低?并求出最低费用.【答案】(1)甲、乙面积分别为80m2、40m2(2)y=﹣2x+40(3)x=15时.W最低=1.5+10=11.5【解答】解:(1)设乙队每天能完成绿化面积为am2.则甲队每天能完成绿化面积为2am2根据题意得:解得a=40经检验.a=40为原方程的解则甲队每天能完成绿化面积为80m2答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2(2)由(1)得80x+40y=1600整理的:y=﹣2x+40(3)由已知y+x≤25∴﹣2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(﹣2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时.W最低=1.5+10=11.55.(2021秋•金牛区期末)某模具厂引进一种新机器.这种机器同一时间只能生产一种零件.每天只能工作8小时.每月工作25天.若一天用3小时生产A型零件、5小时生产B型零件共可生产34个;若一天用5小时生产A型零件、3小时生产B型零件则共可生产30个.(1)每小时可单独加工A型零件、B型零件各多少个?(2)按市场统计.一个A型零件的利润是150元.一个B型零件的利润是100元.设该模具厂每月安排x(小时)生产A型零件.这两种零件所获得的总利润为y(元).试写出y与x的函数关系式(不要求写出自变量的取值范围).【答案】(1)A型零件3个.B型零件5个(2)y=﹣50x+100000【解答】解:(1)设每小时可单独加工A型零件m个.B型零件n个.根据题意得:.解得;.答:每小时可单独加工A型零件3个.B型零件5个;(2)∵这种机器每天只能工作8小时.每月工作25天.设该模具厂每月安排x(小时)生产A型零件.则每月安排(25×8﹣x)小时生产B 零件.由题意得:y=150×3x+100×5(200﹣x)=﹣50x+100000.∴y与x的函数关系式为y=﹣50x+100000.6.(2020秋•沭阳县期末)学校与图书馆在同一条笔直道路上.甲从学校去图书馆.乙从图书馆回学校.甲、乙两人都匀速步行且同时出发.乙先到达目的地两人之间的距离y (米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息.当t=分钟时甲乙两人相遇.甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.(3)当t为何值时.甲、乙两人相距2000米?【答案】(1)24.40 (2)y=40t(40≤t≤60)(3)t=4或t=50【解答】解:(1)甲乙两人相遇即是两人之间的距离y=0.从图中可知此时x=24(分钟).图中可知甲用60分钟走完2400米.速度为2400÷60=40(米/分钟).故答案为:24.40;(2)甲、乙速度和为2400÷24=100(米/分钟).而甲速度为40米/分钟.∴乙速度是60米/分钟.∴乙达到目的地所用时间是2400÷60=40(分钟).即A横坐标为40.此时两人相距(40﹣24)×100=1600(米).即A纵坐标为1600.∴A(40.1600).设线段AB所表示的函数表达式为y=kt+b.将A(40.1600)、B(60.2400)代入得:.解得k=40.b=0.∴线段AB所表示的函数表达式为y=40t(40≤t≤60).(3)甲、乙两人相距2000米分两种情况:①二人相遇前.两人路程和为2400﹣2000=400(米).甲、乙两人相距2000米.此时t =400÷100=4(分钟).②二人相遇后.乙达到目的地时二人相距1600米.甲再走400米两人就相距2000米.此时t=40+400÷40=50(分钟).综上所述.二人相距2000时.t=4或t=50.考点三:方案问题方案一:没有底薪.只付销售提成;方案二:底薪加销售提成.如图中的射线l1.射线l2分别表示该鲜花销售公司每月按方案一.方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)(x ≥0)的函数关系.(1)分别求y1、y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克.但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【答案】(1)y1=30x(x≥0).y1=30x(x≥0)(2)采用了方案一【解答】解:(1)设y1=k1x.根据题意得40k1=1200.解得k1=30.∴y1=30x(x≥0);设y2=k2x+b.根据题意.得.解得.∴y2=10x+800(x≥0);(2)当x=70时.y1=30×70=2100>2000;y2=10×70+800=1500<2000;∴这个公司采用了方案一给这名销售人员付3月份的工资.1.(2021春•饶平县校级期末)小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售.并分别以每箱35元与60元的价格售出.设购进A水果x箱.B水果y箱.(1)若小王将水果全部售出共赚了215元.则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量.则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润.此时最大利润是多少?【答案】(1)A种水果25箱.B种水果9箱(2)购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得.答:小王共购进A种水果25箱.B种水果9箱.(2)设利润为W元.W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量.∴x≥.解得:x≥15.∵﹣1<0.∴W随x的增大而减小.∴当x=15时.W取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润.此时最大利润为225元.2.(2020秋•秦都区期末)某工厂新开发生产一种机器.每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70.且x为整数).函数y与自变量x的部分对应值如表:x(单位:台)1020 y(单位:万元/台)6055(1)求y与x之间的函数关系式;(2)市场调查发现.这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.若该厂第一个月生产这种机器40台.且都按同一售价全部售出.请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)【答案】(1)y=﹣0.5x+65 (2)200万元【解答】解:(1)设y与x之间的函数关系式为y=kx+b.根据题意.得.解得:.即y与x之间的函数关系式为y=﹣0.5x+65.(2)当x=40时.y=﹣0.5×40+65=45.设z与a之间的函数关系式为z=ma+n.根据题意.得.解得:.即z与a之间的函数关系式为z=﹣a+90.当z=40时.40=﹣a+90.解得.a=50.(50﹣45)×40=200(万元).答:该厂第一个月销售这种机器的总利润是200万元.3.(2020秋•浦东新区校级期末)有两段长度相等的河渠挖掘任务.分别交给甲、乙两个工程队同时进行挖掘.如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时.用了小时.开挖6小时.甲队比乙队多挖了米;(2)甲队在0≤x≤6的时段内.y与x之间的函数关系式是;(3)在开挖6小时后.如果甲、乙两队施工速度不变.完成总长110米的挖掘任务.乙队比甲队晚小时完成.【答案】(1) 2.10 (2)y=10x(0≤x≤6)(3)7【解答】解:(1)由图可知:乙队开挖到30米时.用了2小时.开挖6小时时.甲队挖了60米.乙队挖了50米.所以甲队比乙队多挖了60﹣50=10米.故答案为:2.10;(2)设2小时后乙的解析式为:y=kx(k≠0).把C(6.60)代入得:6k=60.k=10.∴2小时后乙的解析式为:y=10x.即y与x之间的函数关系式是:y=10x(0≤x≤6).故答案是:y=10x(0≤x≤6);(3)开挖6小时.甲挖了60米.甲的速度为10米/小时.∵要完成总长110米的挖掘任务.∴甲再挖50米.所需时间为50÷10=5小时;开挖6小时.乙挖了50米.乙的速度为=5米/小时.∵要完成总长110米的挖掘任务.∴乙需再挖60米.所用时间为60÷5=12(小时).则12﹣5=7(小时).∴乙队比甲队晚7小时完成.故答案是:7.4.(2021春•华容县期末)某玩具批发市场A、B玩具的批发价分别为每件30元和50元.张阿姨花1200元购进A、B两种玩具若干件.并分别以每件35元与60元价格出售.设购入A玩具为x件.B玩具为y件.(1)若张阿姨将玩具全部出售赚了220元.那么张阿姨购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量.则怎样分配购进玩具A、B的数量并全部售出才能获得最大利润.此时最大利润为多少?【答案】(1)A型玩具20件.B型玩具12件(2)购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.【解答】解:(1)由题意可得..解得..答:张阿姨购进A型玩具20件.B型玩具12件;(2)设利润为w元.w=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A玩具的数量不得少于B玩具的数量.∴x≥.解得:x≥15.∵﹣1<0.∴w随x的增大而减小.∴当x=15时.w取最大值.最大值为225.此时y=(1200﹣30×15)÷50=15.故购进玩具A、B的数量均为15件并全部售出才能获得最大利润.此时最大利润为225元.5.(2020•老河口市模拟)2020年是全面建成小康社会目标实现之年.是全面打赢脱贫攻坚战收官之年.我市始终把产业扶贫摆在突出位置.建立了A.B两个扶贫种植基地.为了帮扶我市的扶贫产业.扶贫办联系了C.D两家肥料厂对我市共捐赠100吨肥料.将这100吨肥料平均分配到A.B两个种植基地.已知C厂捐赠的肥料比D厂捐赠的肥料的2倍少20吨.从C.D两厂将肥料运往A.B两地的费用如表:C厂D厂运往A地(元/吨)2220运往B地(元/吨)2022(1)求C.D两厂捐赠的肥料的数量各是多少吨;(2)设从C厂运往A地肥料x吨.从C.D两厂运输肥料到A.B两地的总运费为y元.求y与x的函数关系式.并求出最少总运费;(3)由于从D厂到B地开通了一条新的公路.使D厂到B地的运费每吨减少了a(0<a<6)元.这时怎样调运才能使总运费最少?【答案】(1)C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨(2)y=4x+1980(10≤x≤50).最少总运费为2020元(3)①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.【解答】解:(1)设D厂捐赠的数量是a吨.则C厂捐赠的数量是(2a﹣20)吨.根据题意可得.a+2a﹣20=100.解得.a=40.则2a﹣20=60.答:C厂捐赠的数量是60吨.则D厂捐赠的数量是40吨.(2)根据题意可得.从C厂运往A地肥料x吨.从C厂运往B地肥料(60﹣x)吨;从D厂运往A地肥料(50﹣x)吨.从D厂运往B地肥料(x﹣10)吨.由题意可得.y=22x+20(60﹣x)+20(50﹣x)+22(x﹣10)=4x+1980.根据实际意义可得..解得.10≤x≤50.∵4>0.∴y随x的减小而减小.∴当x=10时.y取最小值2020.答:y与x的函数关系式为y=4x+1980(10≤x≤50).最少总运费为2020元.(3)在(2)的基础上.可得.y=22x+20(60﹣x)+20(50﹣x)+(22﹣a)(x﹣10)=(4﹣a)x+(1980+10a)(10≤x≤50.0<a<6).①当4﹣a>0.即0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4﹣a<0.即4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.综上.①当0<a<4时.y随x的减小而减小.当x=10时.y取最小值.y=2020;②当a=4时.不管x取何值.均有y=2020;③当4<a<6时.y随x的减小而增大.当x=50时.y取最小值.y=2180﹣40a.1.(2020•广安)某小区为了绿化环境.计划分两次购进A.B两种树苗.第一次购进A种树苗30棵.B种树苗15棵.共花费1350元;第二次购进A种树苗24棵.B种树苗10棵.共花费1060元.(两次购进的A.B两种树苗各自的单价均不变)(1)A.B两种树苗每棵的价格分别是多少元?(2)若购买A.B两种树苗共42棵.总费用为W元.购买A种树苗t棵.B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案.并求出此方案的总费用.【答案】(1)A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.【解答】解:(1)设A种树苗每棵的价格x元.B种树苗每棵的价格y元.根据题意得:.解得.答:A种树苗每棵的价格40元.B种树苗每棵的价格10元;(2)设A种树苗的数量为t棵.则B种树苗的数量为(42﹣t)棵.∵B种树苗的数量不超过A种树苗数量的2倍.∴42﹣t≤2t.解得:t≥14.∵t是正整数.∴t最小值=14.设购买树苗总费用为W=40t+10(42﹣t)=30t+420.∵k>0.∴W随t的减小而减小.当t=14时.W最小值=30×14+420=840(元).答:购进A种花草的数量为14棵、B种28棵.费用最省;最省费用是840元.2.(2020•云南)众志成城抗疫情.全国人民在行动.某公司决定安排大、小货车共20辆.运送260吨物资到A地和B地.支援当地抗击疫情.每辆大货车装15吨物资.每辆小货车装10吨物资.这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700现安排上述装好物资的20辆货车中的10辆前往A地.其余前往B地.设前往A地的大货车有x辆.这20辆货车的总运费为y元.(1)这20辆货车中.大货车、小货车各有多少辆?(2)求y与x的函数解析式.并直接写出x的取值范围;(3)若运往A地的物资不少于140吨.求总运费y的最小值.【答案】(1)大货车、小货车各有12与8辆(2)y=100x+15600 (2≤x≤10)x为整数(3)当x=8时.y有最小值.此时y=100×8+15600=16400元.【解答】解:(1)设大货车、小货车各有m与n辆.由题意可知:.解得:答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆.则到A地的小货车有(10﹣x)辆.到B地的大货车有(12﹣x)辆.到B地的小货车有(x﹣2)辆.∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600.其中2≤x≤10.x为整数.(3)运往A地的物资共有[15x+10(10﹣x)]吨.15x+10(10﹣x)≥140.解得:x≥8.∴8≤x≤10.x为整数.当x=8时.y有最小值.此时y=100×8+15600=16400元.答:总运费最小值为16400元.3.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液.进货时发现.甲品牌洗衣液每瓶的进价比乙品牌高6元.用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时.甲品牌洗衣液的售价为36元/瓶.乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶.且购进两种洗衣液的总成本不超过3120元.超市应购进甲、乙两种品牌洗衣液各多少瓶.才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲进价是30元.乙进价是24元(2)应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元【解答】解:(1)设甲品牌洗衣液每瓶的进价是x元.则乙品牌洗衣液每瓶的进价是(x﹣6)元.依题意得:.解得:x=30.经检验.x=30是原方程的解.且符合题意.∴x﹣6=24(元).答:甲品牌洗衣液每瓶的进价是30元.乙品牌洗衣液每瓶的进价是24元;(2)设可以购买甲品牌洗衣液m瓶.则可以购买(120﹣m)瓶乙品牌洗衣液.依题意得:30m+24(120﹣m)≤3120.解得:m≤40.依题意得:y=(36﹣30)m+(28﹣24)(120﹣m)=2m+480.∵k=2>0.∴y随m的增大而增大.∴m=40时.y取最大值.y最大值=2×40+480=560.120﹣40=80(瓶).答:超市应购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶.才能在两种洗衣液完全售出后所获利润最大.最大利润是560元.4.(2021•宿迁)一辆快车从甲地驶往乙地.一辆慢车从乙地驶往甲地.两车同时出发.匀速行驶.两车在途中相遇时.快车恰巧出现故障.慢车继续驶往甲地.快车维修好后按原速继续行驶乙地.两车到达各地终点后停止.两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h.C点的坐标为.(2)慢车出发多少小时后.两车相距200km.【答案】(1)100.(8.480)(2)出发h或h时两车相距200km.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h).∵两车3小时相遇.此时慢车走的路程为:60×3=180(km).∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h).通过图象和快车、慢车两车速度可知快车比慢车先到达终点.∴慢车到达终点时所用时间为:480÷60=8(h).∴C点坐标为:(8.480).故答案为:100.(8.480);(2)设慢车出发t小时后两车相距200km.①相遇前两车相距200km.则:60t+100t+200=480.解得:t=.②相遇后两车相距200km.则:60t+100(t﹣1)﹣480=200.解得:t=.∴慢车出发h或h时两车相距200km.答:慢车出发h或h时两车相距200km.5.(2020•广西)倡导垃圾分类.共享绿色生活.为了对回收的垃圾进行更精准的分类.某机器人公司研发出A型和B型两款垃圾分拣机器人.已知2台A型机器人和5台B 型机器人同时工作2h共分拣垃圾3.6吨.3台A型机器人和2台B型机器人同时工作5h共分拣垃圾8吨.(1)1台A型机器人和1台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人.这批机器人每小时一共能分拣垃圾20吨.设购买A型机器人a台(10≤a≤45).B型机器人b 台.请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30台购买数量不少于30台A型20万元/台原价购买打九折B型12万元/台原价购买打八折在(2)的条件下.设购买总费用为w万元.问如何购买使得总费用w最少?请说明理由.【答案】(1)1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨(2)b=100﹣2a(10≤a≤45)(3)A型号机器人35台时.总费用w最少.此时需要918万元【解答】解:(1)设1台A型机器人和1台B型机器人每小时各分拣垃圾x吨和y 吨.由题意可知:.解得:.答:1台A型机器人和1台B型机器人每小时各分拣垃圾0.4吨和0.2吨.(2)由题意可知:0.4a+0.2b=20.∴b=100﹣2a(10≤a≤45).(3)当10≤a<30时.此时40<b≤80.∴w=20×a+0.8×12(100﹣2a)=0.8a+960.当a=10时.此时w有最小值.w=968.当30≤a≤35时.此时30≤b≤40.∴w=0.9×20a+0.8×12(100﹣2a)=﹣1.2a+960.当a=35时.此时w有最小值.w=918.当35<a≤45时.此时10≤b<30.∴w=0.9×20a+12(100﹣2a)=﹣6a+1200当a=45时.w有最小值.此时w=930.答:选购A型号机器人35台时.总费用w最少.此时需要918万元.6.(2020•德阳)推进农村土地集约式管理.提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地.计划对其进行平整.经投标.由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩.乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元.当甲工程队所需工程费为12000元.乙工程队所需工程费为9000元时.两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整.已知两个工程队工作天数均为正整数.且所有土地刚好平整完.总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案.并求出最低费用.【答案】(1甲每天需工程费2000元、乙工程队每天需工程费1500元)(2)甲乙两工程队分别工作的天数共有7种可能(3)最低费用为107000元【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元.由题意.=.解得x=2000.经检验.x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天.则乙平整y天.由题意.45x+30y=2400①.且2000x+1500y≤110000②.由①得到y=80﹣1.5x③.把③代入②得到.2000x+1500(80﹣1.5x)≤110000.解得.x≥40.∵y>0.∴80﹣1.5x>0.x<53.3.∴40≤x<53.3.∵x.y是正整数.∴x=40.y=20或x=42.y=17或x=44.y=14或x=46.y=11或x=48.y=8或x=50.y =5或x=52.y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000.∵﹣250<0.∴w随x的增大而减小.∴x=52时.w的最小值=107000(元).答:最低费用为107000元.7.(2021•湘西州)2020年以来.新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机.开始组建团队.制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本.制作5个A 类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站.每个A类微课售价1500元.每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课.且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课.其中制作A类微课a天.制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式.并写出a的取值范围;(3)每月制作A类微课多少个时.该团队月利润w最大.最大利润是多少元?【答案】(1)A类微课的成本为700元.B类微课的成本为500元(3)当a=8时.w有最大值.w最大=50×8+16500=16900(元)【解答】解:(1)设团队制作一个A类微课的成本为x元.制作一个B类微课的成本为y元.根据题意得:.解得.答:团队制作一个A类微课的成本为700元.制作一个B类微课的成本为500元;(2)由题意.得w=(1500﹣700)a+(1000﹣500)×1.5(22﹣a)=50a+16500;1.5(22﹣a)≥2a.解得a≤.又∵每月制作的A、B两类微课的个数均为整数.∴a的值为0.2.4.6.8.(3)由(2)得w=50a+16500.∵50>0.∴w随a的增大而增大.∴当a=8时.w有最大值.w最大=50×8+16500=16900(元).答:每月制作A类微课8个时.该团队月利润w最大.最大利润是16900元.1.(2021•玉泉区二模)甲、乙两个工程队共同承担一项筑路任务.甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天.且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)设先由甲队施工x天.再由乙队施工y天.刚好完成筑路任务.求y与x之间的函数关系式.(3)在(2)的条件下.若每天需付给甲队的筑路费用为0.1万元.需付给乙队的筑路费用为0.2万元.且甲、乙两队施工的总天数不超过24天.则如何安排甲、乙两队施工的天数.使施工费用最少.并求出最少费用.【答案】(1)甲、乙各需30天、20天(2)y=﹣x+20(3)甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.【解答】解:(1)设乙队完成此项任务需要x天.则甲队完成此项任务(x+10)天..解得.x=20.经检验.x=20是原分式方程的解.∴x+10=30.答:甲、乙两队单独完成此项任务各需30天、20天;(2)由题意可得.=1.化简.得y=﹣x+20.即y与x之间的函数关系式是y=﹣x+20;(3)设施工的总费用为w元.w=0.1x+0.2y=0.1x+0.2×(﹣x+20)=x+4.∵甲、乙两队施工的总天数不超过24天.∴x+y≤24.即x+(﹣x+20)≤24.解得.x≤12.∴当x=12时.w取得最小值.此时w=3.6.y=12.答:安排甲施工12天、乙施工12天.使施工费用最少.最少费用是3.6万元.2.(2021•富平县二模)甲、乙两家草莓采摘园的草莓品质相同.销售价格也相同.“五一”假期.两家均推出了优惠方案.甲采摘园的优惠方案:游客进园需购买60元的门票.采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票.采摘的草莓超过一定数量后.超过部分打折优惠.优惠期间.设某游客的草莓采摘量为x(千克).。
专题四 图形与坐标、函数及图象第十一章函数基础知识、一次函数及反比例函数知能图谱000,0k y x k y x k b k b ⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎨⎩⎪⎧⎧⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎩⎩>⎧⎨<⎩>>⇔有序数对平面直角坐标系点的对称用坐标确定位置图形与坐标图形的运动与坐标函数基础知识函解析式法数函数的表示列表法函数基图象法:函数的图象础自变量的取值范围知,随增大而增大一次函数的增减性识,随增大而减小、图象过第一、二、三象限一次一函数一次函数图象与,的关系函数及反比例函数0,00,00,000k b k b k b k y x k <⎧⎪⎪⎪⎧⎪⎪⎪><⇔⎪⎨⎨<>⇔⎪⎪⎪⎪<<⇔⎩⎪⎪⎪⎩>图象过第一、三、四象限图象过第一、二、四象限图象过第二、三、四象限一次函数解析式的确定:待定系数法反比例函数图象及画法:列表、描点、连线,双曲线,中心对称图形,轴对称图形反当时,函数图象的两个分支分别位于第一、三象限,在每个比象限内,随的增大而减小例反比例函数图象性质当时,函数图象的两个分支函数y x ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩分别位于第二、四象限,在每个、象限,随的增大而增大待定系数法:先设出函数解析式,然后根据所给条件确定解析反比例函数解析式的确定式中未知系数的方法第23讲 函数基础知识知识能力解读知能解读(一)有序数对我们把有顺序的两个数a 与b 组成的数对,叫作有序数对,记作(),a b .注意对“有序”要理解准确,即两个数的位置不能随意交换,(),a b 与(),b a 中字母顺序不同,含义就不同,表示的位置也就不同.知能解读(二)平面直角坐标系(1)如图所示,在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为横轴或x 轴,习惯上取向右方向为正方向;竖直的数轴称为纵轴或y 轴,取向上方向为正方向.两坐标轴的交点为平面直角坐标系的原点.(2)建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成四个部分,每个部分称为象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图1-23-1所示. 注意(1)两条坐标轴上的点不属于任何一个象限.(2)如果平面直角坐标系具有实际意义,那么要在表示横轴、纵轴的字母后附上单位. 知能解读(三)点的坐标如图所示,在平面直角坐标系中,从点P 分别向x 轴和y 轴作垂线,垂足分别为点M 和点N .这时,点M 在x 轴上对应的数为3,称为点P 的横坐标;点N 在y 轴上对应的数为2,称为点P 的纵坐标,依次写出点P 的横坐标和纵坐标得到一对有序实数对()3,2,该有序实数对称为点P 的坐标,这时点P 可记作()3,2P .注意(1)在建立了平面直角坐标系后,平面内的点便可与有序实数对—对应.也就是说,对于坐标平面内的一个点,总能找到一个有序实数对与之对应;反之,对于任意一个有序实数对,总可以在坐标平面内找出一个点与之对应.(2)在表示点的坐标时,横坐标应写在纵坐标的前面,中间用逗号隔开,横、纵坐标的顺序不能颠倒,如()3,2与()2,3是两个不同点的坐标.知能解读(四)不同位置的点的坐标特征2坐标轴上点的坐标特征(1)点在x 轴上,则点的纵坐标为0,横坐标为任意实数;(2)点在y 轴上,则点的横坐标为0,纵坐标为任意实数.3象限角的平分线上的点的坐标特征设(),P x y 为象限角的平分线上一点,则当点P 在第一、三象限角平分线上时,x y =;当点P 在第二、四象限角平分线上时,x y =-.4与坐标轴平行的直线上点的坐标特征平行于x 轴的直线上的各点的纵坐标相同;平行于y 轴的直线上的各点的横坐标相同. 5关于x 轴,y 轴、原点对称的点的坐标特征一般地,若点P 与点1P 关于x 轴(横轴)对称,则横坐标相同,纵坐标互为相反数;若点P 与点2P 关于y 轴(纵轴)对称,则纵坐标相同,横坐标互为相反数;若点P 与点3P 关于原点对称,则横坐标互为相反数,纵坐标互为相反数.简单记为“关于谁谁不变,关于原点都改变”. 知能解读(五)平面直角坐标系内的点到x 轴、y 轴、原点的距离(拓展)如图所示,(1)点(),P a b 到x 轴的距离为b ,到y 轴的距离为a ,到原点的距离为22a b +(2)同一坐标轴上的()()12,0,,0A x B x 两点之间的距离为21AB x x =-;(3)在不同坐标轴上的()(),0,0,A x B y 两点之间的距离为22AB x y =+知能解读(六)函数的相关概念1变量与常量在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量. 注意常量与变量不是绝对的,而是对“某一变化过程”而言的,同一个量在某一个变化过程中是常量,而在另一个变化过程中可能是变量.如在汽车:行驶的过程中,有路程s 、行驶时间t 、速度v 三个量,当速度v —定时,路程s 与时间t 是变量,速度v 是常量;当汽车行驶的时间t 一定时,路程s 与速度v 是变量,时间t 为常量;当路程s —定时,速度v 与时间t 是变量,路程s 为常量.2自变量与函数一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.注意函数体现的是一个变化的过程,在这一变化过程中,要着重把握以下两点:(1)只能有两个变量;(2)对于自变量的每一个确定的值,都有唯一的函数值与之对应. 知能解读(七)函数的解析式像500.1y x =-这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫作函数的解析式.知能解读(八)函数自变量的取值范围及函数值函数自变量的取值范围是指使函数有意义的自变量的取值的全体.求自变量的取值范围通常从两个方面考虑:一是要使函数的解析式有意义;二是要符合客观实际.下面给出一些简单函数解析式中自变量取值范围的确定方法:(1)当函数的解析式是整式时,自变量取任意实数(即全体实数);(2)当函数的解析式是分式时,自变量取值是使分母不为零的任意实数;(3)当函数的解析式是二次根式时,自变量取值是使被开方式为非负数;(4)当函数解析式中自变量出现在零次幂或负整数次幕的底数中时,自变量取值是使底数不为零的实数=时,函数有唯一确定的值与之对应,这个对于自变量在取值范围内的每一个值,如当x a=时的函数值.值就是当x a知能解读(九)函数的图象一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.描点法画函数图象的一般步骤如下:第一步,列表——在表中给出一些自变量的值及其对应的函数值;第二步,描点——在平面直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表中数值对应的各点;第三步,连线——按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来.知能解读(十)函数的表示方法写函数解析式、列表格、画函数图象,都可以表示具体的函数.这三种表示函数的方法,分方法技巧(一)利用平面直角坐标系相关知识解决问题的方法1由点的位置确定点的坐标,由点的坐标确定点的位置根据平面直角坐标系内点的坐标与点的位置的关系,我们可以根据点的坐标确定点的位置,反过来,也可以根据点的位置确定点的坐标.2建立适当的平面直角坐标系,解决数学问题根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,在建立平面直角坐标系时,我们一般以图形的某边所在直线为坐标轴,或使图形的顶点大部分在坐标轴上. 方法技巧(二)求函数自变量的取值范围的方法函数自变量的取值范围首先要使函数解析式有意义,当函数解析式表示实际问题或几何问题时,自变量的取值范围还必须符合实际意义或几何意义.方法技巧(三)列函数解析式(建立函数模型)的方法1求几何图形问题中的函数解析式2求实际问题中的函数解析式方法技巧(四)用图象法表示函数关系的方法1实际问题的函数图象2动点问题的函数图象易混易错辨析易混易错知识1.由点到坐标轴的距离确定点的坐标时,因考虑不周而出错.由点求坐标时,容易将横、纵坐标的位置弄错,还容易忽略坐标的符号而出现漏解的情况,P x y到x轴的距离是4,到y轴的距离是3,此时点P的坐标不只是一种情况,求如点(),解时考虑问题要全面.2.由实际问题的函数解析式画图象时,易忽视自变量的取值范围而导致图象错误.实际问题中自变量的取值范围大部分都是非负数,画图象时应加以注意.易混易错(一)求自变量的取值范围时,因考虑不周而出错易混易错(二)由点到坐标轴的距离求点的坐标时出错中考试题研究中考命题规律函数自变量的取值范围、函数的图象及平面直角坐标系的应用、确定物体位置的方法是近几年中考的常见考点.特别是根据提供的图象解决实际问题的一类信息题因具有时代气息、贴近生活,是中考热点之一.题型有选择题、填空题和解答题.中考试题(一)确定点的位置中考试题(二)确定点的坐标中考试题(三)利用函数自变量的取值范围解决问题中考试题(四)根据情景描述函数图象中考试题(五)由函数图象获取信息第24讲 一次函数知识能力解读知能解读(一)正比例函数和一次函数的概念(1)正比例函数:一般地,形如y kx =(k 是常数,0k ≠)的函数,叫作正比例函数,其中k 叫作比例系数.(2)一次函数:一般地,形如y kx b =+(,k b 是常数,0k ≠)的函数,叫作一次函数.当0b =时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.注意(1)一次函数的表达式()0y kx b k =+≠是一个等式,其左边是因变量y ,右边是关于自变量x 的整式.(2)自变量的次数为1,且系数不等于0.(3)自变量的取值范围:一般情况下,一次函数中自变量的取值范围是全体实数. 知能解读(二)正比例函数和一次函数的图象(1)一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是一条经过原点的直线,我们称它为直线y kx =,当0k >时,直线y kx =经过第一、三象限,从左向右上升,即随着x 的增大y 也增大;当0k <时,直线y kx =经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小.一般地,过原点和点()1,k (k 是常数,0k ≠)的直线,即正比例函数()0y kx k =≠的图象.(2)一次函数y kx b =+(,k b 是常数,0k ≠)的图象可以由直线y kx =平移b 个单位长度得到(当0b >时,向上平移;当0b <时,向下平移).一次函数y kx b =+(,k b 是常数,0k ≠)的图象也是一条直线,我们称它为直线y kx b =+.—次函数()0y kx b k =+≠具有如下性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.点拨为了方便,我们通常利用一次函数()0y kx b k =+≠的图象与坐标轴的交点()0,b 和,0b k ⎛⎫- ⎪⎝⎭来画图象. 知能解读(三)对一次函数y kx b =+中的系数,k b 的理解(拓展点)(1)直线y kx b =+中k 表示直线向上的方向与x 轴正方向夹角的大小程度,即直线的倾斜程度,b 是直线与y 轴交点的纵坐标.当0b >时,直线与y 轴交于正半轴;当0b =时,直线过原点;当0b <时,直线与y 轴交于负半轴.如下表:(2)两直线()1110y k x b k =+≠与()2220y k x b k =+≠的位置关系:①当1212,k k b b =≠时,两直线平行;②当1212,k k b b ==时,两直线重合;③当1212,k k b b ≠=时,两直线交于y 轴上一点;④(供参考)当121k k ⋅=-时,两直线垂直.知能解读(四)待定系数法先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫作待定系数法.用待定系数法求一次函数解析式的一般步骤:(1)设出含有待定系数的函数解析式y kx b =+(,k b 为常数,0k ≠);(2)把已知条件(自变量与对应的函数值)代入解析式,得到关于待定系数的方程;(3)解方程,求出待定系数;(4)将求出的待定系数的值代回所设的函数解析式,即得出所求的函数解析式.知能解读(五)一次函数与方程(组)、不等式之间的关系1一次函数与一元一次方程一般地,因为任何一个以x 为未知数的一元一次方程都可以变形为()00ax b a +=≠的形式,所以解一元一次方程相当于求与之对应的一次函数()0y ax b a =+≠的函数值为0时,自变量x 的值.点拨求直线()0y kx b k =+≠与x 轴的交点,可令0y =得方程0k x b +=,解方程得,b b x k k=--是直线()0y kx b k =+≠与x 轴交点的横坐标.反之,由函数的图象也能求出与之对应的一元一次方程的解.2一次函数与二元一次方程(组)一般地因为每个含有未知数x 和y 的二元一次方程,都可以变为y kx b =+(,k b 是常数,0k ≠)的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条直线.这条直线上每个点的坐标(),x y 都是这个二元一次方程的解.由上可知,由含有未知数x 和y 的两个二元一次方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解这样的方程组,相当于确定两条相应直线交点的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.3—次函数与一元一次不等式一般地,因为任何一个以x 为未知数的一元一次,不等式都可以变为0ax b +>或()00ax b a +<≠的形式,所以解一元一次不等式相当于求与之对应的一次函数()0y ax b a =+≠的函数值大于0或小于0时,自变量x 的取值范围.注意通常我们可用解方程组的方法求两直线的交点坐标,也可以通过画图象,利用两直线的交点坐标得出方程组的解,即:既可以用“数”的方法解决;“形”的问题,也可以用“形的方蜂解决“数”的问题,这种方法上的互通性体现了数形结合的思想.方法技巧归纳方法技巧(一)一次函数的判别方法一次函数的判别依据有如下三点:(1)关于自变量的表达式是整式;(2)自变量的次数是1;(3)自变量的系数不为零.特别地,当常数项为零时,是正比例函数.方法技巧(二)一次函数()0y kx b k =+≠图象位置的确定方法k 的符号决定直线的倾斜方向:当0k >时,直线自左向右上升;当是0k <时,直线自左向右下降. b 的符号决定直线与y 轴的交点位置:当0b >时,直线与y 轴交于正半轴;当0b =时,直线过原点;当0b <时,直线与y 轴交于负半轴.方法技巧(三)利用一次函数的性质解决问题的方法一次函数()0y kx b k =+≠的性质主要是指函数的增减性,即y 随x 的变化情况,它只和k 的符号有关,与b 的符号无关.若0k >,则y 随x 的增大而增大;若0k <,则y 随x 的增大而减小,反之,若y 随x 的增大而增大,则0k >;若y 随x 的增大而减小,则0k <. 方法技巧(四)用待定系数法求一次函数解析式的方法由于一次函数的解析式()0y kx b k =+≠中有k 和b 两个待定系数,因此用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后便可求得这个一次函数的解析式.方法技巧(五)利用一次函数求方程(组)的解、不等式(组)的解或解集的方法一次函数的图象与方程(组)、不等式(组)有着密切的联系:(1)关于x 的一元一次方程()00kx b k +=≠的解是直线y kx b =+与x 轴交点的横坐标.(2)关于x 的一元一次不等式()00kx b +><的解集是以直线y kx b =+和x 轴的交点为分界点,x 轴上(下)方的图象所对应的x 值的集合.(3)关于,x y 的二元一次方程组1122,k x b y k x b y +=⎧⎨+=⎩的解是直线11y k x b =+和22y k x b =+的交点坐标.方法技巧(六)用一次函数解决实际问题的方法在研究一个实际问题时,应首先从问题中抽象出特定的函数关系,将其转化为“函数模型”,然后再利用函数的性质得出结论,最后把结论应用到实际问题中去,从而得到实际问题的研究结果.易混易错辨析易混易错知识正比例函数和一次函数的区别.正比例函数是一种特殊的一次函数,一次函数包括正比例函数.也就是说,如果一个函数是正比例函数,那么它一定是一次函数.但是,如果一个函数是一次函数,那么它不一定是正比例函数.易混易错(一)因忽视隐含条性而致错易混易错(二)因考虑问题不全面而致错易混易错(三)因对图象表示的实际意义理解错误而致错中考试题研究中考命题规律一次函数解析式的确定,一次函数的图象与性质,一次函数与方程、不等式的联系,以及运用一次函数的知识解决实际问题都是近年来中考的热点内容,特别是根据提供的图象解决有关的实际问题更是中考的热点.题型有选择题、填空题、解答题.中考试题(一)对一次函数的图象和性质的理解中考试题(二)用待定系数法求函数解析式中考试题(三)一次函数与方程(组)、不等式的关系中考试题(四)利用一次函数解决实际问题中考试题(五)利用图象获取信息第25讲 反比例函数知识能力解读知能解读(一)反比例函数的定义 一般地,形如k y x=(k 是常数,0k ≠)的函数叫作反比例函数,其中k 叫作比例系数. 注意 (1)反比例函数()0k y k x=≠的左边是函数y ,右边是分母为自变量x 的分式.也就是说,分母不能是多项式,只能是x 的一次单项式.如13,12y y x x ==等都是关于x 的反比例函数,但21y x =+就不是关于x 的反比例函数. (2)反比例函数()0k y k x =≠可以写成1y kx -=或()0xy k k =≠的形式. (3)反比例函数中,两个变量成反比例关系.(4)反比例函数()0k y k x=≠的自变量x 是不等于0的任意实数. 知能解读(二)反比例函数的图象 反比例函数()0k y k x=≠的图象是双曲线. 注意(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当0k >时,两个分支分别位于第一、三象限;当0k <时,两个分支分别位于第二、四象限.(3)反比例函数()0k y k x=≠的图象的两个分支关于原点对称. (4)反比例函数的图象与x 轴、y 轴都没有交点,即图象的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为0,0x y ≠≠. 知能解读(三)反比例函数的性质注意(1)反比例函数图象的位置和函数的增减性都是由比例系数k 的符号决定的,反过来,由双曲:线所在的位置或函数的增减性也可以判断出k 的符号.(2)反比例函数的增减性只能在其图象所在的某个象限内讨论.不能说当0k >时,y 随x 的增大而减小;当0k <时,y 随x 的增大而增大.)知能解读(四)反比例函数解析式的确定因为在反比例函数的解析式()0k y k x=≠中,只有一个系数k ,所以确定了k 的值,也就确定了反比例函数,因此只需利用一组,x y 的对应值或图象上一点的坐标,利用待定系数法,即可确定反比例函数的解析式.知能解读(五)反比例函数()0k y k x=≠中比例系数k 的几何意义反比例函数中比例系数k 的几何意义:如图所示,过双曲线上任一点P 作x 轴、y 轴的垂线,PN PM ,所得矩形PMON 的面积S PM PN x y xy k =⋅=⋅==即过双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积均为k .同时,,PON POM ∆∆的面积均为12k . 注意(1)应用反比例函数k y x= (k 为常数,0k ≠)中k 的几何意义,可把反比例函数与直角三角形、矩形联系在一起_(2)应用面积不变性可以解决一些实际问题,逆用其面积不变性还可以直接求出k 值,这样可以简化反比例函数解析式的求法.知能解读(六)反比例函数在实际生活中的应用反比例函数模型是实际生活和生产中的一类问题的数学模型,解决这类问题时,需要先列出符合题意的函数解析式,再利用反比例函数的性质、方程、方程组、不等式等相关知识求解. 根据实际问题,利用反比例函数模型来刻画某些实际问题中变量之间的关系式或利用数形结合来分析实际问题时,要特别注意以下几点:⑴在实际问题的函数解析式中,因变量和自变量都有自己代表的实际意义,不仅要学会利用变量的实际意义解答问题,还要学会把从实际中得到的数据转化为解析式中所需的数据;(2)实际问题中函数图象上的每一点都有自己所代表的实际意义;(3)作实际问题的图象时,要注意两个变量的取值范围;(4)在解决实际问题时,经常要应用数形结合思想.方法技巧归纳方法技巧(一)反比例函数概念的应用根据反比例函数的定义:反比例函数的形式主要有()()()10,0,0k y k y kx k xy k k x-=≠=≠=≠. 方法技巧(二)反比例函数的图象与性质的应用 反比例函数()0k y k x=≠的图象位置可根据k 的符号来确定,当0k >时,,x y 同号,图象的两个分支分别位于第一、三象限,在每一个象限内,y 随x 的增大而减小;当0k <时,,x y 异号,图象的两个分支分别位于;第二、四象限,在每一个象限内,y 随x 的增大而增大.方法技巧(三)反比例函数中比例系数k 的几何意义的应用 利用反比例函数()0k y k x=≠中比例系数k 的几何意义解答即可. 方法技巧(四)反比例函数与一次函数的综合应用一次函数图象与反比例函数图象的交点的坐标,既适合一次函数的解析式,也适合反比例函数的解析式,可以利用一次函数、反比例函数的图象与性质的综合应用解决一些问题.易混易错辨析易混易错知识1.对反比例函数的定义理解不透.在识别反比例函数时,(1)容易忽略条件0k ≠导致出错;(2)易忽视等号右边的关于x 的分式中分母是关于x 的单项式而出错,例如,认为()02k y k x =≠+是反比例函数. 2.对反比例函数的性质理解出错.反比例函数的性质:当0k >时,在每一个象限内,y 随x 的增大而减小.在理解时,易忽视“在每一个象限内”这个条件,而理解为0k >时,y 随x 的增大而减小.易混易错(一)因忽视反比例函数k y x=中的条件0k ≠而致错 易混易错(二)因忽视题目图象中的隐含信息而致错.易混易错(三)研究反比例函数性质时,因忽视前提条件而致错中考试题研究中考命题规律反比例函数的定义、性质、解析式的确定方法及结合图象对实际问题进行分析是中考必考点,而利用图象及其性质解决问题是中考的热点,题型设计较新颖,有反映时代特点的应用题、图表信息题及与几何面积有关的综合题.中考试题(一)反比例函数的解析式中考试题(二)反比例函数的图象与性质中考试题(三)反比例函数中比例系数的几何意义中考试题(四)反比例函数与一次函数的图象交点问题中考试题(五)反比例函数的综合应用。