离散系统z域分析
- 格式:ppt
- 大小:895.50 KB
- 文档页数:45
离散系统Z域分析一、零输入响应的z域求解对于线性时不变离散时间系统,在零输入,即激励时,其差分方程为(8-45) 考虑响应为时的值,则初始条件为。
将式(8-45)两边取单边z变换,并根据z变换的移位性式(8-14),可得故(8-46)对应式(8-46)响应的序列可由z反变换求得例8-19若已知描述某离散时间系统的差分方程为初始条件为,求零输入响应。
解零输入时,,有若记,则对上式两边取单边z变换,有可得因故零输入响应为二、零状态响应的z域求解阶线性时不变离散时间系统的差分方程为(8-47)在零状态,即时,将等式(8-47)两边取单边z变换,可得( 8-48)其中设激励序列为因果序列,即当时, ,且。
有(8-49)故零状态响应为例8-20若已知且,求零状态响应。
解设,则有故所求零状态响应为三、全响应的z域求解对于线性时不变离散时间系统,若激励和初始状态均不为零,则对应的响应称为全响应。
根据线性时不变特性,全响应可按(8-50)计算,其中分别表示零输入和零状态响应,求解方法如上所述。
也可直接由时域差分方程求z变换而进行计算,即在激励为,初始条件不全为零时,对方程式(8-47)进行单边z变换,有(8-51)可见式(8-51)为一个代数方程,由此可解得全响应的像函数,从而求得全响应。
例8-21已知且,求全响应。
解设,对差分方程两边取单边z变换,有得有故全响应为可见这与例8-19和例8-20结果之和相同。
数字信号处理实验报告实验名称:离散系统的Z 域分析学号:姓名: 评语: 成绩: 一、实验目的1、掌握离散序列z 变换的计算方法。
2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。
3、掌握利用MATLAB 进行z 反变换的计算方法。
二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:。
∑∞-∞=-=n n z n x Z X )()(在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。
其命令格式为:syms n; f=(1/2)^n+(1/3)^n;ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n n z n h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若,则系统稳∞<∑∞-∞=n n h |)(|定。
由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。
因为,若z =1时H (z )收敛,即∑∞-∞=-=n n z n h z H )()(,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。
∞<=∑∞-∞==n z n h z H |)(||)(1因此因果稳定系统应满足的条件为:,即系统函数H (z )的所有极点全部落在1,||<∞≤<ααz z 平面的单位圆之内。
3、MATLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。
第 六 章 离散信号与系统的 Z 域分析引言与线性连续系统的频域分析和复频域分析类似,线性离散系统的频域分析是输入信号分解为基本信号e jΩk 之和,则系统的响应为基本信号的响应之和。
这种方法的数学描述是离散时间傅里叶变换和逆变换。
如果把复指数信号e jΩk 扩展为复指数信号Z k ,Z=re jΩ ,并以Zk 为基本信号, 把输入信号分解为基本信号Z k 之和, 则响应为基本信号Z k 的响应之和。
这种方法的数学描述为Z 变换及其逆变换,这种方法称为离散信号与系统的Z 域分析法.如果把离散信号看成连续时间信号的 抽样值序列,则Z 变换可由拉普拉斯变换引入.因此离散信号与系统的Z 域分析 和连续时间信号与系统的复频域分析有许多相似之处.通过Z 变换,离散时间信 号的卷积运算变成代算,离散时间系统的差分方程变成Z 域的代数方程,因此可 以比较方便的分析系统的响应。
Z 变换从拉普拉斯变换到Z 变换对连续信号f(t)进行理想抽样,即f(t)乘以单位冲击序列δT (t),T 为 抽样间隔,得到抽样信号为f s (t)=f(t)δT (t)= =对fs(t)取双边拉普拉斯变换,得F s (s)=£[fs(t)]=令z=e sT , 则Fs(s)=F(z) ,得F(z)=因为T为常数,所以通常用f(k)表示f(kT),于是变为F(z)=称为f(k)的双边Z变换,z为复变量。
z和s的关系为:z=e sTs=(1/T)㏑z由复变函数理论,可以得到f(k)= ∮cF(z)z k-1 dz式(7.1-5)称为F(z)的双边Z逆变换(后面讨论).双边Z变换的定义和收敛域§双边 Z 变换的定义对于离散序列f(k)(k=0,±1,±2,┄),函数(z的幂级数)F(z)=称为f(k)的双边Z变换,记为F(z)=Z[f(k)].F(z)又称为f(k)的象函数,f(k)又 称为F(z)的原函数.为了表示方便,f(k)与F(z)之间的对应关系可表示为 f(k) F(z)§双边 Z 变换的收敛域f(k)的双边Z变换为一无穷级数,因此存在级数是否收敛的问题.只有当 (7.1-6)式的级数收敛,F(z)才存在.F(z)存在或级数收敛的充分条件是 ∞在f(k)给定的条件下,式(7.1-6)级数是否收敛取决于z的取值.在z复平面上, 使级数收敛的z取值区域称为F(Z)的收敛域。