新人教高中数学A版必修1《集合的含义与表示 集合间的基本关系 集合的基本运算》3课时教学设计
- 格式:doc
- 大小:113.50 KB
- 文档页数:5
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
人教A版高中数学目录必修1 第一章集合与函数概念1.1集合1.1.1集合的含义与表示集合的含义与表示1.1.2集合间的基本关系集合间的基本关系1.1.3集合的基本运算集合的基本运算1.2函数及其表示1.2.1函数的概念函数的概念1.2.2函数的表示法函数的表示法1.3函数的基本性质1.3.1单调性与最大(小)值1.3.2奇偶性奇偶性第二章基本初等函数2.1指数函数2.1.1指数与指数幂的运算指数与指数幂的运算2.1.2指数函数及其性质指数函数及其性质2.2对数函数2.2.1对数与对数运算对数与对数运算2.2.2对数函数及其性质对数函数及其性质2.3幂函数第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点方程的根与函数的零点 3.1.2用二分法求方程的近似解用二分法求方程的近似解 3.2函数模型及其应用3.2.1几类不同增长的函数模型模型3.2.2函数模型的应用实例函数模型的应用实例 必修2第一章空间几何体1.1空间几何体的结构空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积与体积空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系位置关系2.2直线、平面平行的判定及其性质性质2.3直线、平面垂直的判定及其性质性质第三章直线与方程3.1直线的倾斜角与斜率直线的倾斜角与斜率3.2直线的方程直线的方程3.3直线的交点坐标与距离公式公式第四章圆与方程4.1圆的方程圆的方程4.2直线、圆的位置关系直线、圆的位置关系4.3空间直角坐标系空间直角坐标系必修3第一章算法初步1.1算法与程序框图1.1.1算法的概念算法的概念1.1.2程序框图和算法的逻辑结构辑结构1.2基本算法语句1.2.1输入、输出、赋值语句赋值语句1.2.2条件语句条件语句1.2.3循环语句循环语句1.3算法与案例第二章统计2.1随机抽样随机抽样2.2用样本估计总体用样本估计总体2.3变量间的相关关系变量间的相关关系2.1随机抽样2.1.1简单随机抽样简单随机抽样2.1.2系统抽样系统抽样2.1.3分层抽样分层抽样2.2用样本估计总体2.2.1用样本的频率分布估计总体2.2.2用样本的数字特征估计总体2.3变量间的相关关系2.3.1变量之间的相关关系变量之间的相关关系2.3.2两个变量的线性相关两个变量的线性相关第三章概率3.1随机事件的概率随机事件的概率3.2古典概型古典概型3.3几何概型几何概型3.1随机事件的概率3.1.1随机事件的概率随机事件的概率3.1.2概率的意义概率的意义3.1.3概率的基本性质概率的基本性质3.2古典概型3.2.1古典概型古典概型3.2.2随机数的产生随机数的产生3.3几何概型3.3.1几何概型几何概型3.3.2均匀随机数的产生均匀随机数的产生必修4第一章三角函数1.1任意角和弧度制任意角和弧度制1.2任意的三角函数任意的三角函数1.3三角函数的诱导公式三角函数的诱导公式1.4三角函数的图象与性质三角函数的图象与性质 1.5函数y=Asin(ωx+ψ)1.6三角函数模型的简单应用三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积平面向量的数量积2.5平面向量应用举例平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式弦和正切公式3.2简单的三角恒等变换简单的三角恒等变换 必修5第一章解三角形1.1正弦定理和余弦定理正弦定理和余弦定理1.2应用举例应用举例第二章数列2.1数列的概念与简单表示法数列的概念与简单表示法2.1等差数列等差数列2.3等差数列的前n项和项和2.4等比数列等比数列2.5等比数列的前n项和项和第三章不等式3.1不等关系与不等式不等关系与不等式3.2一元二次不等式及其解法一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性单的线性3.4基本不等式:基本不等式:选修二选修2-1选修2-2选修2-3选修2-1第一章常用逻辑用语1.1命题及其关系命题及其关系1.2充分条件与必要条件充分条件与必要条件1.3简单的逻辑联结词简单的逻辑联结词1.4全称量词与存在量词全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程曲线与方程2.2椭圆椭圆2.3双曲线双曲线2.4抛物线抛物线第三章空间向量与立体几何3.1空间向量及其运算空间向量及其运算3.2立体几何中的向量方法立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数变化率与导数1.2导数的计算导数的计算1.3导数在研究函数中的应用导数在研究函数中的应用 1.4生活中的优化问题举例生活中的优化问题举例 1.5定积分的概念定积分的概念1.6微积分基本定理微积分基本定理1.7定积分的简单应用定积分的简单应用第二章推理与证明2.1合情推理与演绎推理合情推理与演绎推理2.2直接证明与间接证明直接证明与间接证明2.3数学归纳法数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念数系的扩充和复数的概念 3.2复数代数形式的四则运算复数代数形式的四则运算 选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计. 1.2排列与组合排列与组合1.3二项式定理二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列离散型随机变量及其分布列 2.2二项分布及其应用二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布正态分布第三章统计案例3.1回归分析的基本思想及其初步应用其初步应用3.2独立性检验的基本思想及其初步及其初步。
第一章集合与常用逻辑用语1.1.1集合的概念 (1)1.1.2集合的表示 (4)1.2集合间的基本关系 (8)1.3.1并集与交集 (13)1.3.2补集及集合运算的综合应用 (17)1.4.1充分条件与必要条件 (20)1.4.2充要条件 (24)1.5.1全称量词与存在量词 (28)1.5.2全称量词命题与存在量词命题的否定 (32)1.1.1集合的概念要点整理1.元素与集合的概念及表示(1)元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.2.元素的特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.温馨提示:集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是数、点,也可以是一些人或一些物.3.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.温馨提示:(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.4.常用的数集及其记法题型一集合的基本概念【典例1】判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.[思路导引] 构成集合的关键是要有明确的研究对象,即元素不能模糊不清、模棱两可.[解] (1)(3)由于标准不明确,故不能构成集合;(2)(4)(5)能构成集合.对集合含义的理解给定一个集合,那么任何一个元素在不在这个集合中就确定了,所谓“确定”,是指所有被“研究的对象”都是这个集合的元素,没有被“研究的对象”都不是这个集合的元素.题型二元素与集合的关系【典例2】(1)下列关系中,正确的有( )①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个 B.2个 C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.[思路导引] 判断一个元素是否为某集合的元素,关键是抓住集合中元素的特征.[解析] (1)12是实数;2是无理数;|-3|=3,是自然数;|-3|=3,是无理数.故①②③正确,选C.(2)当x=0时,63-0=2;当x=1时,63-1=3;当x=2时,63-2=6;当x≥3时不符合题意,故集合A中元素有0,1,2.[答案] (1)C (2)0,1,2判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.题型三集合中元素的特性【典例3】已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.[思路导引] 由集合中元素的确定性和互异性切入.[解析] 若a=1,则a2=1,此时集合A中两元素相同,与互异性矛盾,故a≠1;若a2=1,则a=-1或a=1(舍去),此时集合A中两元素为-1,1,故a=-1.综上所述a=-1.[答案] -1[变式] (1)本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.(2)本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?[解] (1)若a=2,则a2=4,符合元素的互异性;若a2=2,则a=2或a=-2,符合元素的互异性.所以a的取值为2,2,- 2.(2)根据集合中元素的互异性可知,a≠a2,所以a≠0且a≠1.应用集合元素的特性解题的要点(1)集合问题的核心即研究集合中的元素,在解决这类问题时,要明确集合中的元素是什么.(2)构成集合的元素必须是确定的(确定性),而且是互不相同的(互异性),在书写时可以不考虑先后顺序(无序性).(3)利用集合元素的特性求参数问题时,先利用确定性解出字母所有可能值,再根据互异性对集合中元素进行检验,要注意分类讨论思想的应用.1.1.2集合的表示1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.2.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.温馨提示:(1)写清楚集合中元素的符号.如数或点等.(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等.(3)不能出现未被说明的字母.题型一用列举法表示集合【典例1】 用列举法表示下列集合:(1)方程x (x -1)2=0的所有实数根组成的集合;(2)不大于10的非负偶数集;(3)一次函数y =x 与y =2x -1图象的交点组成的集合.[思路导引] 用列举法表示集合的关键是弄清集合中的元素是什么,还要弄清集合中的元素个数.[解] (1)方程x (x -1)2=0的实数根为0,1,故其实数根组成的集合为{0,1}.(2)不大于10的非负偶数即为从0到10的偶数,故不大于10的非负偶数集为{0,2,4,6,8,10}.(3)由⎩⎨⎧ y =x y =2x -1,解得⎩⎨⎧ x =1,y =1.故一次函数y =x 与y =2x -1图象的交点组成的集合为{(1,1)}.题型二用描述法表示集合【典例2】 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合;(4)不等式3x -2<4的解集.[思路导引] 用描述法表示集合的关键是确定代表元素的属性和表示元素的共同特征.[解] (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.(4)不等式3x-2<4可化简为x<2,所以不等式3x-2<4的解集为{x|x<2}.用描述法表示集合应注意的3点(1)用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.题型三集合表示方法的应用【典例3】(1)若集合A={x|ax2-8x+16=0,a∈R}中只有一个元素,则a的值为( )A.1 B.4 C.0 D.0或1(2)已知A={x|kx+2>0,k∈R},若-2∈A,则k的取值范围是________.[思路导引] 借助描述法求值或范围的关键是弄清集合中元素的特征.[解析] (1)①当a=0时,原方程为16-8x=0.∴x=2,此时A={2};②当a≠0时,由集合A中只有一个元素,∴方程ax2-8x+16=0有两个相等实根,则Δ=64-64a=0,即a=1.从而x1=x2=4,∴集合A={4}.综上所述,实数a的值为0或1.故选D.(2)∵-2∈A,∴-2k+2>0,得k<1.[答案] (1)D (2)k<1[变式] (1)本例(1)中条件“有一个元素”改为有“两个元素”,其他条件不变,求a的取值范围.(2)本例(2)中条件“-2∈A ”改为“-2∉A ”,其他条件不变,求k 的取值范围.[解] (1)由题意可知方程ax 2-8x +16=0有两个不等实根.∴⎩⎨⎧ a ≠0,Δ=64-64a >0,解得a <1,且a ≠0.(2)∵-2∉A ,∴-2k +2≤0,得k ≥1.集合表示方法的应用的注意点(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键.(2)与方程ax 2-8x +16=0的根有关问题易忽视a =0的情况.集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合:(1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y=x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.子集的概念温馨提示:“A是B的子集”的含义是:对任意x∈A都能推出x∈B.2.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B 且B⊆A,则A=B.3.真子集的概念温馨提示:在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x ∈B,但x∉A.4.空集的概念题型一集合间关系的判断【典例1】判断下列两个集合之间的关系:(1)A={-1,1},B={x|x2=1};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.[思路导引] 集合间基本关系的刻画均是由元素的从属关系决定的.[解] (1)用列举法表示集合B={-1,1},故A=B.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(4)解法一(特殊值法):两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.解法二(列举法):由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.判断集合间关系的3种方法(1)列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系.(2)元素特征法:根据集合中元素满足的性质特征之间的关系判断.(3)图示法:利用数轴或Venn图判断两集合间的关系.题型二有限集合子集、真子集的确定【典例2】(1)填写下表,并回答问题原集合子集子集的个数∅________________{a}________________{a,b}________________{a,b,c}________________由此猜想,含n个元素的集合的所有子集的个数是多少?真子集的个数及非空真子集个数呢?(2)求满足{1,2}M⊆{1,2,3,4,5}的集合M.[解] (1)原集合子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8猜想:含n个元素的集合的子集共有2n个,真子集有2n-1个,非空真子集有2n-2个.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(1)求解有限集合子集问题的3个关键点①确定所求集合,是子集还是真子集.②合理分类,按照子集所含元素的个数依次写出.③注意两个特殊的集合,即空集和集合本身.空集是任何集合的子集,是任何非空集合的真子集.(2)与子集、真子集个数有关的3个结论 假设集合A 中含有n 个元素,则有: ①A 的子集的个数为2n 个; ②A 的真子集的个数为2n -1个; ③A 的非空真子集的个数为2n -2个.【典例3】 已知集合A ={x |-3<x <4},B ={x |1-m <x ≤2m -1},且A ⊆B ,求实数m 的取值范围.[思路导引] A ⊆B ,即集合A 中的数在集合B 中,特别注意A =∅的情况. [解] 由A ⊆B ,将集合A ,B 分别表示在数轴上,如图所示,则⎩⎨⎧1-m ≤-3,1-m <2m -1,4≤2m -1,解得m ≥4.故m 的取值范围是{m |m ≥4}.[变式] (1)本例中若将“A ⊆B ”改为“B ⊆A ”,其他条件不变,求m 的取值范围.(2)本例若将集合A ,B 分别改为A ={3,m 2},B ={1,3,2m -1},其他条件不变,求实数m 的值.[解] (1)由B ⊆A ,将集合A ,B 分别表示在数轴上,如图所示.∵B ⊆A ,∴当B =∅时,1-m ≥2m -1,解得m ≤23;当B ≠∅时,有⎩⎨⎧2m -1>1-m ,2m -1<4,1-m ≥-3,解得23<m <52.综上可知,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <52. (2)由A ⊆B ,按m 2=1和m 2=2m -1两种情况分类讨论. ①若m 2=1,则m =-1或m =1.当m =-1时,B 中元素为1,3,-3,适合题意; 当m =1时,B 中元素为1,3,1,与元素的互异性矛盾. ②若m 2=2m -1,则m =1,由①知不合题意. 综上所述,m =-1.由集合间的关系求参数的2种方法(1)当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点.(2)当集合为不连续数集时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用.1.3.1并集与交集1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质【典例1】(1)若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )A.{x|-1≤x<3} B.{x|-1≤x≤4} C.{x|x≤4}D.{x|x≥-1}[思路导引] 由并集的定义,结合数轴求解.[解析] (1)A∪B={0,1,2,3,4},选A.(2)在数轴上表示两个集合,如图.∴P∪Q={x|x≤4}.选C.[答案] (1)A (2)C求集合并集的2种方法(1)定义法:若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果.(2)数形结合法:若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.题型二交集的运算【典例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4}D.{x|1≤x≤4}(2)设A={x∈N|1≤x≤5},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}[思路导引] 既属于集合A,又属于集合B的所有元素组成的集合,借助图示方法求解.[解析] (1)在数轴上表示出集合A与B,如下图.则由交集的定义可得A∩B={x|0≤x≤2}.选A.(2)A={x∈N|1≤x≤5}={1,2,3,4,5},B={x∈R|x2+x-6=0}={-3,2},图中阴影部分表示的是A∩B,∴A∩B={2}.选A.[答案] (1)A (2)A求集合交集的2个注意点(1)求两集合的交集时,首先要化简集合,使集合的元素特征尽量明朗化,然后根据交集的含义写出结果.(2)在求与不等式有关的集合的交集运算中,应重点考虑数轴分析法,直观清晰.题型三由集合的并集、交集求参数【典例3】 (1)设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.(2)已知集合A ={x |-3<x ≤4},B ={x |2-k ≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.[思路导引] (1)画出数轴求解.(2)若A ∪B =A ,则B ⊆A ;若A ∩B =A ,则A ⊆B .[解] (1)如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3. (2)∵A ∪B =A ,∴B ⊆A .若B =∅,则2-k >2k -1,得k <1;若B ≠∅,则⎩⎨⎧2-k ≤2k -1,2-k >-3,2k -1≤4,解得1≤k ≤52.综上所述,k ≤52.[变式] 本例(2)若将“A ∪B =A ”改为“A ∩B =A ”,其他条件不变,求k 的取值范围.[解] ∵A ∩B =A ,∴A ⊆B . ∴⎩⎨⎧2-k ≤-3,2k -1≥4,解得k ≥5.由集合交集、并集的性质解题的策略、方法及注意点(1)策略:当题目中含有条件A ∩B =A 或A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将A ∩B =A 转化为A ⊆B ,A ∪B =B 转化为A ⊆B .(2)方法:借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(3)注意点:当题目条件中出现B⊆A时,若集合B不确定,解答时要注意讨论B=∅的情况.1.3.2补集及集合运算的综合应用要点整理1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.题型一补集的运算【典例1】(1)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________________;(2)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________________.[思路导引] 借助补集定义,结合数轴及Venn图求解.[解析] (1)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.(2)解法一:A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二:借助Venn图,如图所示.由图可知B={2,3,5,7}.[答案] (1){x|x<-3或x=5} (2){2,3,5,7}求集合补集的基本方法及处理技巧(1)基本方法:定义法.(2)两种处理技巧①当集合用列举法表示时,可借助Venn图求解;②当集合是用描述法表示的连续数集时,可借助数轴,利用数轴分析求解.题型二交集、并集、补集的综合运算【典例2】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.[解] 把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-U3<x≤-2或x=3}.解决集合交、并、补运算的2个技巧(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.题型三利用集合间的关系求参数【典例3】设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁A)∩B=∅,求实数m的取值范围.U[思路导引] 理清集合间的关系,分类求解.[解] 由已知A={x|x≥-m},得∁U A={x|x<-m},因为B={x|-2<x<4},(∁U A)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是m≥2.[变式] (1)将本例中条件“(∁U A)∩B=∅”改为“(∁U A)∩B≠∅”,其他条件不变,则m的取值范围又是什么?(2)将本例中条件“(∁U A)∩B=∅”改为“(∁U B)∪A=R”,其他条件不变,则m的取值范围又是什么?[解] (1)由已知得A={x|x≥-m},所以∁U A={x|x<-m},又(∁U A)∩B≠∅,所以-m>-2,解得m<2.(2)由已知得A={x|x≥-m},∁U B={x|x≤-2或x≥4}.又(∁U B)∪A=R,所以-m≤-2,解得m≥2.利用集合关系求参数的2个注意点(1)与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情况.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.[针对训练]5.已知集合A={x|x<a},B={x|1<x<3}.(1)若A∪(∁R B)=R,求实数a的取值范围;(2)若A(∁R B),求实数a的取值范围.[解](1)∵B={x|1<x<3},B={x|x≤1或x≥3},∴∁R因而要使A∪(∁R B)=R,结合数轴分析(如图),可得a≥3.(2)∵A={x|x<a},∁R B={x|x≤1或x≥3}.要使A(∁R B),结合数轴分析(如图),可得a≤1.1.4.1充分条件与必要条件要点整理1.命题及相关概念2.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.温馨提示:(1)充分、必要条件的判断讨论的是“若p,则q”形式的命题.若不是,则首先将命题改写成“若p,则q”的形式.(2)不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.题型一充分、必要条件的概念及语言表述【典例1】将下面的定理写成“若p,则q”的形式,并用充分条件、必要条件的语言表述:(1)两个全等三角形的对应高相等;(2)等底等高的两个三角形是全等三角形.[解] (1)若两个三角形是全等三角形,则它们的对应高相等,所以“两个三角形是全等三角形”是“它们的对应高相等”的充分条件;“对应高相等”是“两个三角形是全等三角形”的必要条件.(2)若两个三角形等底等高,则这两个三角形是全等三角形,所以“两个三角形等底等高”是“这两个三角形是全等三角形”的不充分条件;“两个三角形是全等三角形”是“这两个三角形等底等高”的不必要条件.(1)对充分、必要条件的理解①对充分条件的理解:i)所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.ii)充分条件不是唯一的,如x>2,x>3都是x>0的充分条件.②对必要条件的理解:i)所谓必要,就是条件是必须有的,必不可少的,缺其不可.“有之未必成立,无之必不成立”.ii)必要条件不是唯一的,如x>0,x>5等都是x>9的必要条件.(2)用充分、必要条件的语言表述定理的一般步骤第一步:分析定理的条件和结论;第二步:将定理写成“若p,则q”的形式;第三步:利用充分、必要条件的概念来表述定理.题型二充分条件、必要条件的判定【典例2】判断下列各题中p是q的充分条件吗?p是q的必要条件吗?(1)p:x>1,q:x2>1;(2)p:(a-2)(a-3)=0,q:a=3;(3)已知:y=ax2+bx+c(a≠0),p:Δ=b2-4ac>0,q:函数图象与x轴有交点.[思路导引] 判断“若p,则q”命题的真假及“若q,则p”命题的真假.[解] (1)由x>1可以推出x2>1,因此p是q的充分条件;由x2>1,得x<-1,或x>1,不一定有x>1.因此,p不是q的必要条件.(2)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3,因此p不是q的充分条件;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要条件.(3)二次函数y=ax2+bx+c,当Δ>0时,其图象与x轴有交点,因此p是q的充分条件;反之若函数的图象与x轴有交点,则Δ≥0,不一定是Δ>0,因此p不是q的必要条件.充分、必要条件的判断方法(1)定义法:首先分清条件和结论,然后判断p⇒q和q⇒p是否成立,最后得出结论.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p 的必要条件;②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件.显然,p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,即p ⇒q ,只是说法不同而已.题型三充分条件、必要条件与集合的关系【典例3】 (1)已知p :关于x 的不等式3-m 2<x <3+m 2,q :0<x <3,若p 是q 的充分条件,求实数m 的取值范围.(2)已知集合A ={y |y =x 2-3x +1,x ∈R },B ={x |x +2m ≥0};命题p :x ∈A ,命题q :x ∈B ,并且q 是p 的必要条件,求实数m 的取值范围.[思路导引] p 是q 的充分条件转化为对应集合A ⊆集合B ,q 是p 的必要条件转化为集合A ⊆集合B .[解] (1)记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3}, 若p 是q 的充分条件,则A ⊆B .注意到B ={x |0<x <3}≠∅,分两种情况讨论:①若A =∅,即3-m 2≥3+m 2,解得m ≤0,此时A ⊆B ,符合题意; ②若A ≠∅,即3-m 2<3+m 2,解得m >0, 要使A ⊆B ,应有⎩⎪⎨⎪⎧ 3-m 2≥0,3+m 2≤3,m >0,解得0<m ≤3. 综上可得,实数m 的取值范围是{m |m ≤3}.(2)由已知可得 A =⎩⎨⎧⎭⎬⎫y | y =⎝ ⎛⎭⎪⎫x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y | y ≥-54, B ={x |x ≥-2m }.因为q 是p 的必要条件,所以p ⇒q ,所以A ⊆B ,所以-2m ≤-54,所以m ≥58,即m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |m ≥58. [变式] 本例(1)中若将“若p 是q 的充分条件”改为“p 是q 的必要条件”,其他条件不变,求实数m 的取值范围.[解] 记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3},若p 是q 的必要条件,则B ⊆A .应有⎩⎪⎨⎪⎧ 3-m 2≤0,3+m 2≥3,解得m ≥3.综上可得,实数m 的取值范围是{m |m ≥3}.(1)利用充分、必要条件求参数的思路根据充分、必要条件求参数的取值范围时,先将p ,q 等价转化,再根据充分、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.(2)从集合角度看充分、必要条件:设命题p 、q 分别对应集合A 、B ,若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件.1.4.2充要条件要点整理充要条件如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p ⇒q ,又有q ⇒p ,记作p ⇔q .此时p 既是q 的充分条件,也是q 的必要条件.我们说p 是q 的充分必要条件,简称为充要条件.如果p 是q 的充要条件,那么q 也是p 的充要条件,即如果p ⇔q ,那么p 与q 互为充要条件.温馨提示:(1)从概念的角度去理解充分条件、必要条件、充要条件①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇔q,则p是q的充要条件.③若p⇒q,且q⇒/p,则称p是q的充分不必要条件.④若p⇒/q,且q⇒p,则称p是q的必要不充分条件.⑤若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件.(2)“⇔”的传递性若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p 是s的充要条件.题型一充要条件的判断【典例1】在下列各题中,试判断p是q的什么条件.(1)p:a+5是无理数,q:a是无理数;(2)若a,b∈R,p=a2+b2=0,q:a=b=0;(3)p:A∩B=A,q:∁U B⊆∁U A.[思路导引] 判断是否p⇒q,q⇒p.[解] (1)因为a+5是无理数⇒a是无理数,并且a是无理数⇒a+5是无理数,所以p是q的充要条件.(2)因为a2+b2=0⇒a=b=0,并且a=b=0⇒a2+b2=0,所以p是q的充要条件.(3)因为A∩B=A⇒A⊆B⇒∁U A⊇∁U B,并且∁U B⊆∁U A⇒B⊇A⇒A∩B=A,所以p 是q的充要条件.[变式] 已知p是q的充分条件,q是r的必要条件,也是s的充分条件,r是s的必要条件,问:(1)p是r的什么条件?(2)s是q的什么条件?(3)p,q,r,s中哪几对互为充要条件?[解] 作出“⇒”图,如右图所示,。
课题集合年级高一授课对象编写人胥勋彪时间2018.2.3 学习重点、难点集合的基本运算、集合的基本关系上课内容:集合的含义及其表示、基本关系、基本运算知识点总结1、集合的含义(1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)表示方法:集合通常用大写拉丁字母A,B,C…表示,元素用小写拉丁字母a,b,c…表示。
(3)元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
(4)常用的数集及其记法N:非负整数集(自然数集),包括0 N*或N+:正整数集Z:整数集Q:有理数集R:全体实数的集合2、集合元素的三个特征:(1)确定性:给定的集合,它的元素必须是确定的。
(2)互异性:一个给定集合中的元素是互不相同的。
(3)无序性:集合中的元素是没有先后顺序的。
3.一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作: ()A BB A ⊆⊇或 读作:A 包含于B(或B 包含A).4.集合相等:如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作.A B =即,A B B A A B ⊆⊆⇔=且.5.真子集如果集合B A ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,即如果A B ⊆且A B ≠,那么集合A 是集合B 的真子集,记作A B(或B A). 6.空集∅我们把不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集,是任何非空集合的真子集. 7.并集⋃一般的,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作:B A ⋃(读作:A 并B )8.交集⋂一般的,由属于集合A 且属于集合B 的元素组成的集合,称为A 与B 的交集。
高中数学新教材必修第一册知识点总结第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等. 3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一. (2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的.(3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变. 4.集合的符号表示通常用大写的字母A,B,C,…表示集合,用小写的字母a,b,c表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合A与集合B相等记作A B=.6.元素与集合之间的关系(1)属于:如果a是集合A中的元素,就说a属于集合A,记作a A∈,读作a属于A. (2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a A∉,读作a不属于A.7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程21x=的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式10x->的解组成的集合.8.常用数集及其记法.(1)正整数集:全体正整数组成的集合叫做正整数集,记作*N或N+(2)自然数集:全体非负整数组成的集合叫做自然数集,记作N.(3)整数集:全体整数组成的集合叫做整数集,记作Z.(4)有理数集:全体有理数组成的集合叫做有理数集,记作Q.(5)实数集:全体实数组成的集合叫做实数集,记作R.9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为{太平洋,大西洋,印度洋,北冰洋},把“方程(1)(2)0x x -+=的所有实数根”组成的集合表示为{1,2}-.(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为{()}x p x ,其中x 是集合中的元素代表,()p x 则表示集合中的元素所具有的共同特征.例如,不等式73x -<的解集可以表示为{73}{10}x R x x R x ∈-<=∈<.1.2集合间的基本关系1. 子集一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记为A B ⊆或(B A ⊇) 读作集合A 包含于集合B (或集合B 包含集合A ). 集合A 是集合B 的子集可用V e n n 图表示如下:或关于子集有下面的两个性质: (1)自反性:A A ⊆;(2)传递性:如果A B ⊆,且B C ⊆,那么A C ⊆. 2.真子集如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A是集合B 的真子集,记为A B ⊂≠(或B A ⊃≠), 读作集合A 真包含于集合B (或集合B 真包含集合A ). 集合A 是集合B 的真子集可用V e n n 图表示如右.3.集合的相等如果集合A B ⊆,且B A ⊆,此时集合A 与集合B 的元素是 一样的,我们就称集合A 与集合B 相等,记为 A B =.集合A 与集合B 相等可用V e n n 图表示如右. 4.空集我们把不含任何元素的集合叫做空集,记为∅.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即 (1)A ∅⊆(A 是任意一个集合); (2)A ⊂∅≠(A ≠∅).1.3集合的运算1.并集自然语言:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作A B ⋃(读作“A 并B ”).符号语言: {,}A B x x A x B ⋃=∈∈或. 图形语言:(5) A =BA (4)B B(3)A (2)A 与B 没有有公共元素(1)A 与B 有公共元素,相互不包含理解:x A ∈或x B ∈包括三种情况:x A ∈且x B ∉;x B ∈且x A ∉;x A ∈且x B ∈. 并集的性质:(1)A B B A ⋃=⋃; (2)A A A ⋃=; (3)A A ⋃∅=;(4)()()A B C A B C ⋃⋃=⋃⋃; (5)A A B ⊆⋃,B A B ⊆⋃; (6)A B B A B ⋃=⇔⊆. 2.交集自然语言:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ⋂(读作“A 交B ”). 符号语言: {,}A B x x A x B ⋂=∈∈且. 图形语言:BA(5)A=B,A B=A=B(4)B A,A B=B(3)A B,A B=AA B(2)A 与B 没有公共元素,A B=(1)A 与B 有公共元素,且互不包含理解:当A 与B 没有公共元素时,不能说A 与B 没有交集,只能说A 与B 的交集是∅. 交集的性质:(1)A B B A ⋂=⋂; (2)A A A ⋂=; (3)A ⋂∅=∅;(4)()()A B C A B C ⋂⋂=⋂⋂; (5)A B A ⋂⊆,A B B ⋂⊆; (6)A B A A B ⋂=⇔⊆.3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U . (2)补集的概念自然语言:对于一个集合A ,由属于全集U 且不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记为UA .符号语言: {,}UA x x U x A =∈∉且图形语言:补集的性质 (1)()UA A ⋂=∅; (2)()UA A U ⋃=;(3)()()()UU UA B A B ⋃=⋂; (4)()()()U U UA B A B ⋂=⋃.1.4充分条件与必要条件1.充分条件与必要条件 一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒, 并且说p 是q 的充分条件,q 是p 的必要条件. 在生活中, q 是p 成立的必要条件也可以说成是: q ⌝⇒p ⌝(q ⌝表示q 不成立),其实,这与p q ⇒是等价的.但是,在数学中,我们宁愿采用第一种说法. 如果“若p ,则q ”为假命题,那么由p 推不出q ,记作/p q ⇒.此时,我们就说p 不是q 的充分条件,q 不是p 的必要条件.2.充要条件如果“若p ,则q ”和它的逆命题“若q 则p ”均是真命题,即既有p q ⇒,又有q p ⇒就记作p q ⇔.此时,我们就说p 是q 的充分必要条件,简称为充要条件.显然,如果p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,如果p q ⇔,那么p 与q 互为充要条件. “p 是q 的充要条件”,也说成“p 等价于q ”或“q 当且仅当p ”等.1.5全称量词与存在量词1.全称量词与存在量词 (1)全称量词 短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“"”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为x M ∀∈,()p x ,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词 短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“$”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等. 含有存在量词的命题,叫做存在量词命题.存在量词命题“存在M 中的元素x ,使()p x 成立”可用符号简记为x M∃∈,()p x ,读作“存在M 中的元素x ,使()p x 成立”. 2.全称量词命题和存在量词命题的否定 (1)全称量词命题的否定 全称量词命题:x M ∀∈,()p x ,它的否定:x M∃∈,()p x ⌝.全称量词命题的否定是存在量词命题. (2)存在量词命题的否定 存在量词命题:x M∃∈,()p x ,它的否定:x M ∀∈,()p x ⌝.存在量词命题的否定是全称量词命题.第二章 一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理a b a b >⇔->;0a b a b =⇔-=; 0a b a b <⇔-<.2.等式的基本性质 性质1 如果a b =,那么b a =;性质2 如果a b =,b c =,那么a c =; 性质3 如果a b =,那么a c b c ±=±; 性质4 如果a b=,那么a c b c =;性质5 如果a b =,0c ≠,那么a b c c=.3.不等式的基本性质性质1 如果a b >,那么b a <;如果b a <,那么a b >.即a b b a >⇔<性质2 如果a b >,b c >,那么a c >.即a b >,b c >a c ⇒>.性质3 如果a b >,那么a c b c +=+.由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-.这表明,不等式中任何一项可以改变符号后移到不等号的另一边.性质4 如果a b >,0c >,那么a c b c >;如果a b >,0c <,那么a c b c <. 性质5 如果a b >,c d >,那么a c b d +>+. 性质6 如果0a b >>,0c d >>,那么a c b d >. 性质7 如果0a b >>,那么nna b >(n N ∈,2n ≥).2.2 基本不等式1.重要不等式,a b R ∀∈,有222a ba b +≥,当且仅当a b =时,等号成立. 2.基本不等式如果0a >,0b >,则2a b +≤,当且仅当a b =时,等号成立.2a b +叫做正数a ,b 的算术平均数叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 3.与基本不等式相关的不等式 (1)当,a b R ∈时,有22a b a b +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.(2)当0a >,0b >时,有211a b≤+当且仅当a b =时,等号成立. (3)当,a b R ∈时,有22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.4.利用基本不等式求最值已知0x >,0y >,那么(1)如果积x y 等于定值P ,那么当x y =时,和x y +有最小值; (2)如果和x y +等于定值S ,那么当x y =时,积x y 有最大值214S .2.3 二次函数与一元二次方程、不等式1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.第三章 函数的概念与性质3.1 函数的概念及其表示1.函数的概念设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作()y f x =,x A ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{|(})f x x A ∈叫做函数的值域,显然,值域是集合B 的子集. 2.区间:设a ,b 是两个实数,而且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ; (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ;(3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为:[,)a b , (,]a b .这里的实数a ,b 都叫做相应区间的端点.(4)实数集R 可以表示为(,)-∞+∞,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞” 读作“正无穷大”.满足x a ≥,x a >,x b ≤,x b <的实数x 的集合,用区间分别表示为[,)a +∞ ,(,)a +∞(,]b -∞,(,)b -∞.这些区间的几何表示如下表所示.注意:(1)“∞”是一个趋向符号,表示无限接近,却永远达不到,不是一个数. (2)以“-∞”或“+∞”为区间的一端时,这一端点必须用小括号. 3.函数的三要素 (1)定义域; (2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定. 4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数. 5.函数的表示方法 (1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系. (2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系.说明:将自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数的定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数()y f x =的图象.函数()y f x =的图象在x 轴上的射影构成的集合就是函数的定义域,在y 轴上的射影构成的集合就是函数的值域. 函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等. (3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的. 6.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如(1),0,(),0x x f x x x x -<⎧==⎨≥⎩ , (2)22,0,(),0x x f x x x ⎧≤⎪=⎨->⎪⎩. 说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集. (2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分 段函数的图象.3.2 函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性. 1.单调性与最大(小)值 (1)增函数设函数()f x 的定义域为I ,区间D ⊆I .如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x <,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递增时,我们就称它是增函数.(2)减函数设函数()f x 的定义域为I ,区间D ⊆I.如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x >,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递减时,我们就称它是减函数. (3)单调性、单调区间、单调函数如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在区间D 上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数. (4)证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下: ①设值:设12,x x D ∈,且 12x x <;②作差:12()()f x f x - ;③变形:对12()()f x f x -变形,一般是通分,分解因式,配方等.这一步是核心 ,要注意变形到底;④判断符号,得出函数的单调性. (5)函数的最大值与最小值①最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么我们称M 是函数()y f x =的最大值.②最小值:设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得0()f x m =. 那么我们称m 是函数()y f x =的最小值. 2.奇偶性 (1)偶函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件;②偶函数的图象关于y 轴对称.反之也成立; ③偶函数在关于原点对称的两个区间上的增减性相反. (2)奇函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数.关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件;②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当0x =时有意义,那么(0)0f =.即当0x =有意义时,奇函数的图象过坐标原点;④奇函数在关于原点对称的两个区间上的增减性相同.3.3幂函数1.幂函数的概念 一般地,形如yxα=(R α∈,α为常数)的函数称为幂函数.对于幂函数,我们只研究1α=,2,3,12,1-时的图象与性质.2.五个幂函数的图象和性质3.4函数的应用(一)略.第四章 指数函数与对数函数4.1 指数1.n 次方根与分数指数幂 (1)方根如果nx a =,那么x 叫做a 的n 次方根,其中1n >,且*n N ∈.①当n 是奇数时,正数的n 次方根是正数,负数的n 方根是负数.这时,a 的n 表示.②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次负的n 次方根用符号. 正的n 次方根与负的n 次方根可以合x 12xx -1并写成0a>). 负数没有偶次方根.0的任何次方根都是0,记作0=.根式,这里n叫做根指数,a叫做被开方数. 关于根式有下面两个等式:n a=;,,a na n⎧⎪=⎨⎪⎩为奇数为偶数..2.分数指数幂(1)正分数指数幂mna=0a>,m,*n N∈,1n>).0的正分数指数幂等于0.(2)负分数指数幂11=mnmnaa-=0a>,m,*n N∈,1n>).0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①r s r sa a a+=(0a>,r,s Q∈);②()r s rsa a=(0a>,r,s Q∈);③()r r ra b a b=(0a>,0b>,r Q∈).3. 无理数指数幂及其运算性质(1)无理数指数幂的概念当x是无理数时,x a是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当x 的不足近似值m和过剩近似值n逐渐逼近x时,m a和n a都趋向于同一个数,这个数就是x a.所以无理数指数幂x a(0a>,x是无理数)是一个确定的数.(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数r,s,均有下面的运算性质.①r s r sa a a+=(0a>,r,s R∈);②()r s rsa a=(0a>,r,s R∈);③()r r ra b a b=(0a>,0b>,r R∈).4.2 指数函数1.指数函数的概念函数xy a=(0a>,且1a≠)叫做指数函数,其中指数x是自变量,定义域是R.2.指数函数的图象和性质一般地,指数函数xy a=(0a>,且1a≠)的图象和性质如下表所示:4.3 对数1.对数的概念一般地,如果xa N =(0,1)a a >≠,那么数x 叫做以a 为底N 的对数,记作N x alog=.其中a 叫做对数的底数,N 叫做真数. 当0a >,且1a ≠时,lo g N xa a N x =⇔=. 2. 两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把10lo g N 记为lg N .(2)自然对数:以e (e 是无理数, 2.71828e =…)为底的对数叫做自然对数,并把lo g e N 记作ln N .3. 关于对数的几个结论 (1)负数和0没有对数; (2)lo g 10a =; (3)lo g 1a a =.4. 对数的运算如果0a >,且1a ≠,0M >,0N >,那么(1)lo g ()lo g lo g a a a M N M N =+; (2)lo g lo g lo g a a a M M N N=-;(3)lo g lo g na a Mn M =(n R ∈).5. 换底公式lo g lo g lo g c a c bb a=(0a >,且1a ≠,0b >,0c >,1c ≠). 4.4 对数函数1. 对数函数的概念一般地,函数lo g a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,定义域是(0,)+∞.2.对数函数的图象和性质3. 反函数指数函数x y a =(0a >,且1a ≠)与对数函数lo g a y x =(0a >,且1a ≠)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线y x =对称. 4. 不同函数增长的差异对于对数函数lo g a y x =(1a >)、一次函数y k x =(0k >)、指数函数xy b =(1b >)来说,尽管它们在(0,)+∞上都是增函数,但是随着x 的增大,它们增长的速度是不相同的.其中对数函数lo g a y x =(1a >)的增长速度越来越慢;一次函数y k x =(0k >)增长的速度始终不变;指数函数x y b =(1b >)增长的速度越来越快.总之来说,不管a (1a >),k (0k >),b (1b >)的大小关系如何,xy b =(1b >)的增长速度最终都会大大超过y k x =(0k >)的增长速度;y k x =(0k >)的增长速度最终都会大大超过lo g a y x=(1a >)的增长速度.因此,总会存在一个0x ,当0x x >时,恒有lo g xa bk x x >>.4.5 函数的应用(二)1. 函数的零点与方程的解 (1)函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.函数()y f x =的零点就是方程()0f x =的实数解,也是函数()y f x =的图象与x 轴的公共点的横坐标.所以方程()0f x =有实数解⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有公共点.(2)函数零点存在定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的解. 2. 用二分法求方程的近似解对于在区间[,]a b 上图象连续不断且()()0f a f b <的函数()y f x =,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精确度ε,用二分法求函数()y f x =零点0x 的近似值的一般步骤如下: (1)确定零点0x 的初始区间[,]a b ,验证()()0f a f b <. (2)求区间(,)a b 的中点c .(3)计算()f c ,并进一步确定零点所在的区间:①若()0f c =(此时0x c =),则c 就是函数的零点; ②若()()0f a f c <(此时0(,)x a c ∈),则令b c =; ③若()()0f c f b <(此时0(,)x c b ∈),则令a c =.(4)判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复步骤(2)~(4).由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解. 3. 函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.。
最新课程标准:(1)在具体情境中,了解空集的含义.(2)理解集合之间包含与相等的含义,能识别给定集合的子集.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A 中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A错误!“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A都能推出x∈B.知识点二集合相等文字语言:一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B.符号语言:若A⊆B,且B⊆A,则A=B.错误!1.若A ⊆B,又B ⊆A,则A=B;反之,如果A=B,则A ⊆B,且B ⊆A.2.若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三真子集文字语言:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集(proper subset).符号语言:A B(或B A).错误!在真子集的定义中,A B首先要满足A ⊆B,其次至少有一个x∈B,但x∉A.知识点四空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,若A⊆B,B⊆C,则A⊆C.[教材解难]教材P8思考{a}表示含有一个元素a的集合,{a}⊆A表示集合A包含{a},这是两个集合之间的关系;a∈A,表示a是A的一个元素,这是元素与集合之间的关系.[基础自测]1.下列四句话中:1∅={0};2空集没有子集;3任何一个集合必有两个或两个以上的子集;4空集是任何一个集合的子集.其中正确的有()A.0个B.1个C.2个D.3个解析:由空集的性质可知,只有4正确,123均不正确.答案:B2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|—1—x<0},则下列各式正确的是()A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A解析:集合A={x|—1—x<0}={x|x>—1},所以0∈A,{0}⊆A,D正确.答案:D4.已知集合A={—1,3,2m—1},集合B={3,m2},若B⊆A,则实数m=________.解析:∵B⊆A,∴2m—1=m2,∴m=1.答案:1题型一集合间关系的判断[经典例题]例1(1)下列各式中,正确的个数是()1{0}∈{0,1,2};2{0,1,2}⊆{2,1,0};3∅⊆{0,1,2};4∅={0};5{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:1A={—1,1},B={(—1,—1),(—1,1),(1,—1),(1,1)};2A={x|x是等边三角形},B={x|x是等腰三角形};3M={x|x=2n—1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于1,是集合与集合的关系,应为{0}{0,1,2};对于2,实际为同一集合,任何一个集合是它本身的子集;对于3,空集是任何集合的子集;对于4,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于5,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故23是正确的,应选B.(2)1集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.2等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.3方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B (2)见解析根据元素与集合、集合与集合之间的关系直接判断1234⑥,对于5应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2—1=0},T={—1,0,1},则M与T的关系是()A.M TB.M TC.M=TD.M T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2—1=0}={—1,1},又T={—1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A (2)见解析错误!(2)学习完知识点后,我们可以得到B ⊆A,C ⊆A,D ⊆A,D ⊆B,D ⊆C.题型二子集、真子集及个数问题[教材P8例1、2]例2(1)写出集合{a,b}的所有子集,并指出哪些是它的真子集.(2)判断下列各题中集合A是否为集合B的子集,并说明理由:1A={1,2,3},B={x|x是8的约数};2A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.【解析】(1)集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}.(2)1因为3不是8的约数,所以集合A不是集合B的子集.2因为若x是长方形,则x一定是两条对角线相等的平行四边形,所以集合A是集合B的子集.错误!(1)题写出集合的子集时易忘∅,真子集是在子集的基础上去掉自身.(2)题先确定集合A,B中的元素,再根据子集的定义判断.教材反思1.求集合子集、真子集个数的三个步骤2.若集合A中含有n个元素,集合A的子集个数为2n,真子集的个数为2n—1,非空真子集的个数为2n—2.跟踪训练2(1)已知集合A={x∈R|x2—3x+2=0},B={x∈N|0<x<5},则满足条件A C B的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.—2B.4C.0 D.以上答案都不是解析:(1)由x2—3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.答案:(1)B (2)C错误!(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.题型三根据集合的包含关系求参数[经典例题]例3已知集合A={x|1<ax<2},B={x|—1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,1A=∅,满足A⊆B.(2)当a>0时,A=错误!.又∵B={x|—1<x<1},且A⊆B,∴错误!2∴a≥2.(3)当a<0时,A=错误!.3∵A⊆B,∴错误!∴a≤—2.综上所述,a的取值范围是{a|a=0,或a≥2,或a≤—2}.错误!1欲解不等式1<ax<2,需不等号两边同除以a,而a的正负不同时,不等号的方向不同,因此需对a分a=0,a>0,a<0进行讨论.2A ⊆B用数轴表示如图所示:(a>0时)由图易知,错误!和错误!需在—1与1之间.当错误!=—1,或错误!=1时,说明A 与B的某一端点重合,并不是说其中的元素能够取到端点,如错误!=1时,A=错误!,x 取不到1.3a<0时,不等式两端除以a,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3设集合A={x|x2—8x+15=0},B={x|ax—1=0}.(1)若a=错误!,试判定集合A与B的关系.(2)若B⊆A,求实数a的取值集合.解析:(1)由x2—8x+15=0得x=3或x=5,故A={3,5},当a=错误!时,由ax—1=0得x=5.所以B={5},所以B A.(2)当B=∅时,满足B⊆A,此时a=0;当B≠∅,a≠0时,集合B=错误!,由B ⊆A得错误!=3或错误!=5,所以a=错误!或a=错误!.综上所述,实数a的取值集合为错误!错误!(1)解方程x2—8x+15=0,求出A,当a=错误!时,求出B,由此能判定集合A与B的关系.(2)分以下两种情况讨论,求实数a的取值集合.1B=∅,此时a=0;2B≠∅,此时a≠0.易错点忽略空集的特殊性致误例设M={x|x2—2x—3=0},N={x|ax—1=0},若N⊆M,求所有满足条件的a 的取值集合.【错解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N={—1}或{3}.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【正解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N=∅或N={—1}或N={3}.当N=∅时,ax—1=0无解,即a=0.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【易错警示】错误原因纠错心得错解忽略了N=∅这种情况空集是任何集合的子集,解这类问题时,一定要注意“空集优先”的原则课时作业2一、选择题1.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B2.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1B.—1C.±1D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C3.已知集合A={—1,0,1},则含有元素0的A的子集的个数为()A.2B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,—1},{—1,0,1},共4个.答案:B4.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题5.已知集合:(1){0};(2){∅};(3){x|3m<x<m};(4){x|a+2<x<a};(5){x|x2+2x+5=0,x∈R}.其中,一定表示空集的是________(填序号).解析:集合(1)中有元素0,集合(2)中有元素∅,它们不是空集;对于集合(3),当m<0时,m>3m,不是空集;在集合(4)中,不论a取何值,a+2总是大于a,故集合(4)是空集;对于集合(5),x2+2x+5=0在实数范围内无解,故为空集.答案:(4)(5)6.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:367.若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:5三、解答题8.已知{1,2}⊆A{1,2,3,4},写出所有满足条件的集合A.解析:∵{1,2}⊆A,∴1∈A,2∈A.又∵A{1,2,3,4},∴集合A中还可以有3,4中的一个,即集合A可以是{1,2},{1,2,3},{1,2,4}.9.已知M={2,a,b},N={2a,2,b2},且M=N,试求a与b的值.解析:方法一根据集合中元素的互异性,有错误!或错误!解得错误!或错误!或错误!再根据集合中元素的互异性,得错误!或错误!方法二∵两个集合相同,则其中的对应元素相同.∴错误!即错误!∵集合中的元素互异,∴a,b不能同时为零.当b≠0时,由2得a=0或b=错误!.当a=0时,由1得b=1或b=0(舍去).当b=错误!时,由1得a=错误!.当b=0时,a=0(舍去).∴错误!或错误![尖子生题库]10.已知集合A={x|—3≤x≤4},B={x|2m—1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B⊆A,(1)当B=∅时,m+1≤2m—1,解得m≥2.(2)当B≠∅时,有错误!解得—1≤m<2.综上得m≥—1.即实数m的取值范围为[—1,+∞).。
1.1.1集合的含义与表示教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵我国从1991~2003的13年内所发射的所有人造卫星;⑶金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴2,3,4 ⑵(2,3),(3,4)⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x 的所有实数根组成的集合;(3)由1~20以内的所有质数组成。
例 2、 试分别用列举法和描述法表示下列集合:(1)由大于10小于20的的所有整数组成的集合;(2)方程x2-2=2的所有实数根组成的集合.注意:(1)描述法表示集合应注意集合的代表元素(2)只要不引起误解集合的代表元素也可省略七、小结 集合的概念、表示;集合元素与集合间的关系;常用数集的记法. 八、作业 §1.1.2 集合间的基本关系教学目的: 让学生初步了解子集的概念及其表示方法,同时了解相等集合、真子集和空集的有关概念.教学重难点:1、子集、真子集的概念及它们的联系与区别;2、空集的概念以及与一般集合间的关系.教学过程:一、 复习(结合提问):1.集合的概念、集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.关于“属于”的概念二 、新课讲授(一)子集的概念1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A 和B,如果集合A 的任何一个元素都是集合B 的元素,则说:这两个集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B (或B ⊇A),读作“A 含于B ”(或“B 包含A ”).2. 反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊄B 已(或B ⊄A)(二)空集的概念不含任何元素的集合叫做空集,记作φ,并规定: 空集是任何集合的子集.(三)“相等”关系1、实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时,集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B (即如果A ⊆B 同时 B ⊆A 那么A=B ).2、 ① 任何一个集合是它本身的子集. A ⊆A② 真子集:如果A ⊆B ,且A ≠B 那就说集合A 是集合B 的真子集,记作A B有什么区别?观察集合练习 ∈+== ∈+== ∈+== : },|),{(},|{},|{R x x y y x C R t t x x B R x x y y A 111222⊂ ≠③ 空集是任何非空集合的真子集.④ 如果 A ⊆B, B ⊆C ,那么 A ⊆C.证明:设x 是A 的任一元素,则 x ∈AA ⊆B,∴x ∈B 又 B ⊆C ∴x ∈C 从而 A ⊆C同样;如果 A ⊆B, B ⊆C ,那么 A ⊆C(三)例题与练习例1、 设集合A={1,3,a},B={1,a2-a+1}A ⊇B ,求a 的值练习1:写出集合A={a ,b ,c}的所有子集,并指出哪些是真子集?有多少个?例2 、 求满足{x|x 2+2=0} M ⊆{x|x2-1=0}的集合M. 例3、 若集合A={x|x 2+x-6=0},B={x|ax+1=0}且B A ,求a 的值. 练习2: 集合M={x|x=1+a 2,a ∈N*}, P={x|x=a 2-4a+5,a ∈N*}下列关系中正确的是( )A M PB P MC M=PD M P 且 P M 三、小结子集、真子集、空集的有关概念.四、作业§1.1.3 集合的基本运算教学目的:1、深刻理解并掌握交集与并集的概念及有关性质;2、掌握全集与补集的概念及其表示法.教学重难点:交集与并集的概念、性质及运算教学过程:(一) 复习:子集的概念及有关符号与性质提问(板演):用列举法表示集合:A={6的正约数},B={10的正约数},C={6与10的正公约数},并用适当的符号表示它们之间的关系.解: A={1,2,3,6}, B={1,2,5,10}, C={1,2} C ⊆A ,C ⊆B(二) 全集定义: 如果集合S 含有我们所要研究的各个集合的全部元素,集合就可以看作一个全集.通常用U 来表示.如:把实数R 看作全集U, 则有理数集Q 的补集C U Q 是全体无理数的集合.(三) 补集1、实例:S 是全班同学的集合,集合A 是班上所有参加校运会同学的集合,集合B 是班上所有没有参加校运动会同学的集合.集合B 是集合S 中除去集合A 之后余下来的集合.结论:设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠2.例:S={1,2,3,4,5,6} A={1,3,5} C s A ={2,4,6}(四)并集与交集1、实例: A={a,b,c,d} B={a,b,e,f}2、定义:(1)交集:由属于集合A且属于集合B的所有元素所组成的集合,称为集合A和集合B的交集,记作A∩B,即A∩B ={x|x∈A且x∈B}.(2)并集:由所有属于集合A或属于集合B的元素所组成的集合,称为集合A和集合B的并集,记作A∪B ,即A∪B={x|x∈A或x∈B}.(五)例题与练习例1、(1) 若S={2,3,4},A={4,3},则CsA= .(2) 若S={三角形},A={锐角三角形} ,则CsA= 。
(3) 若U={1,3,a2+2a+1 },A={1,3} ,则a= 。
(4) 若A={0,2,4},C U A={-1,2}, C U B={-1,0,2},求B= 。
练习1:判断正误(1)若U={四边形},A={梯形},则CUA={平行四边形}(2)若U是全集,且A⊆B,则CUA⊆CUB(3)若U={1,2,3},A=U,则CUA=φ思考:已知A={x|x<3},B={x|x<a}(1)若A⊆B,C R B⊆C R A是否成立?(2) C R A⊆C R(C R(C R B),求a的取值范围.例2、新华中学开运动会,设A={x|x是新华中学高一年级参加百米赛跑的同学},B={x|x 是新华中学高一年级参加跳高比赛的同学},求A∩B .例3、设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,用集合的运算表示l1、l2的位置关系.练习2:1、设A={x|x是等腰三角形},B={x|x是直角三角形},求A∩B.2、设A={x|x>-2},B={x|x<0},求A∩B.3、若A={x|x=4n,n∈Z},B={x|x=6n,n∈Z},求A∩B.4、A={x|a≤x≤a+3},B={x|x<-1或x>5} ,分别求出满足下列条件的a的取值范围 : (1) A∩B=∅ (2) A∩B=A例4、已知集合A={4,5,6,8},B={3,5,7,8},求A ∪B.例5、已知A={x|-1<x <2}, B= {x|1<x <3}求A ∪B.例6、已知U={x|x 是小于9的正整数}, A={1,2,3} ,B= {3,4,5,6},求CUA ,CUB. 练习3:2、 全集U={x|x ≤8,且x ∈N*},A U,B U 且A ∩B={4,5}, (CUB)∩A={1,2,3} ,(CUA)∩(CUB)={6,7,8},求集合A 和B. 3、已知A={x|-1<x <3},A ∩B=∅,A ∪B=R,求B.4、已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0} ,C={x|x2-mx+2=0},且A ∪B=A,A ∩C=C,求a,m 的值.(六)小结全集、补集、交集、并集的有关概念和性质及其运算(七)作业N C ⊇M M ⊇ N C NC ⊇M C N C ⊆M C N =N ∩M ⊆N M U U U U U UD 、C 、 B 、A 、,U ,、U 、则且为全集已知,1⊂ ≠ ⊂ ≠。