0702多元正态总体的假设检验
- 格式:pdf
- 大小:403.80 KB
- 文档页数:35
多元统计分析第三章假设检验与方差分析第3章 多元正态总体的假设检验与方差分析从本章开始,我们开始转入多元统计方法和统计模型的学习。
统计学分析处理的对象是带有随机性的数据。
按照随机排列、重复、局部控制、正交等原则设计一个试验,通过试验结果形成样本信息(通常以数据的形式),再根据样本进行统计推断,是自然科学和工程技术领域常用的一种研究方法。
由于试验指标常为多个数量指标,故常设试验结果所形成的总体为多元正态总体,这是本章理论方法研究的出发点。
所谓统计推断就是根据从总体中观测到的部分数据对总体中我们感兴趣的未知部分作出推测,这种推测必然伴有某种程度的不确定性,需要用概率来表明其可靠程度。
统计推断的任务是“观察现象,提取信息,建立模型,作出推断”。
统计推断有参数估计和假设检验两大类问题,其统计推断目的不同。
参数估计问题回答诸如“未知参数θ的值有多大?”之类的问题,而假设检验回答诸如“未知参数θ的值是0θ吗?”之类的问题。
本章主要讨论多元正态总体的假设检验方法及其实际应用,我们将对一元正态总体情形作一简单回顾,然后将介绍单个总体均值的推断, 两个总体均值的比较推断,多个总体均值的比较检验和协方差阵的推断等。
3.1一元正态总体情形的回顾一、 假设检验在假设检验问题中通常有两个统计假设(简称假设),一个作为原假设(或称零假设),另一个作为备择假设(或称对立假设),分别记为0H 和1H 。
1、显著性检验为便于表述,假定考虑假设检验问题:设1X ,2X ,…,n X 来自总体),(2σμN 的样本,我们要检验假设100:,:μμμμ≠=H H (3.1)原假设0H 与备择假设1H 应相互排斥,两者有且只有一个正确。
备择假设的意思是,一旦否定原假设0H ,我们就选择已准备的假设1H 。
当2σ已知时,用统计量nX z σμ-=在原假设0H 成立下,统计量z 服从正态分布z )1,0(~N ,通过查表,查得)1,0(N 的上分位点2αz 。
多元正态分布假设检验1. 引言说到多元正态分布,很多人可能会觉得它像是一块难啃的骨头,复杂得让人眼花缭乱。
但其实,别怕,今天咱们就像喝茶一样,慢慢聊聊这个话题,让它变得亲切点。
多元正态分布,听起来像个高大上的数学术语,其实就代表着一种数据分布的模式。
简单来说,就是当你有多个变量的时候,这些变量的数据可以同时呈现出一种规律。
就好比,你的身高、体重和年龄,都是可以一起影响你的健康状况的。
2. 假设检验的基础2.1 什么是假设检验?假设检验,就像是你在做一个决定之前,先给自己列个清单。
你想知道某个观点是否成立,首先要提出一个“零假设”,然后再通过数据来检验它。
比如,你可能想知道一款新产品的效果是不是比旧款好,那你就先假设新产品和旧款效果一样,接着用数据来验证。
真是妙啊!2.2 多元正态分布在假设检验中的作用那么,这跟多元正态分布有什么关系呢?其实,当我们在进行假设检验时,常常会假设数据是服从某种分布的。
而多元正态分布就像是给你提供了一种“理想”的数据状态,让你可以更轻松地进行各种统计分析。
换句话说,使用多元正态分布,你可以放心大胆地进行推断,就像开车时把安全带系好一样,心里有底。
3. 如何进行多元正态分布假设检验3.1 数据的准备要进行多元正态分布假设检验,首先得准备好你的数据。
这就像做饭前,你得把食材准备齐全。
数据要足够多,还要确保没有缺失值。
就算有缺失,也可以通过一些方法来填补,但记得要小心,这可不能随便糊弄。
3.2 检验的方法接下来,咱们就进入了检验的环节。
常用的方法有ShapiroWilk检验和Bartlett检验等,这些听起来像是外星人名字的检验其实很简单。
ShapiroWilk检验主要是检查数据是否服从正态分布,而Bartlett检验则是用于检查不同组之间的方差是否相等。
通过这些检验,你就能找到数据是否符合多元正态分布的线索。
4. 结论与反思多元正态分布假设检验,乍一看似乎是个高深莫测的领域,但其实掌握了基本概念后,还是挺容易上手的。
应用多元统计分析第3章 多元正态总体的假设检验- 1-•在一元正态总体 中,关于参数 的假设检验涉及到一个总体和多个总体情况,推广到多元正态总体 ,关于参数 的假设检验问题也涉及一个总体和多个总体情况。
本章我们只讨论关于均值向量 的假设检验问题。
•在多元统计中,用于检验 的抽样分布有维希特(Wishart)分布、霍特林(Hotelling)分布和威尔克斯(Wilks)分布,它们都是由来自多元正态总体 的样本构成的统计量。
在第2章中,我们已经讨论了维希特分布的定义和性质,本章我们讨论后两个统计量的分布。
霍特林 分布在一元统计中,若 ,且 相互独立,则或等价地下面把 的分布推广到多元正态总体。
定义3.1 设 , ,其中 ,且 与 相互独立。
则称统计量 为 统计量,其分布称为自由度为n的霍特林 分布,记为分布的性质性质1 设 是来自正态总体 的随机样本, 和A 分别是样本均值向量和样本离差阵,则性质2 分布与F分布的关系为:若 则分布的性质性质3 设 是来自正态总体 的随机样本, 和A 分别是样本均值向量和样本离差阵,记则性质4 分布只与n,p有关,而与 无关。
威尔克斯 分布定义3.2 设 ,称协方差阵 的行列式 为的广义方差。
若 是来自总体 的随机样本,A为样本离差阵,则称或 为样本广义方差。
定义3.3设 ,这里 ,且 与 独立,则称广义方差比为 统计量,其分布称为威尔克斯 分布,记为 。
当p=1时, 分布正是一元统计中参数为 的贝塔分布,即。
分布的性质性质1当 时,若 ,则当 时,若 ,则当p=1时,当p=2时,若 ,则当 时有下列极限分布其中 。
下面是 分布的两个有用性质。
性质6 若 ,则存在 , 且 之间相互独立,使得性质7 若 则单总体均值向量的假设检验设总体为 , 为来自该总体的随机样本。
欲检验下列假设:其中 为已知常数向量。
1. 当 已知时均值向量的假设检验此时于是有若检验统计量取为则当原假设 成立时, 。
第三章 多元正态总体参数的假设检验3.1 几个重要统计量的分布一、正态变量二次型的分布1、分量独立的n 维随机向量X 的二次型设),,1)(,(~21n i N X i i =σμ,且相互独立,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n X X X 1,则),(~2n n I N X σμ,其中)',,(1n μμμ =。
X 的二次型具有以下一些结论:结论1 当),,1(0n i i ==μ,12=σ时,则)(~'212n XX X ni iχξ∑===;当),,1(0n i i ==μ,12≠σ时,则)(~'122n X X χσ(或记为)(~'22n X X χσ)。
结论2 当),,1(0n i i =≠μ,X X '的分布常称为非中心2χ分布。
Def3.1.1 设n 维随机向量)0)(,(~≠μμn n I N X ,则称随机向量X X '=ξ为服从n 个自由度、非中心参数∑===ni i 12'μμμδ的2χ分布,记为)(~'),(~'22δχδχn X X n X X 或。
若时且1),0)(,(~22≠≠σμσμn n I N X ,有)(~'122δχσn X X 。
结论3 设),0(~2n n I N X σ,A 为对称矩阵,且r A rank =)(,则二次型 A A r AX X =⇔222)(~/'χσ(A 为对称幂等矩阵)。
结论4 设),(~2n n I N X σμ,'A A =,则),(~'122δχσr AX X ,其中A A A =⇔=22'1μμσδ,且)()(n r r A rank ≤=。
结论5 二次型与线性函数的独立性:设),(~2n n I N X σμ,A 为n 阶对称矩阵,B 为n m ⨯矩阵,令)(,'维随机向量为m Z BX Z AX X ==ξ,若O BA =,则AX X BX '和相互独立。