人教版高中物理必修2向心力
- 格式:docx
- 大小:347.05 KB
- 文档页数:7
教学设计:2024秋季人教版高中物理必修第二册第六章圆周运动《向心力》教学目标(核心素养)1.物理观念:理解向心力的概念,掌握向心力是物体做圆周运动时所受合力的表现,明确向心力不是物体受到的某种新力,而是按效果命名的力。
2.科学思维:通过实例分析,学会运用牛顿第二定律分析圆周运动中向心力的来源,培养逻辑推理和问题解决能力。
3.科学探究:通过实验或模拟实验,观察不同条件下物体做圆周运动时的现象,探究向心力大小与哪些因素有关,提升科学探究能力。
4.科学态度与责任:认识圆周运动在日常生活和科学技术中的应用,如汽车转弯、天体运动等,激发探索自然规律的兴趣,培养用物理知识解决实际问题的意识。
教学重点•向心力的概念及其来源。
•理解和应用向心力公式F=mrv2=mrω2。
教学难点•理解向心力是效果力,不是物体实际受到的力。
•灵活运用向心力公式分析解决实际问题。
教学资源•多媒体课件(包含圆周运动视频、动画演示)。
•实验器材(如向心力演示器、小球、细绳、滑轮等)。
•教材、教辅资料及网络教学资源。
教学方法•讲授法结合演示法:通过教师讲解和实验演示,直观展示圆周运动及向心力的概念。
•探究学习法:引导学生设计实验,探究向心力大小与哪些因素有关。
•讨论交流法:组织学生分组讨论,分享对向心力理解的心得,促进思维碰撞。
教学过程导入新课•情境导入:播放一段汽车高速转弯时轮胎与地面摩擦产生响声的视频,提问学生:“为什么汽车能顺利转弯而不冲出路面?是什么力在起作用?”引发学生思考,引出圆周运动及向心力的概念。
新课教学1.概念建立:•讲解圆周运动的基本特点,强调物体做圆周运动时方向时刻改变,需要有力来改变其运动状态。
•引入向心力概念,解释向心力是使物体产生向心加速度、维持圆周运动所需的合力,不是物体实际受到的力,而是按效果命名的。
2.公式推导:•利用牛顿第二定律,从速度变化的角度推导向心力公式F=mrv2,解释公式中各物理量的含义。
第六章 圆周运动2.向心力 第1课时 向心力【课标定向】1.通过实验,探究并了解匀速圆周运动向心力大小与半径、角速度、质量的关系。
2.能用牛顿第二定律分析匀速圆周运动的向心力。
【素养导引】1.理解向心力的概念及其特点、表达式。
(物理观念)2.通过比较,知道变速圆周运动的合力与向心力的大小与方向。
(科学思维) 3.利用向心力演示器探究向心力大小的表达式。
(科学探究)一、向心力定义 做匀速圆周运动的物体受到总指向圆心的合力方向 始终沿着半径指向圆心 特点 只改变速度的方向 效果力 根据力的作用效果命名表达式F n =m v 2r=m ω2r二、变速圆周运动和一般曲线运动 1.变速圆周运动合力的作用效果: 变速圆周运动的合力产生两个方向的效果:(1)跟圆周相切的分力F t :与物体运动的方向平行,改变线速度的大小。
(2)指向圆心的分力F n :与物体运动的方向垂直,改变线速度的方向。
2.一般曲线运动:(1)曲线运动:运动轨迹既不是直线也不是圆周的曲线运动,称为一般的曲线运动,如图所示。
(2)处理方法:将曲线分割成为许多很短的小段,这样,质点在每一小段的运动都可以看作圆周运动的一部分。
[思考] 如图为公路自行车比赛中运动员正在水平路面上做匀速圆周运动。
若将运动员与自行车看成整体,则运动员转弯时所需向心力的来源如何?所受的合力方向及作用效果是什么?提示:运动员转弯时所需向心力由重力、支持力和地面对车轮的摩擦力的合力提供。
合力指向圆心,充当向心力,改变速度的方向。
如图,一辆汽车正匀速通过一段弯道公路。
判断以下问题:1.汽车受到的合力为零。
( ×)2.汽车做圆周运动的向心力由汽车的牵引力提供。
( ×)3.汽车做圆周运动的向心力既可以改变汽车速度大小,也可以改变汽车速度方向。
( ×)一、向心力的理解及来源分析如图所示,飞机在空中水平面内做匀速圆周运动;滑冰运动员在水平面内做匀速圆周运动。
.
专业. 向心力的来源分析
对于向心力的来源分析,它有三种情况1、某个力提供,2、某几个力的合力提供,3、某个力的分力提供。
例1 以下物体做匀速圆周运动时,向心力分别由什么力提供?
1、人造地球卫星线地球运动时;——由万有引力提供;
2、电子绕原子核运动时;——由库仑力提供;
3、小球在光滑的水平桌面上运动〔如图2〕;——由重力、支持力、拉力的合力提供;
4、小球在水平面内运动〔如图3〕;——由重力、拉力的合力提供〔如图6〕
5、玻璃球沿碗〔透明〕的内壁在水平面内运动;或者漏斗里的运动〔如图4〕〔不计摩擦〕——由重力、支持力的合力提供〔如图7〕
6、使转台匀速转动,转台上的物体也随之做匀速圆周运动,转台与物体间没有相对滑动〔如图5〕——由静摩擦力提供即合力〔如图8〕
7、汽车过拱桥和汽车过凹桥
8、水平面上汽车的转弯,在倾斜面上的汽车转弯
9、圆柱内壁上物体的圆周运动
10、转动的试管分析里面的液体运动的向心力
11、在竖直面上的物体的运动,细绳小球模型,杆球模型
12、套在光滑杆上的圆环的向心力
13、单摆,及变型摆
14、圆锥摆拓展
15、双星模型及类双星模型
小结:分析匀速圆周运动向心力的来源,在具体问题中首先要对物体进行受力分析,根据受力来加以确定,由合力提供,也可能弹力、摩擦力等中的某一种力提供。
《向心力》教学设计一、教材分析选用教材:人教版必修2第五章第六节教材分析:本节“向心力”的教学是继“圆周运动”、“向心加速度”之后第三次关于圆周运动的教学,前两次是对圆周运动的描述,即研究其运动学方面的内容,而本节则从动力学角度分析物体做匀速圆周运动的原因,这样学生对圆周运动的认识才更加完整。
向心力的教学是遵循先进行理论分析,再进行实验验证的顺序。
在前一节,教材从理论的角度给出了向心加速度的方向及计算公式。
到了本节,教材从理论角度出发,根据牛顿第二定律,得出做匀速圆周运动的物体受到的合外力的方向和大小,即向心力的方向和大小。
理论的推导需要实验的验证,实验应该尽量从生活中提取素材、使用通用的器材来完成验证实验,拉近科学与学生的距离,使学生感到科学就在我身边,对科学产生亲近感。
教材中使用圆锥摆来完成验证向心力的表达式,这容易让学生进行分组实验。
通过这个实验,学生能够很容易理解向心力是按照效果命名的,是由其他性质的力提供的。
二、学情分析学生已经掌握在直线运动中用牛顿运动定律分析对物体的运动,但还未在圆周运动中使用牛顿运动定律,通过这一节对匀速圆周运动的分析,让学生知道圆周运动中力与运动的关系,遵守的仍然是牛顿运动定律。
向心力这部分内容对现阶段的高中学生来说是一重点也是难点,很多学生在学到这部分内容时都感觉很抽象。
在前一节,学生尝试探究匀速圆周运动中向心加速度的方向与表达式,因此在这一节中如果能做好验证向心力公式的实验,将对学生理解向心力是效果力起极大的帮助作用。
三、重难点分析重点:实验验证向心力的表达式难点:向心力是根据力的效果命名的,是由其他性质的力提供的四、教学目标分析知识与技能1、了解向心力的概念,知道向心力是根据力的效果命名的2、掌握向心力的表达式,计算简单情景中的向心力过程与方法1、在实验探究的过程中,体验向心力的存在,会分析向心力的来源2、会测量、分析实验数据,获得实验结果,体会理论与实验相结合的物理学研究方法情感态度与价值观在实验的过程中树立实验与理论相辅相成、尊重实验结果的科学价值观五、教学方法实验教学法六、教学过程1、创设情境,激发思考每组学生发一个系有细绳的小球,让学生抓住绳子一端,让小球在桌面上做匀速圆周运动。
第6节 向心力1.理解向心力是一种效果力,其效果是产生向心加速度,方向总是指向圆心.2.知道向心力大小与哪些因素有关,并能用来进行计算.(重点)3.知道在变速圆周运动中向心力为合力沿半径方向的分力.(难点)一、向心力1.定义:做圆周运动的物体所受到的指向圆心方向的合力叫向心力. 2.方向:始终沿半径指向圆心. 3.计算式:(1)F n =m v 2r;(2)F n =mω2r . 二、变速圆周运动和一般的曲线运动1.变速圆周运动:同时具有向心加速度和切向加速度的圆周运动.2.一般的曲线运动的处理方法一般的曲线运动,可以把曲线分割成许多极短的小段,每一小段可看做一小段圆弧.研究质点在每一小段的运动时,可以采用圆周运动的分析方法进行处理.3.变速圆周运动的受力分析:做变速圆周运动的物体所受的合力并不指向圆心.这一力F 可以分解为互相垂直的两个力:跟圆周相切的分力F t 和指向圆心方向的分力F n .物体做加速圆周运动时,合力方向与速度方向夹角小于90°,如图甲所示,其中F t 使v 增大,F n 使v 改变方向.同理,F 与v 夹角大于90°时,F t 使v 减小,F n 改变v 的方向,如图乙所示.判一判 (1)做匀速圆周运动的物体的向心力是恒力. ( )(2)向心力和重力、弹力一样,都是根据性质命名的.( )(3)向心力可以是物体受到的某一个力,也可以是物体受到的合力.( )(4)变速圆周运动的向心力并不指向圆心.( )(5)变速圆周运动的向心力大小改变.( )(6)做变速圆周运动的物体所受合力的大小和方向都改变.( )提示:(1)×(2)×(3)√(4)×(5)√(6)√做一做(多选)如图所示,用细绳拴一小球在光滑桌面上绕一铁钉(系一绳套)做匀速圆周运动,关于小球的受力,下列说法正确的是( )A.重力、支持力、绳子拉力B.重力、支持力、绳子拉力和向心力C.重力、支持力、向心力D.绳子拉力充当向心力提示:选AD.小球受重力、支持力、绳子拉力三个力的作用,A正确,B、C错误;重力和支持力是一对平衡力,绳子的拉力充当向心力,D正确.想一想荡秋千是小朋友很喜欢的游戏,当秋千由上向下荡下时,求:(1)此时小朋友做的是匀速圆周运动还是变速圆周运动?(2)绳子拉力与重力的合力指向悬挂点吗?提示:(1)秋千荡下时,速度越来越大,做的是变速圆周运动.(2)由于秋千做变速圆周运动,合外力既有指向圆心的分力,又有沿切向的分力,所以合力不指向悬挂点.向心力来源分析1.向心力的作用(1)向心力是产生向心加速度的原因,由牛顿第二定律F n=ma n知,向心力与向心加速度的大小、方向有瞬时对应关系.(2)质点做圆周运动时,任意时刻都有沿切线方向飞出的趋势,而向心力的作用正是使质点沿圆轨道运动,如果某一时刻失去向心力,质点从此时刻起就沿切线方向飞出去.2.向心力的来源分析(1)向心力是根据力的作用效果命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.它可以是重力、弹力、摩擦力等各种性质的力,也可以是几个力的合力,还可以是某个力的分力.(2)若物体做匀速圆周运动,其向心力必然是物体所受的合力,它始终沿着半径方向指向圆心,并且大小恒定.(3)若物体做非匀速圆周运动,其向心力则为物体所受的合力在半径方向上的分力,而合力在切线方向的分力则用于改变线速度的大小.(4)实例分析①弹力提供向心力如图所示,绳子的一端系在光滑水平桌面上的O点,另一端系一小球,小球在桌面上做匀速圆周运动,则小球做匀速圆周运动的向心力由绳子的拉力(弹力)提供.②静摩擦力提供向心力如图所示,木块随圆盘一起做匀速圆周运动,其向心力由静摩擦力提供,静摩擦力总是沿半径指向圆心.说明木块相对圆盘的运动趋势方向是沿半径背离圆心,静摩擦力的方向与相对运动趋势方向相反.汽车在水平路面上拐弯时所需的向心力就是由路面施加的静摩擦力提供的.③合力提供向心力实际上,上述几种情况均是由合力提供向心力的,只不过物体所受的合力就等于其中某个力而已.物体做匀速圆周运动时,其合力必然等于所需的向心力,只不过有时合力不易求出,必须应用平行四边形定则才能求得.如图所示,汽车过拱形桥经最高点时,其向心力由重力和支持力的合力提供.④向心力由分力提供如图所示,物体在竖直平面内的光滑轨道内做圆周运动.经过A点时,向心力由轨道施加的支持力和重力在半径方向的分力提供,即F n=F N-G1.命题视角1对向心力的来源分析(多选)如图所示,一小球用细绳悬挂于O点,将其拉离竖直位置一个角度后释放,则小球以O点为圆心做圆周运动,运动中小球所需向心力是( ) A.绳的拉力B.重力和绳拉力的合力C.重力和绳拉力的合力沿绳方向的分力D.绳的拉力和重力沿绳方向分力的合力[解析]分析向心力来源时就沿着半径方向求合力即可,注意作出正确的受力分析图.如图所示,对小球进行受力分析,它受到重力和绳子的拉力作用,向心力是指向圆心方向的合力.因此,它可以是小球所受合力沿绳方向的分力,也可以是各力沿绳方向的分力的合力.[答案]CD命题视角2向心力的大小计算质量不计的轻质弹性杆P插在桌面上,杆上端套有一个质量为m的小球.今使小球沿水平方向做半径为R的匀速圆周运动,角速度为ω,如图所示,则杆的上端受到球的作用力大小是( )A.mω2R B.m2g2-m2ω4R2C.m2ω4R2+m2g2D.mg[解析]小球受到重力mg和杆的作用力F作用,如图所示,F与水平方向的夹角为θ,根据牛顿第二定律,水平方向:F cos θ=mRω2 ①竖直方向:F sin θ=mg ②由①②两式得:F=m2g2+m2R2ω4.[答案] C分析向心力来源的步骤是:首先确定研究对象运动的轨道平面和圆心的位置,然后分析圆周运动物体所受的力,作出受力图,最后找出这些力指向圆心方向的合力就是向心力.【通关练习】1.下列关于向心力的说法中正确的是( )A.物体由于做圆周运动而产生向心力B.向心力不改变做圆周运动物体的速度大小C.做匀速圆周运动的物体其向心力是不变的D.做圆周运动的物体所受各力的合力一定是向心力解析:选B.力是改变物体运动状态的原因,因为有向心力物体才做圆周运动,故选项A 错误.向心力只改变物体运动的方向,不改变物体速度的大小,故选项B正确.物体做匀速圆周运动的向心力方向永远指向圆心,其大小不变,方向时刻改变,故选项C错误.只有在匀速圆周运动中,合力提供向心力,而在非匀速圆周运动中向心力并非物体所受的合力,而是合力指向圆心的分力提供向心力,故选项D 错误.2.如图所示,有一个水平大圆盘绕过圆心的竖直轴匀速转动,小强站在距圆心为r 处的P 点不动.(1)关于小强的受力,下列说法正确的是( )A .小强在P 点不动,因此不受摩擦力作用B .小强随圆盘做匀速圆周运动,其重力和支持力充当向心力C .小强随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D .若使圆盘以较小的转速转动时,小强在P 点受到的摩擦力不变(2)如果小强随圆盘一起做变速圆周运动,那么其所受摩擦力是否仍指向圆心?解析:小强的向心力由其受力中沿半径方向的合力提供.(1)由于小强随圆盘做匀速圆周运动,一定需要向心力,该力一定指向圆心方向,而重力和支持力在竖直方向上,它们不能充当向心力,因而他会受到摩擦力作用,且摩擦力充当向心力,选项A 、B 错误,C 正确;由于小强随圆盘转动,半径不变,当圆盘角速度变小时,由F n =mω2r 可知,所需向心力变小,摩擦力变小,故选项D 错误.(2)由于小强的运动在水平面内,小强在竖直方向上受力,必平衡,当小强随圆盘一起做变速圆周运动时,合力不再指向圆心,则摩擦力不再指向圆心.答案:(1)C (2)不指向圆心圆周运动的求解1.解决匀速圆周运动相关问题的方法就是解决动力学问题的一般方法,其解决问题的步骤也是解决动力学问题的步骤,但要注意灵活运用匀速圆周运动的一些运动学规律,同时在解题的过程中要弄清匀速圆周运动问题的轨道平面、圆心和半径等.(1)指导思路:凡是做匀速圆周运动的物体一定需要向心力,而物体所受的合外力充当向心力,这是处理该类问题的理论基础.(2)明确研究对象:明确物体做匀速圆周运动的轨道平面.对研究对象进行受力分析,画出受力示意图.(3)列出方程:垂直圆周轨道平面的合力F 合=0.跟轨道平面在同一平面的合力F n =m v 2r =mω2r =m 4π2T 2r . 2.解决变速圆周运动问题的处理办法:解决变速圆周运动问题,依据的规律仍然是牛顿第二定律和匀速圆周运动的运动学公式,只是在公式F n =m v 2r =mrω2=m 4π2T2r =4π2mn 2r =mωv 中,v 、ω都是指该点的瞬时值.当然也可以根据以后学的能量关系求解.3.一般的曲线运动运动轨迹既不是直线也不是圆周的曲线运动,称为一般的曲线运动.一般的曲线运动可以分为很多小段,每一小段都可以看成是某个圆周的一部分,这样在分析物体经过某位置的运动时,就可以采用圆周运动的分析方法进行处理了.例如车辆的运动通常是一个比较复杂的曲线运动,在这个复杂的曲线运动中可取一小段研究.如图所示,汽车在高低不平的路面上行驶时,不同位置上所对应的“圆周运动”的“圆心”和“半径”是不同的.命题视角1 匀速圆周运动的求解方法(多选)一个内壁光滑的圆锥筒的轴线是竖直的,圆锥固定,有质量相同的两个小球A 和B 贴着筒的内壁在水平面内做匀速圆周运动,如图所示,A 的运动半径较大,则( )A .A 球的角速度必小于B 球的角速度B .A 球的线速度必小于B 球的线速度C .A 球运动的周期必大于B 球运动的周期D .A 球对筒壁的压力必大于B 球对筒壁的压力[解析] 两球均贴着筒的内壁在水平面内做匀速圆周运动,它们均受到重力和筒壁对它们的弹力作用,这两个力的合力提供向心力,如图所示,可知筒壁对小球的弹力F N =mg sin θ,而重力和弹力的合力为F 合=mg cot θ,由牛顿第二定律可得mg cot θ=mω2R =m v 2R =m ·4π2R T 2所以ω=g cot θR ① v =gR cot θ② T =2πR g cot θ ③F N =mg sin θ④由于A球运动的半径大于B球运动的半径,由①式可知A球的角速度必小于B球的角速度;由②式可知A球的线速度必大于B球的线速度;由③式可知A球的运动周期必大于B 球的运动周期;由④式可知A球对筒壁的压力一定等于B球对筒壁的压力.选项A、C正确.[答案]AC命题视角2变速圆周运动的求解方法如图所示,一质量为m的木块从光滑的半球形的碗边开始下滑,在木块下滑过程中( )A.它的加速度方向指向球心B.它所受合力就是向心力C.它所受向心力不断增大D.它对碗的压力不断减小[解题探究] (1)木块的受力情况如何?向心力的来源如何?(2)木块做圆周运动的速度有何特点?[解析]下滑过程中木块沿弧线切线和法线方向均有加速度,合加速度不指向球心(底端除外),A错误;物体所受合力的法向分量是向心力,且是变化的,B错误;下滑过程中速度加快,由F向=m v2R,向心力增大,C正确;而向心力是由支持力和重力法向分力的合力提供,设重力与沿半径方向成夹角θ,则F N-mg cos θ=m v2R,由于θ减小,而合力在增大,因此支持力在增大,即可推出物体对碗压力增大,D错误.[答案] C命题视角3圆周运动中的临界问题如图所示,水平转盘的中心有一个光滑的竖直小圆孔,质量为m的物体A放在转盘上,物体A到圆孔的距离为r,物体A通过轻绳与物体B相连,物体B的质量也为m.若物体A与转盘间的动摩擦因数为μ,则转盘转动的角速度ω在什么范围内,才能使物体A随转盘转动而不滑动?[思路点拨] 求解本题时首先要明确充当向心力的力并非只有轻绳的拉力.当物体A有沿转盘背离圆心滑动的趋势时,A受到指向圆心的摩擦力;当物体A有沿转盘向圆心滑动的趋势时,A受到背离圆心的摩擦力.[解析]当A将要沿转盘背离圆心滑动时,A所受的摩擦力为最大静摩擦力,方向指向圆心,此时A做圆周运动所需的向心力为绳的拉力与最大静摩擦力的合力,即F+F fmax=mrω21①由于B静止,故有F=mg ②又F fmax=μF N=μmg③由①②③式可得ω1=g(1+μ)r当A将要沿转盘向圆心滑动时,A所受的摩擦力为最大静摩擦力,方向背离圆心,此时A做圆周运动所需的向心力为F-F fmax=mrω22④由②③④式可得ω2=g(1-μ)r故要使A随转盘一起转动而不滑动,其角速度ω的范围为ω2≤ω≤ω1,即g(1-μ)r≤ω≤g(1+μ)r.[答案]g(1-μ)r≤ω≤g(1+μ)r1.圆锥摆模型问题特点(1)物体只受重力和弹力两个力作用.(2)物体在水平面内做匀速圆周运动.(3)在竖直方向上重力与弹力的竖直分力相等.(4)在水平方向上弹力的水平分力提供向心力.2.两点透析变速圆周运动(1)变速圆周运动中,向心加速度和向心力的大小和方向都变化.(2)变速圆周运动中,某一点的向心加速度和向心力均可用a n =v 2r 、a n =rω2和F n =m v 2r、F n =mrω2公式求解,只不过v 、ω都是指该点的瞬时值.3.关于水平面内匀速圆周运动的临界问题,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动的知识,列方程求解.通常碰到较多的是涉及如下三种力的作用:(1)与绳的弹力有关的临界条件:绳弹力恰好为0.(2)与支持面弹力有关的临界条件:支持力恰好为0.(3)因静摩擦力而产生的临界问题:静摩擦力达到最大值.【通关练习】1.(多选)在匀速转动的洗衣机脱水桶内壁上,有一件湿衣服随圆桶一起转动而未滑动,则( )A .衣服随圆桶做圆周运动的向心力由静摩擦力提供B .圆桶转速增大,衣服对桶壁的压力也增大C .圆桶转速足够大时,衣服上的水滴将做离心运动D .圆桶转速增大以后,衣服所受摩擦力也增大答案:BC2.如图所示,长为l 的悬线固定在O 点,另一端拴着质量为m的小球,将悬线拉至水平,由静止释放小球,当悬线与竖直方向成θ角时,小球的速度为v ,下列说法正确的是( )A .小球做匀速圆周运动B .小球的加速度为a =v 2lC .细线的拉力大小为m v 2l+mg cos θ D .细线的拉力等于小球的向心力解析:选C.小球下摆过程中速度越来越大,做加速运动,小球除了有向心加速度外还有切向加速度,拉力与重力沿细线方向的分力的合力充当向心力,有F T-mg cos θ=m v2l,整理得F T=m v2l+mg cos θ,故A、B、D错误,C正确.3.如图所示,半径为r的圆柱形转筒,绕其竖直中心轴OO′转动,小物体a靠在圆筒的内壁上,它与圆筒间的动摩擦因数为μ,要使小物体不下落,圆筒转动的角速度至少为( )A.μgr B.μgC.gμr D.gr解析:选C.当圆筒的角速度为ω时,其内壁对物体a的弹力为F N,要使物体a不下落,应满足μF N≥mg,又因为物体在水平面内做匀速圆周运动,则F N=mrω2,联立两式解得ω≥gμr,则圆筒转动的角速度至少为ω0=gμr.[随堂检测]1.(多选)做匀速圆周运动的物体所受的向心力是( )A.因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力B.因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小C.物体所受的合外力D.向心力和向心加速度的方向都是不变的解析:选BC.做匀速圆周运动的物体所受的向心力是物体所受的合外力,由于指向圆心,且与线速度方向垂直,不能改变线速度的大小,只用来改变线速度的方向,向心力虽大小不变,但方向时刻改变,不是恒力,由此产生的向心加速度也是变化的,所以选项A、D错误,选项B、C正确.2.(多选)火车以60 m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s 内匀速转过了约10°.在此10 s时间内,火车( )A.运动路程为600 m B.加速度为零C.角速度约为1 rad/s D.转弯半径约为3.4 km解析:选AD.在此10 s时间内,火车运动路程s=v t=60×10 m=600 m,选项A正确;火车在弯道上运动,做曲线运动,一定有加速度,选项B错误;火车匀速转过10°,约为15.7rad ,角速度ω=θt =157 rad/s ,选项C 错误;由v =ωR ,可得转弯半径约为3.4 km ,选项D 正确.3.(多选)如图所示,物体位于半径为R 的半球顶端,若给物体水平初速度v 0时,物体恰能与球面无接触滑下,则( )A .物体在球顶时对球顶的压力为零B .物体落地时的水平位移为22R C .物体的初速度v 0=gRD .物体落地时速度方向与地面成45°角解析:选AC.当物体与球面恰好不接触滑离球面时,物体的重力提供向心力,物体对半球顶端的压力为零,v 0满足mg =m v 20R,得v 0=gR ,故选项A 、C 正确;落地时间设为t ,则R =12gt 2,水平位移x =v 0t ,将v 0=gR 代入,解以上两式得x =2R ,故选项B 错误;落地时v y =gt =2Rg ,落地速度与水平方向的夹角tan θ=v y v 0=2Rg gR=2,得θ≈55°,故选项D 错误.4.如图所示,质量为m 的滑块与轨道间的动摩擦因数为μ.当滑块从A 滑到B 的过程中,受到的摩擦力的最大值为F ,则( )A .F =μmgB .F <μmgC .F >μmgD .无法确定F 与μmg 的大小关系解析:选C.滑块下滑,到达水平面之前做圆周运动,在圆轨道的最低点,弹力大于重力⎝⎛⎭⎫F N -mg =m v 2R ,故摩擦力的最大值F >μmg . 5.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小解析:选B.旋转舱对宇航员的支持力提供宇航员做圆周运动的向心力,即mg=mω2r,解得ω=gr,即旋转舱的半径越大,角速度越小,而且与宇航员的质量无关,选项B正确.6.如图所示,水平转盘上放有一质量为m的物体(可视为质点),连接物体和转轴的绳子长为r,物体与转盘间的最大静摩擦力是其压力的μ倍,转盘的角速度由零逐渐增大,求:(1)绳子对物体的拉力为零时的最大角速度.(2)当角速度为3μg2r时,绳子对物体拉力的大小.解析:(1)当恰由最大静摩擦力提供向心力时,绳子拉力为零时转速达到最大,设此时转盘转动的角速度为ω0,则μmg=mω20r,得ω0=μgr.(2)当ω=3μg2r时,ω>ω0,所以绳子的拉力F和最大静摩擦力共同提供向心力,此时,F+μmg=mω2r即F+μmg=m·3μg2r·r,得F=12μmg.答案:(1) μgr(2)12μmg[课时作业]一、单项选择题1.如图所示,一个水平圆盘绕通过圆盘中心O且垂直于盘面的竖直轴匀速转动,物块A放在圆盘上且与圆盘保持相对静止,则物块A的受力情况是( )A.重力、支持力B.重力、支持力和指向圆心的静摩擦力C.重力、支持力、向心力和摩擦力D.以上说法均不正确解析:选B.水平圆盘匀速转动,物块A放在盘上且与圆盘保持相对静止,则物块A必绕O点在水平面内做匀速圆周运动,一定有力提供它做匀速圆周运动所需要的向心力,物块A 在水平盘上,受重力(方向竖直向下)、支持力(方向竖直向上),这两个力都不能提供向心力(向心力沿水平方向),因而只有圆盘对A的静摩擦力充当向心力,才能使A做匀速圆周运动.2.如图所示,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是( )解析:选C. 橡皮块做加速圆周运动,合力不指向圆心,但一定指向圆周的内侧;合力的径向分力提供向心力,切向分力产生切向加速度.由于做加速圆周运动,转速不断增加,故合力与速度的夹角小于90°;故选C.3.某同学为感受向心力的大小与哪些因素有关,做了一个小实验:绳的一端拴一小球,手牵着在空中甩动,使小球在水平面内做圆周运动(如图所示),则下列说法中正确的是( )A.保持绳长不变,增大角速度,绳对手的拉力将不变B.保持绳长不变,增大角速度,绳对手的拉力将增大C.保持角速度不变,增大绳长,绳对手的拉力将不变D.保持角速度不变,增大绳长,绳对手的拉力将减小解析:选B.由向心力的表达式F n=mω2r可知,保持绳长不变,增大角速度,向心力增大,绳对手的拉力增大,选项A错误,选项B正确;保持角速度不变,增大绳长,向心力增大,绳对手的拉力增大,选项C、D错误.4.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐增加,选项图中分别画出了汽车转弯时所受合力F的四种方向,正确的是( )解析:选B.汽车沿曲线运动时,轨迹应位于F和v的方向夹角之间,且向力一侧弯曲,故A、D选项错误;选项B、C中,将力沿切线和径向分解,沿半径方向的分力F n提供向心力,改变速度的方向;沿切线方向的分力F t改变速度的大小,要使速度增加,F t应与v同向,故B选项正确.5.如图所示,轻质且不可伸长的细绳一端系一质量为m的小球,另一端固定在天花板上的O点.则小球在竖直平面内摆动的过程中,以下说法正确的是( )A.小球在摆动过程中受到的外力的合力即为向心力B.在最高点A、B,因小球的速度为0,所以小球受到的合力为0C.小球在最低点C所受的合力,即为向心力D.小球在摆动过程中使其速率发生变化的力为绳子的拉力解析:选C.小球以悬点O为圆心做变速圆周运动,在摆动过程中,其所受外力的合力并不指向圆心.沿半径方向的合力提供向心力,重力沿圆弧切向的分力提供切向加速度,改变小球运动速度的大小.在A、B两点,小球的速度虽然为0,但有切向加速度,故其所受合力不为0;在最低点C,小球只受重力和绳的拉力,其合力提供向心力.由以上分析可知,选项C正确.6.如图所示,“旋转秋千”装置中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小解析:选D.当旋转圆盘绕竖直的中心轴匀速转动时,二者的角速度ω相等,由v=ωr 可知,A的速度比B的小,选项A错误.由a=ω2r可知,选项B错误.由于二者加速度不相等,悬挂A、B的缆绳与竖直方向的夹角不相等,选项C错误.悬挂A的缆绳所受的拉力比悬挂B的小,选项D正确.7.如图所示,M能在水平光滑杆上自由滑动,光滑杆连架装在转盘上.M用绳跨过在圆心处的光滑滑轮与另一质量为m的物体相连.当转盘以角速度ω转动时,M离轴距离为r,且恰能保持稳定转动.当转盘转速增至原来的2倍,调整r使之达到新的稳定转动状态,则滑块M( )。
向心力一、向心力┄┄┄┄┄┄┄┄①1.定义:做匀速圆周运动的物体受到的指向圆心的合力。
2.方向:始终指向圆心,与线速度方向垂直。
3.公式:F n =m v 2r 或F n =mω2r 或F n =m 4π2T2r 。
4.来源:(1)向心力是按照力的作用效果命名的。
(2)匀速圆周运动中向心力可能是物体所受外力的合力,也可能是某个力的分力。
5.作用:产生向心加速度,改变线速度的方向。
[说明]根据向心加速度的表达式a n =v 2r =ω2r =4π2T2r =4π2n 2r =ωv ,结合牛顿第二定律F n =ma n 就可得到向心力表达式。
①[判一判]1.向心力是除物体所受重力、弹力以及摩擦力以外的一种新力(×) 2.向心力的方向时刻指向圆心,方向不断变化(√) 3.做圆周运动的物体其向心力大小不变,方向时刻变化(×) 4.向心力既可以改变速度的大小,也可以改变速度的方向(×) 5.物体做圆周运动的速度越大,向心力一定越大(×) 二、变速圆周运动和一般的曲线运动┄┄┄┄┄┄┄┄②1.变速圆周运动:线速度大小发生变化的圆周运动,做变速圆周运动的物体同时具有向心加速度和切向加速度。
2.一般的曲线运动(1)定义:运动轨迹既不是直线也不是圆周的曲线运动。
(2)研究方法:将一般的曲线运动分成许多很短的小段,质点在每一小段的运动都可以看做圆周运动的一部分。
[说明]对于变速圆周运动,F n =m v 2r =mω2r ,a n =v 2r=ω2r 仍可用。
②[填一填]荡秋千是小朋友很喜欢的游戏,当秋千向下荡时, (1)小朋友做的是________运动; (2)绳子拉力与重力的合力指向悬挂点吗?________________________________________________________________________ 解析:(1)秋千荡下时,速度越来越大,做的是变速圆周运动。
高中物理向心力教案(热门6篇)高中物理向心力教案第1篇目录TOC o “1-3“ u 教学内容 PAGEREF _Toc393782737 h 1一、教学任务分析 PAGEREF _Toc393782738 h 1教材分析 PAGEREF _Toc393782739 h 1三维教学目标 PAGEREF _Toc393782740 h 1教学重点、难点 PAGEREF _Toc393782741 h 2二、学情分析 PAGEREF _Toc393782742 h 2三、教法学法 PAGEREF _Toc393782743 h 2教学方法 PAGEREF _Toc393782744 h 2学习方法 PAGEREF _Toc393782745 h 2四、教学过程 PAGEREF _Toc393782746 h 3新课引入 PAGEREF _Toc393782747 h 3新课讲授 PAGEREF _Toc393782748 h 3巩固练习 PAGEREF _Toc393782749 h 5课堂小结 PAGEREF _Toc393782750 h 5拓展提高 PAGEREF _Toc393782751 h 5课后思考 PAGEREF _Toc393782752 h 6板书设计 PAGEREF _Toc393782753 h 6五、教学特色 PAGEREF _Toc393782754 h 6《向心力》教学设计教学内容【课题】向心力【教材选择】普通高中课程标准(人教版)必修2 第五章第六节【课时安排】一课时【教学对象】高一学生一、教学任务分析教材分析《向心力》一节第五章曲线运动的重点、难点,具有承前启后的作用。
它既是本章知识的一个拐点,又是本章内容拓展的重要基础;通过学习,既能使学生从对圆周运动的表面认识上升到理论分析,又能让学生从生活中的圆周运动分析提高到对天体运动及带电粒子在电磁场中的运动的分析及推演。
5-6 向心力一向心力1.向心力的含义:做匀速圆周运动的物体具有向心加速度,是由于它受到了指向圆心的力,这个合力叫做向心力。
2.向心力的大小=mωv,这三个公式适用于所有圆周运动,但在变速圆周运动(1)基本公式:F n=mω2r=m v2r中,ω、v是变化的,所以求某一点的向心力时,ω、v都是那一点的瞬时值。
)2r=m2πf2r=m(2πn)2r(2)常用公式:F n=m(2πT3.向心力的方向:总是指向圆心,故方向时刻在变化,所以向心力是变力。
4.向心力的作用效果:向心力总是指向圆心,而线速度是沿圆周的切线方向,故向心力始终与线速度垂直,所以向心力的作用效果只是改变物体速度的方向,而不改变速度的大小。
●特别提醒:向心力的方向指向圆心,与线速度方向垂直,方向时刻在改变,故向心力为变力。
【例1】关于向心力的说法正确的是()A.物体由于做圆周运动而产生向心力B.向心力不改变物体做圆周运动的速度的大小C.做匀速圆周运动的物体向心力是不变的D.只要物体做圆周运动,它的合力一定指向圆心【例2】关于做匀速圆周运动的物体所受的向心力,下列说法正确的是()A.因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力B.因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小C.物体所受的合外力D.向心力和向心加速度的方向都是不变的【例3】一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小。
图中分别画出了汽车转弯时所受合力F的四种方向,正确的是()【例4】如图所示,将完全相同的两小球A、B,用长为L=0.8m的细绳悬于以v=4m/s向右匀速运动的小车顶部,两球与小车前后壁接触。
由于某种原因,小车突然停止运动,此时悬线的拉力之比F B:F A为(g取10m/s2)()A.1:1B.1:2C.1:3D.1:4【例5】如图所示,一小球用细绳悬挂于O点,若将其拉离数值位置一个角度后释放,则小球以O点为圆心做圆周运动,运动中小球所需的向心力是()A.绳的拉力B.重力和绳拉力的合力C.重力和绳拉力的合力沿绳方向的分力D.绳的拉力和重力沿绳方向分力的合力【例6】用细线悬吊着一个质量为m的小球,使小球在水平面内做匀速圆周运动,细线与竖直方向夹角为α,线长为L,如图所示,下列说法中正确的是()A.小球受重力、拉力、向心力B.小球受重力、拉力C.小球的向心力大小为mg tanαD.小球的向心力大小为mg/cosα二向心力的来源与确定1.向心力的来源:向心力时按力的作用效果命名的,可以使重力、弹力、摩擦力的各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加向心力。
2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。
(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力,该力就是向心力。
3.解决圆周运动问题的关键:从“供”、“需”两方面来进行研究。
(1)供:分析物体受力,求沿半径方向指向圆心的合外力。
(2)需:确定物体圆周轨道平面,定圆心、找半径,用公式求出所需向心力。
(3)算:根据“供”“需”平衡列方程F供=F需【例7】游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20m/s2,g取10m/s2,那么此位置座椅对游客的作用力相当于游客重力的()A.1倍B.2倍C.3倍D.4倍【例8】如图所示,某同学用硬塑料管和一个质量为m的铁质螺丝帽研究匀速圆周运动,将螺丝帽套在塑料管上,手握塑料管使其保持竖直并在水平方向做半径为r的匀速圆周运动,则只要运动角速度合适,螺丝帽恰好不下滑,假设螺丝帽与塑料管间的动摩擦因数为μ,认为最大静摩擦力近似等于滑动摩擦力。
则在该同学用手转塑料管使螺丝帽恰好不下滑时,下述分析正确的是()A.螺丝帽受的重力与最大静摩擦力平衡B.螺丝帽受到杆的弹力方向水平向外,背离圆心C.此时手转动塑料管的角速度ω=mgμrD.若杆的转动加快,螺丝帽有可能相对杆发生运动【例9】甲、乙两名溜冰运动员,M 甲=80kg ,M 乙=40kg ,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示。
两人相距0.9m ,弹簧秤的示数为9.2N ,下列判断中正确的是( )A.两人的线速度相同,约为40m/sB.两人的角速度相同,为6rad/sC.两人的运动半径相同,都是0.45mD.两人的运动半径不同,甲为0.3m ,乙为0.6m【例10】如图所示,在水平转动的圆盘上,两个完全一样的木块A 、B 一起随圆盘做匀速圆周运动,旋转的角速度为ω,已知A 、B 两点到圆盘中心O 的距离为r A 和r B ,则两木块的向心力之比为( ).r A :r B B.r A 2:r B 2C.1r A :1r BD.1r A :1r B【例11】如果让上题中的圆盘做加速旋转,则旋转角速度ω达到一定的值时( )A.A 木块先滑离圆盘B.B 木块先滑离圆盘C.两木块同时滑离圆盘D.不能确定【例12】在上题中,在圆盘做加速旋转的过程中,两木块还没有滑离圆盘,两木块受到的静摩擦力的方向为( )A.摩擦力的方向指向圆盘中心OB.摩擦力沿两木块速度的方向C.摩擦力既不指向圆盘中心O ,也不沿速度的切线方向D.不能确定三 处理圆周运动的方法1.明确研究对象在处理圆周运动问题时,如果涉及两个或两个以上的物体时,首先得明确研究对象,这是研究问题的关键。
2.确定研究对象运动的轨道平面和圆心的位置确定研究对象运动的轨道平面和圆心的位置,以便确定向心力的方向。
例如,沿半球形碗的光滑内表面,一小球在水平面上做匀速圆周运动O 。
●注意:圆周运动的圆心一定和物体做圆周运动的轨道在同一平面内。
3.对物体进行受力分析,找出向心力的来源向心力是按力的作用效果命名的,不是一种新的性质的力。
向心力可以由某一个力充当,也可以由某个力的分力或几个力的合力充当。
当物体进行受理分析后,找出沿着轨道半径,指向圆心方向的合力。
这个合力就是向心力。
4.根据牛顿第二定律列方程将牛顿第二定律用于圆周运动,即得F=ma=mω2r=m v2r式中F与a存在瞬时对应关系。
F为向心力,则a为向心加速度。
【例13】如图所示,质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为()A.mω2RB.m g2−ω4R2C.m g2+ω4R2D.不能确定【例14】如图所示,A、B两个小球质量相等,用一根轻绳相连,另有一根轻绳的两端分别连接O点和B点,让两个小球绕O点在光滑水平桌面上以相同的角速度做圆周运动,若OB绳上的拉力为F1,AB绳上的拉力为F2,OB=AB,则()A.F1:F2=2:3B. F1:F2=3:2C. F1:F2=5:3D. F1:F2=2:1【例15】如图所示,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,求此时两小球到转轴的距离r1与r2之比。
【例16】有一种叫“飞椅”的游乐项目,示意图如图所示,长为L的钢绳一端系着座椅,另一端固定在半径为r的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动。
当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ。
不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系。
四 圆周运动的临界问题圆周运动的临界问题是指物体从一种物理过程转变到另一物理过程中,因量变而引起质变,出现一种特殊的转变状态,即临界状态。
通过对物理过程的分析,找出临界状态,确定临界条件,往往是解决问题的关键。
对于物体在竖直平面内的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有“最大”“最小”“刚好”等词语。
【例17】如图所示,质量为m 的物块与转台之间能产生的最大静摩擦力为物块重力的k 倍,物块与转轴OO ’相距R ,随转台由静止开始转动。
当转速增加到一定值时,物块即将在转台上滑动,则此时转台的角速度为( )A. kgRB. R kgC. kg RD.0 【例18】如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳中张力为零)。
物块与转盘间最大静摩擦力是其重力的k 倍,求:(1)当转盘的角速度为ω1= kg 2r 时,绳中的张力为多少?(2)当转盘的角速度为ω2= 3kg 2r 时,绳中的张力又为多少?【例19】如图所示,汽车质量为1.5×104kg ,以不变的速度先后驶过凹形路面和凸型路面,路面圆弧半径均为15m ,如果路面承受的最大压力不得超过2.0×105N ,汽车允许的最大速率是多少?(g取10m/s 2)【例20】如图所示,在光滑水平桌面上有一光滑小孔O ,一根轻绳穿过小孔,一端连接质量为m =1kg 的小球A ,另一端连接质量为M =4kg 的重物B 。
(1)当小球A 沿半径r =0.1m 的圆周做匀速圆周运动,其角速度为ω=10rad/s 时,物体B 对地面的压力为多大?(2)当小球A 的角速度为多大时,物体B 处于将要离开而尚未离开地面的临界状态?(g 取10m/s 2)【课后作业】1.关于向心力,下列说法正确的是()A.向心力是一种效果力B.向心力是一种具有某种性质的力C.向心力既可以改变线速度的方向,又可以改变线速度的大小D.向心力只改变线速度的方向,不改变线速度的大小2.我们经常在电视中看到男、女花样滑冰运动员手拉手在冰面上旋转并表演各种优美的动作。
现有甲、乙两名花样滑冰运动员,M甲=80kg,M乙=40kg,他们面对面拉着弹簧测力计各自以他们连线上某一点为圆心做匀速圆周运动,若两人相距0.9m,弹簧测力计的示数为600N,则()A.两人的线速度相同,为0.4m/sB.两人的角速度相同,为5.0rad/sC.两人的运动半径相同,都是0.45mD.两人的运动半径不同,甲的半径是0.3m,乙的半径是0.6m3.甲、乙两个物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相同的时间里甲转过60°,乙转过45°,则它们的向心力之比为()A.1:4B.2:3C.4:9D.9:164.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥运动的精彩场面,目测体重为G的女运动员做圆锥摆动时和水平冰面的夹角约为30°,重力加速度为g,则可估算该女运动员()A.受到的拉力为B.受到的拉力为2GC.向心加速度为3gD.向心加速度为2g5.用材料和粗细相同、长短不同的两段绳子,各栓一个质量相同的小球在光滑水平面上做匀速圆周运动,那么()A.两个球以相同的线速度运动时,长绳易断B.两个球以相同的角速度运动时,长绳易断C.两个球以相同的角速度运动时,短绳易断D.不管怎样,都是短绳易断6.质量分别为M和m的两个小球,分别用长2l和l的轻绳拴在同一转轴上,当转轴稳定转动时,拴M和m的悬绳与竖直方向夹角为α和β,如图所示,则()A.cosα=cosβ2B.cosα=2cosβC.tanα=tanβ2D.tanα=tanβ7.如图所示,天车下吊着两个质量都是m的工件A和B,整体一起向左匀速运动。