海浪观测
- 格式:ppt
- 大小:769.50 KB
- 文档页数:32
海南东方近岸海域海浪观测特征研究冯兴如;李近元;尹宝树;杨德周;陈海英;高冠东【摘要】利用海南东方近岸海域2014年至2015年间一整年的海浪观测资料, 分析了海浪的时间变化特征.观测时间段内,有效波高最大值为4.03m, 平均值0.79m; 平均周期最大值为6.32s, 平均值为3.58s.该海域冬季波高较大, 秋季最小,常浪向为SSW 方向, 强浪向为 WSW 向.基于该长期观测数据, 文章亦研究了平均周期、有效波高之间的关系, 同时还确立了该海域波高与平均持续时间之间的关系.最后讨论了观测时间段内波浪能流密度的变化特征, 发现一年中能流密度大于2kW·m-1的频率为26%, 且从全年的计算结果来看, 观测位置处12月的波浪能较适宜开发, 但总体波浪能资源不够丰富.文章对于认识海南东方近岸海域波浪特征以及工程设计都具有重要的意义.%Temporal variation characteristics of ocean waves in the coastal area of Dongfang, Hainan are analyzed based on observations of ocean waves for a whole year from Aug 1, 2014 to Jul 31, 2015. During the observation period, the maximum height of the significant wave height was 4.03m, the average was 0.79m; the maximum value of the mean period was 6.32s, and the average was 3.58 seconds. In this sea area, the wave height was higher in winter, with minimum in autumn. The normal wave direction was SSW, and the strong wave direction was WSW. Based on the one-year observation data, the relation between the mean period and significant wave height was studied, and the relation between the significant wave height and its mean duration was also established. Finally, the variation characteristics of wave energy density in the observation period were discussed. We found that the frequency of wave energydensity above 2kW·m-1in one year was 26%, and the wave energy at the observation location increased faster in December, but the total wave energy resources were not rich enough. The results obtained in this study are of great significance for understanding the wave characteristics and engineering design of the coastal area of Dongfang, Hainan.【期刊名称】《热带海洋学报》【年(卷),期】2018(037)003【总页数】8页(P1-8)【关键词】海南东方近岸;波浪变化特征;波高周期联合分布;波高持续时间;波浪能【作者】冯兴如;李近元;尹宝树;杨德周;陈海英;高冠东【作者单位】中国科学院海洋研究所,山东青岛 266071;中国科学院海洋环流与波动重点实验室,山东青岛 266071;青岛海洋科学与技术国家实验室,海洋动力过程与气候功能实验室,山东青岛 266237;国电新能源技术研究院,海洋地质和水文研究室,北京 102209;中能电力科技开发有限公司,北京 100034;中国科学院海洋研究所,山东青岛 266071;中国科学院海洋环流与波动重点实验室,山东青岛 266071;中国科学院大学,北京 100049;青岛海洋科学与技术国家实验室,海洋动力过程与气候功能实验室,山东青岛 266237;中国科学院海洋研究所,山东青岛 266071;中国科学院海洋环流与波动重点实验室,山东青岛 266071;青岛海洋科学与技术国家实验室,海洋动力过程与气候功能实验室,山东青岛 266237;中国科学院海洋研究所,山东青岛 266071;中国科学院海洋环流与波动重点实验室,山东青岛 266071;青岛海洋科学与技术国家实验室,海洋动力过程与气候功能实验室,山东青岛 266237;中国科学院海洋研究所,山东青岛 266071;中国科学院海洋环流与波动重点实验室,山东青岛 266071【正文语种】中文【中图分类】P731.22海浪是近岸重要的物理过程之一, 是海洋工程建设以及许多海上活动必须考虑的环境参数。
海洋水文观测的要求和观测方法介绍海洋水文观测方式有哪些海洋水文观测要素一般包括:水温、盐度、海流、海浪、透明度、水色、海发光和海冰等。
如有需要,还要观测水位。
每次调查的具体观测要素,据任务书或合同书的要求而定,并应在技术设计文件中明确规定。
检测具有国家认可的测绘资质,拥有多名专业级海洋测绘高级工程师、注册测绘师。
我们将利用自身专业的技术、丰富的经验和完善的设备,为客户专业化的海洋水文观测服务。
海洋水文观测:观测方式与顺序依据调查任务的要求与客观条件的允许程度,水文观测方式可选择下列中的一种或多种:a)大面观测;b)断面观测;c)连续观测;d)同步观测;e)走航观测。
水文观测一般按下列顺序进行:a)观测前准备和检查仪器﹔b)对于大面(或断面)观测,到站后首先测量水深;对于连续观测应在正点前测量水深;c)观测水温、盐度,并采水;d)观测海流,对于连续观测站,海流观测应尽可能在正点完成﹔e)观测海浪、透明度、水色和海发光﹔f)观测海冰。
海洋水文观测:水温观测1、技术指标:1)水温观测的准确度:主要根据项目的要求和研究目的,同时兼顾观测海区和观测方法的不同以及仪器的类型。
2)观测时次:大面或断面测站,船到站观测一次;连续测站,一般每小时观测一次。
2、观测方法:温盐深仪(CTD)定点测温;现场XBT、XCTD和走航式CTD(MVP300);颠倒温度表测温方法。
海洋水文观测:盐度观测1、技术指标:1)水温观测的准确度:主要根据项目的要求和研究目的,同时兼顾观测海区和观测方法的不同以及仪器的类型。
2)观测时次:盐度与水温同时观测。
大面或断面测站,船到站观测一次;连续测站,每小时观测一次。
2、观测方法:温盐深仪(CTD)定点测温;XCTD和走航式CTD(MVP300);实验室盐度计测量海水样品盐度。
海洋水文观测:海流观测1、技术指标:1)观测要素主要观测要素为流速和流向。
辅助观测要素为风速和风向,辅助要素的观测应符合GB/T 12763.3的有关规定。
测量海洋浪高的方法-概述说明以及解释1.引言1.1 概述海洋浪高是指海浪的高度,它是海洋波浪运动的重要参数之一,对海洋工程、航海、渔业等领域都有着重要的影响。
因此,准确地测量海洋浪高对于保障海洋活动的安全至关重要。
本文将就测量海洋浪高的方法进行深入探讨,包括传统的测量方法和现代的测量技术,并探讨其在实际应用中的意义和作用。
通过本文的研究,希望能够为海洋浪高的准确测量提供一定的参考,也为相关领域的研究和实践提供一定的指导。
1.2 文章结构文章结构部分的内容:本文主要分为引言、正文和结论三个部分。
引言部分主要包括概述、文章结构和目的。
在概述中,我们将介绍海洋浪高对于海洋工程、气象预报等方面的重要性。
文章结构部分将简要介绍本文的整体结构,让读者可以清晰地了解整篇文章的内容安排。
在目的部分,我们将明确本文的写作目的,即介绍海洋浪高的测量方法及其应用。
正文部分将分为传统方法和现代技术两部分。
在传统方法中,我们将介绍一些传统的海洋浪高测量方法,比如利用标尺、浮标等。
而在现代技术部分,我们将介绍一些先进的测量设备和技术,比如激光雷达、卫星遥感等。
结论部分将包括总结、展望和结论三个部分。
在总结部分,我们将对前文所介绍的海洋浪高测量方法进行总结归纳。
在展望部分,我们将展望未来海洋浪高测量技术的发展方向和前景。
最后,在结论部分,我们将对整篇文章进行总结,强调海洋浪高测量对于海洋工程和气象预测等领域的重要性,并呼吁更多关注和投入。
1.3 目的文章的目的是介绍不同方法测量海洋浪高的原理和技术,以及这些方法在海洋测量和预测中的应用。
通过深入了解海洋浪高的测量方法,读者可以更好地理解海洋环境的动态变化,以及对海洋浪高数据的正确解读和运用。
另外,本文还旨在探讨现有方法的优缺点,展望未来可能的发展方向和新技术在海洋浪高测量中的应用前景。
通过本文的介绍和讨论,读者可以加深对海洋浪高测量的认识,并为相关领域的学术研究和工程实践提供参考。
海浪观测风浪:由当地风引起且直到观测结束时仍处于风力作用下的海面波浪称为风浪。
它的成长决定于风速,风区和风时。
涌浪:风浪离开风的作用区域后,在风力甚小或无风水域中依靠惯性维持的波浪。
目测海浪:目测海浪时,观测员应站在船只迎风面,以离船身30米(或船长一半)以外的海面作为观测区域(同时还应环视广阔海面)来估计海浪的尺寸和判断海面外貌特征。
波向观测:测定波向时,观测员站在船只较高的位置,用罗经的方位仪,使其瞄准线平行于离船较远的波峰线,转动90度后,使其对着波浪的来向,读取罗经刻度盘上的度数,即为波向(用磁罗经测波向时,须经磁差校正)。
然后,根据方位度数换算表,将度数换成十六个方位。
当海面无浪或浪向不明时,波向计为C ,风浪和涌浪同时存在时,波向应分别观测。
观测员手持秒表,注意随海面浮动的某一标志物(当波长大于船长时应以船身为标志物)。
当一个显著的波的波峰经过此物时,按下秒表,当相邻的波峰再经过此物时,停止秒表,读取记录时间,即为这个波的周期。
平均周期观测:观测员手持秒表,当波峰经过海面上的某标志物或固定点时,开始计时,测量11个波峰相继经过此物的时间(波长大于船长时可以根据船的起伏进行测定)。
如此测量三次(两次测量间隔不得超过1分钟),然后将三次测量时间相加,并除以30,即得平均周期T 。
部分大波高及周期的观测:根据平均周期T ,计算100个波浪所需的时间T t ⨯=100,然后,在时间t 内,目测15~20个显著波(在观测的波系中,较大的,发展完好的波浪)的波高。
取其中10个较大的波高的均值,作为1/10部分大波高101H ,从15个波高中选取最大值作为最大波高m H 。
1/3部分大波高即有效波高,则在时间t 内,目测40~50个显著波的波高。
取其中33个较大的波高的均值,即为31H 。
1/p 部分大波高的计算:在海上固定点连续观测到一系列的波高和周期,将观测值降序排列,取前总数的1/p 个大波高的均值即为1/p 部分大波高,记为pH 1。
波浪观测方法范文波浪观测是对海洋波浪进行测量和监测的过程。
波浪观测的目的是收集关于波浪特征和行为的数据,以了解海洋环境和波浪对海岸线、海洋结构和船舶等的影响。
波浪观测方法可以分为现场观测、遥感观测和模型模拟三大类。
一、现场观测方法现场观测方法是指在海洋上设置观测站点,通过直接测量海浪参数来了解波浪的特性。
以下是一些常用的现场观测方法:1.浮标观测法:将浮标放置在海洋中,通过记录浮标在水面上升降的位置来测量波浪高度。
这种方法适用于对单一波浪方向的测量。
2.声学测量法:利用声波在水中传播的性质,通过测量声波的传播时间和路径来推测波浪高度和周期。
这种方法适用于远离海岸的深海波浪测量。
3.雷达测量法:利用雷达发射出的微波信号与海面反射而回的波束交叉点的位置变化来推测波浪高度。
这种方法适用于对波浪高度和行进方向的测量。
4.压力传感器测量法:将压力传感器固定在海床上,通过测量水下压力的变化来推测波浪高度。
这种方法适用于近岸和浅水区域的波浪观测。
5.摄像测量法:通过摄像设备记录海浪的图像,然后根据图像计算波浪的高度和周期。
这种方法适用于近岸和浅水区域的波浪观测,并且可以提供更直观的波浪图像。
二、遥感观测方法遥感观测方法是指利用遥感技术对海洋波浪进行测量和监测。
以下是一些常用的遥感观测方法:1.卫星遥感:利用卫星上的传感器记录海洋表面的反射和散射信息,然后通过算法推测波浪高度、周期和方向。
2.激光遥感:利用激光束测量来测量波浪的高度和周期。
这种方法可以提供高精度的波浪观测数据。
3.红外遥感:利用红外辐射测量海洋表面的温度变化,从而推测波浪的高度和能量。
三、模型模拟方法模型模拟方法是指利用数值模型对海洋波浪进行模拟和预测。
以下是一些常用的模型模拟方法:1.大尺度数值模拟:利用数值模型对整个海洋领域的波浪进行模拟和预测。
这种方法可以提供全局范围的波浪分布和变化趋势。
2.中尺度数值模拟:利用数值模型对局部海域的波浪进行模拟和预测。